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PyOxidizer is a utility that aims to solve the problem of how to distribute Python applications. See Overview for
more or dive into Getting Started to learn how to start using PyOxidizer.

The official home of the PyOxidizer project is https://github.com/indygreg/PyOxidizer. Official documentation
lives at https://pyoxidizer.readthedocs.io/en/latest/index.html.

The pyoxidizer-users mailing list is a forum for users to discuss all things PyOxidizer.

If you want to financially contribute to PyOxidizer, do so on Patreon or via PayPal.

The creator and maintainer of PyOxidizer is Gregory Szorc.
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CHAPTER 1

Overview

From a very high level, PyOxidizer is a tool for packaging and distributing Python applications. The over-arching
goal of PyOxidizer is to make this (often complex) problem space simple so application maintainers can focus on
building quality applications instead of toiling with build systems and packaging tools.

On a lower, more technical level, PyOxidizer has a command line tool - pyoxidizer - that is capable of building
binaries (executables or libraries) that embed a fully-functional Python interpreter plus Python extensions and modules
in a single binary. Binaries produced with PyOxidizer are highly portable and can work on nearly every system
without any special requirements like containers, FUSE filesystems, or even temporary directory access. On Linux,
PyOxidizer can produce executables that are fully statically linked and don’t even support dynamic loading.

The Oxidizer part of the name comes from Rust: binaries built with PyOxidizer are compiled from Rust and Rust
code is responsible for managing the embedded Python interpreter and all its operations. But the existence of Rust
should be invisible to many users, much like the fact that CPython (the official Python distribution available from
www.python.org) is implemented in C. Rust is simply a tool to achieve an end goal (albeit a rather effective and
powerful tool).

1.1 Benefits of PyOxidizer

You may be wondering why you should use or care about PyOxidizer. Great question!

Python application distribution is generally considered an unsolved problem. At PyCon 2019, Russel Keith-Magee
identified code distribution as a potential black swan for Python during a keynote talk. In their words, Python hasn’t
ever had a consistent story for how I give my code to someone else, especially if that someone else isn’t a developer
and just wants to use my application. The over-arching goal of PyOxidizer is to solve this problem. If we’re
successful, we help Python become a more attractive option in more domains and eliminate this potential black swan
that is an existential threat for Python’s longevity.

On a less existential level, there are several benefits to PyOxidizer.

1.1.1 Ease of Application Installation

Installing Python applications can be hard, especially if you aren’t a developer.

3
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Applications produced with PyOxidizer are self-contained - as small as a single file executable. From the per-
spective of the end-user, they get an executable containing an application that just works. There’s no need to install
a Python distribution on their system. There’s no need to muck with installing Python packages. There’s no need to
configure a container runtime like Docker. There’s just an executable containing an embedded Python interpreter and
associated Python application code and running that executable just works. From the perspective of the end-user, your
application is just another platform native executable.

1.1.2 Ease of Packaging and Distribution

Python application developers can spend a large amount of time managing how their applications are packaged and
distributed. There’s no universal standard for distributing Python applications. Instead, there’s a hodgepodge of
random tools, typically different tools per operating system.

Python application developers typically need to solve the packaging and distribution problem N times. This is thankless
work and sucks valuable time away from what could otherwise be spent improving the application itself. Furthermore,
each distinct Python application tends to solve this problem redundantly.

Again, the over-arching goal of PyOxidizer is to provide a comprehensive solution to the Python application
packaging and distribution problem space. We want to make it as turn-key as possible for application maintainers to
make their applications usable by novice computer users. If we’re successful, Python developers can spend less time
solving packaging and distribution problems and more time improving Python applications themselves. That’s good
for the Python ecosystem.

1.2 Components

The most visible component of PyOxidizer is the pyoxidizer command line tool. This tool contains function-
ality for creating new projects using PyOxidizer, adding PyOxidizer to existing projects, producing binaries
containing a Python interpreter, and various related functionality.

The pyoxidizer executable is written in Rust. Behind that tool is a pile of Rust code performing all the functionality
exposed by the tool. That code is conveniently also made available as a library, so anyone wanting to integrate
PyOxidizer’s core functionality without using our pyoxidizer tool is able to do so.

The pyoxidizer crate and command line tool are effectively glorified build tools: they simply help with various
project management, build, and packaging.

The run-time component of PyOxidizer is completely separate from the build-time component. The run-time
component of PyOxidizer consists of a Rust crate named pyembed. The role of the pyembed crate is to manage
an embedded Python interpreter. This crate contains all the code needed to interact with the CPython APIs to create
and run a Python interpreter. pyembed also contains the special functionality required to import Python modules
from memory using zero-copy.

1.3 How It Works

The pyoxidizer tool is used to create a new project or add PyOxidizer to an existing (Rust) project. This entails:

• Generating a boilerplate Rust source file to call into the pyembed crate to run a Python interpreter.

• Generating a working pyoxidizer.bzl configuration file.

• Telling the project’s Rust build system about PyOxidizer.

When that project’s pyembed crate is built by Rust’s build system, it calls out to PyOxidizer to process the active
PyOxidizer configuration file. PyOxidizer will obtain a specially-built Python distribution that is optimized for
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embedding. It will then use this distribution to finish packaging itself and any other Python dependencies indicated in
the configuration file. For example, you can process a pip requirements file at build time to include additional Python
packages in the produced binary.

At the end of this sausage grinder, PyOxidizer emits an archive library containing Python (which can be linked
into another library or executable) and resource files containing Python data (such as Python module sources and
bytecode). Most importantly, PyOxidizer tells Rust’s build system how to integrate these components into the
binary it is building.

From here, Rust’s build system combines the standard Rust bits with the files produced by PyOxidizer and turns
everything into a binary, typically an executable.

At run time, an instance of the PythonConfig struct from the pyembed crate is created to define how an embedded
Python interpreter should behave. (One of the build-time actions performed by PyOxidizer is to convert the Starlark
configuration file into a default instance of this struct.) This struct is used to instantiate a Python interpreter.

The pyembed crate implements a Python extension module which provides custom module importing functionality.
Light magic is used to coerce the Python interpreter to load this module very early during initialization. This allows the
module to service Python import requests. The custom module importer installed by pyembed supports retrieving
data from a read-only data structure embedded in the executable itself. Essentially, the Python import request calls
into some Rust code provided by pyembed and Rust returns a void * to memory containing data (module source
code, bytecode, etc) that was generated at build time by PyOxidizer and later embedded into the binary by Rust’s
build system.

Once the embedded Python interpreter is initialized, the application works just like any other Python application!
The main differences are that modules are (probably) getting imported from memory and that Rust - not the Python
distribution’s python executable logic - is driving execution of Python.

Read on to Getting Started to learn how to use PyOxidizer.

1.3. How It Works 5
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CHAPTER 2

Getting Started

2.1 Installing

2.1.1 Installing Rust

PyOxidizer is a Rust application and requires Rust (1.36 or newer) to be installed in order to build PyOxidizer itself as
well as Python application binaries.

You can verify your installed version of Rust by running:

$ rustc --version
rustc 1.38.0 (625451e37 2019-09-23)

If you don’t have Rust installed, https://www.rust-lang.org/ has very detailed instructions on how to install it.

Rust releases a new version every 6 weeks and language development moves faster than other programming languages.
It is common for the Rust packages provided by common package managers to lag behind the latest Rust release by
several releases. For that reason, use of the rustup tool for managing Rust is highly recommended.

If you are a security paranoid individual and don’t want to follow the official rustup install instructions involving
a curl | sh (your paranoia is understood), you can find instructions for alternative installation methods at https:
//github.com/rust-lang/rustup.rs/#other-installation-methods.

2.1.2 Other System Dependencies

You will need a working C compiler/toolchain in order to build some Rust crates and their dependencies. If Rust
cannot find a C compiler, it should print a message at build time and give you instructions on how to install one.

There is a known issue with PyOxidizer on Fedora 30+ that will require you to install the libxcrypt-compat
package to avoid an error due to a missing libcrypt.so.1 file. See https://github.com/indygreg/PyOxidizer/
issues/89 for more info.
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2.1.3 Installing PyOxidizer

PyOxidizer can be installed from its latest published crate:

$ cargo install pyoxidizer

From a Git repository using cargo:

# The latest commit in source control.
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --branch main
→˓pyoxidizer

$ A specific release
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --tag <TAG>
→˓pyoxidizer

Or by cloning the Git repository and building the project locally:

$ git clone https://github.com/indygreg/PyOxidizer.git
$ cd PyOxidizer
$ cargo install --path pyoxidizer

Note: PyOxidizer’s project policy is for the main branch to be stable. So it should always be relatively safe to use
main instead of a released version.

Once the pyoxidizer executable is installed, try to run it:

$ pyoxidizer
PyOxidizer 0.5
Gregory Szorc <gregory.szorc@gmail.com>
Build and distribute Python applications

USAGE:
pyoxidizer [SUBCOMMAND]

...

Congratulations, PyOxidizer is installed! Now let’s move on to using it.

2.2 High-Level Project Lifecycle

PyOxidizer exposes various functionality through the interaction of pyoxidizer commands and configuration
files.

The first step of any project is to create it. This is achieved with a pyoxidizer init-* command to create files
required by PyOxidizer.

After that, various pyoxidizer commands can be used to evaluate configuration files and perform actions from the
evaluated file. PyOxidizer provides functionality for building binaries, installing files into a directory tree, and
running the results of build actions.
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2.3 Your First PyOxidizer Project

The pyoxidizer init-config-file command will create a new PyOxidizer configuration file in a directory
of your choosing:

$ pyoxidizer init-config-file pyapp

This should have printed out details on what happened and what to do next. If you actually ran this in a terminal,
hopefully you don’t need to continue following the directions here as the printed instructions are sufficient! But if you
aren’t, keep reading.

The default configuration created by pyoxidizer init-config-file will produce an executable that embeds
Python and starts a Python REPL by default. Let’s test that:

$ cd pyapp
$ pyoxidizer run
resolving 1 targets
resolving target exe
...

Compiling pyapp v0.1.0 (/tmp/pyoxidizer.nv7QvpNPRgL5/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 26.07s

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
>>>

If all goes according to plan, you just started a Rust executable which started a Python interpreter, which started an
interactive Python debugger! Try typing in some Python code:

>>> print("hello, world")
hello, world

It works!

(To exit the REPL, press CTRL+d or CTRL+z.)

Continue reading The pyoxidizer Command Line Tool to learn more about the pyoxidizer tool. Or read on for a
preview of how to customize your application’s behavior.

2.4 The pyoxidizer.bzl Configuration File

The most important file for a PyOxidizer project is the pyoxidizer.bzl configuration file. This is a Starlark
file evaluated in a context that provides special functionality for PyOxidizer.

Starlark is a Python-like interpreted language and its syntax and semantics should be familiar to any Python program-
mer.

From a high-level, PyOxidizer’s configuration files define named targets, which are callable functions associ-
ated with a name - the target - that resolve to an entity. For example, a configuration file may define a build_exe()
function which returns an object representing a standalone executable file embedding Python. The pyoxidizer
build command can be used to evaluate just that target/function.

Target functions can call out to other target functions. For example, there may be an install target that creates a
set of files composing a full application. Its function may evaluate the exe target to produce an executable file.

See Configuration Files for comprehensive documentation of pyoxidizer.bzl files and their semantics.

2.3. Your First PyOxidizer Project 9
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2.5 Customizing Python and Packaging Behavior

Embedding Python in a Rust executable and starting a REPL is cool and all. But you probably want to do something
more exciting.

The autogenerated pyoxidizer.bzl file created as part of running pyoxidizer init-config-file de-
fines how your application is configured and built. It controls everything from what Python distribution to use, which
Python packages to install, how the embedded Python interpreter is configured, and what code to run in that interpreter.

Open pyoxidizer.bzl in your favorite editor and find the line passing a run_repl argument, which configures
the embedded interpreter to run a Python REPL. Let’s replace that line with the following:

run_eval="import uuid; print(uuid.uuid4())",

We’re now telling the interpreter to run the Python statement eval(import uuid; print(uuid.uuid4())
when it starts. Test that out:

$ pyoxidizer run
...

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 3.92s
Running `target/debug/pyapp`

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
96f776c8-c32d-48d8-8c1c-aef8a735f535

It works!

This is still pretty trivial. But it demonstrates how the pyoxidizer.bzl is used to influence the behavior of built
executables.

Let’s do something a little bit more complicated, like package an existing Python application!

Find the embedded = dist.to_embedded_resources( line in the pyoxidizer.bzl file. Let’s add a
new line to make_exe() just below where embedded is assigned:

embedded.add_in_memory_python_resources(dist.pip_install(["pyflakes==2.1.1"]))

In addition, replace the run_* argument to execute pyflakes:

run_eval="from pyflakes.api import main; main()",

Now let’s try building and running the new configuration:

$ pyoxidizer run -- --help
...

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 5.49s

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
Usage: pyapp [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit

You’ve just produced an executable for pyflakes!
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There are far more powerful packaging and configuration settings available. Read all about them at Configuration
Files and Packaging User Guide. Or continue on to The pyoxidizer Command Line Tool to learn more about the
pyoxidizer tool.

2.5. Customizing Python and Packaging Behavior 11
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CHAPTER 3

The pyoxidizer Command Line Tool

The pyoxidizer command line tool is a frontend to the various functionality of PyOxidizer. See Components
for more on the various components of PyOxidizer.

3.1 Creating New Projects with init-config-file

The pyoxidizer init-config-file command will create a new pyoxidizer.bzl configuration file in
the target directory:

$ pyoxidizer init-config-file pyapp

This should have printed out details on what happened and what to do next.

3.2 Creating New Rust Projects with init-rust-project

The pyoxidizer init-rust-project command creates a minimal Rust project configured to build an appli-
cation that runs an embedded Python interpreter from a configuration defined in a pyoxidizer.bzl configuration
file. Run it by specifying the directory to contain the new project:

$ pyoxidizer init-rust-project pyapp

This should have printed out details on what happened and what to do next.

The explicit creation of Rust projects to use PyOxidizer is not required. If your produced binaries only need to
perform actions configurable via PyOxidizer configuration files (like running some Python code), an explicit Rust
project isn’t required, as PyOxidizer can auto-generate a temporary Rust project at build time.

But if you want to supplement the behavior of the binaries built with Rust, an explicit and persisted Rust project can
facilitate that. For example, you may want to run custom Rust code before, during, and after a Python interpreter runs
in the process.

See Rust Projects for more on the composition of Rust projects.

13
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3.3 Adding PyOxidizer to an Existing Project with add

Do you have an existing Rust project that you want to add an embedded Python interpreter to? PyOxidizer can help
with that too! The pyoxidizer add command can be used to add an embedded Python interpreter to an existing
Rust project. Simply give the directory to a project containing a Cargo.toml file:

$ cargo init myrustapp
Created binary (application) package

$ pyoxidizer add myrustapp

This will add required files and make required modifications to add an embedded Python interpreter to the target
project.

Important: It is highly recommended to have the destination project under version control so you can see what
changes are made by pyoxidizer add and so you can undo any unwanted changes.

Danger: This command isn’t very well tested. And results have been known to be wrong. If it doesn’t just work,
you may want to run pyoxidizer init and incorporate relevant files into your project manually. Sorry for the
inconvenience.

3.4 Building PyObject Projects with build

The pyoxidizer build command is probably the most important and used pyoxidizer command. This com-
mand evaluates a pyoxidizer.bzl configuration file by resolving targets in it.

By default, the default target in the configuration file is resolved. However, callers can specify a list of explicit targets
to resolve. e.g.:

# Resolve the default target.
$ pyoxidizer build

# Resolve the "exe" and "install" targets, in that order.
$ pyoxidizer build exe install

PyOxidizer configuration files are effectively defining a build system, hence the name build for the command to
resolve targets within.

3.5 Running the Result of Building with run

Target functions in PyOxidizer configuration files return objects that may be runnable. For example, a PythonEx-
ecutable returned by a target function that defines a Python executable binary can be run by executing a new process.

The pyoxidizer run command is used to attempt to run an object returned by a build target. It is effectively
pyoxidizer build followed by running the returned object. e.g.:

# Run the default target.
$ pyoxidizer run

# Run the "install" target.
$ pyoxidizer run --target install
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3.6 Analyzing Produced Binaries with analyze

The pyoxidizer analyze command is a generic command for analyzing the contents of executables and li-
braries. While it is generic, its output is specifically tailored for PyOxidizer.

Run the command with the path to an executable. For example:

$ pyoxidizer analyze build/apps/myapp/x86_64-unknown-linux-gnu/debug/myapp

Behavior is dependent on the format of the file being analyzed. But the general theme is that the command attempts
to identify the run-time requirements for that binary. For example, for ELF binaries it will list all shared library
dependencies and analyze glibc symbol versions and print out which Linux distributions it thinks the binary is
compatible with.

Note: pyoxidizer analyze is not yet implemented for all executable file types that PyOxidizer supports.

3.7 Inspecting Python Distributions

PyOxidizer uses special pre-built Python distributions to build binaries containing Python.

These Python distributions are zstandard compressed tar files. Zstandard is a modern compression format that is really,
really, really good. (PyOxidizer’s maintainer also maintains Python bindings to zstandard and has written about the
benefits of zstandard on his blog. You should read that blog post so you are enlightened on how amazing zstandard
is.) But because zstandard is relatively new, not all systems have utilities for decompressing that format yet. So, the
pyoxidizer python-distribution-extract command can be used to extract the zstandard compressed
tar archive to a local filesystem path.

Python distributions contain software governed by a number of licenses. This of course has implications for application
distribution. See Licensing Considerations for more.

The pyoxidizer python-distribution-licenses command can be used to inspect a Python distribution
archive for information about its licenses. The command will print information about the licensing of the Python
distribution itself along with a per-extension breakdown of which libraries are used by which extensions and which
licenses apply to what. This command can be super useful to audit for license usage and only allow extensions with
licenses that you are legally comfortable with.

For example, the entry for the readline extension shows that the extension links against the ncurses and
readline libraries, which are governed by the X11, and GPL-3.0 licenses:

readline
--------

Dependency: ncurses
Link Type: library

Dependency: readline
Link Type: library

Licenses: GPL-3.0, X11
License Info: https://spdx.org/licenses/GPL-3.0.html
License Info: https://spdx.org/licenses/X11.html

Note: The license annotations in Python distributions are best effort and can be wrong. They do not constitute a

3.6. Analyzing Produced Binaries with analyze 15
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legal promise. Paranoid individuals may want to double check the license annotations by verifying with source code
distributions, for example.
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CHAPTER 4

Configuration Files

PyOxidizer uses Starlark files to configure run-time behavior.

Starlark is a dialect of Python intended to be used as a configuration language and the syntax should be familiar to any
Python programmer.

4.1 Finding Configuration Files

If the PYOXIDIZER_CONFIG environment variable is set, the path specified by this environment variable will be
used as the location of the Starlark configuration file.

If the OUT_DIR environment variable is set (we’re building from the context of a Rust project), the ancestor directories
will be searched for a pyoxidizer.bzl file and the first one found will be used.

Otherwise, PyOxidizer will look for a pyoxidizer.bzl file starting in either the current working directory or
from the directory containing the pyembed crate and then will traverse ancestor directories until a file is found.

If no configuration file is found, an error occurs.

4.2 File Processing Semantics

A configuration file is evaluated in a custom Starlark dialect which provides primitives used by PyOxidizer. This
dialect provides some well-defined global variables (defined in UPPERCASE) as well as some types and functions
that can be constructed and called. See below for general usage and Configuration File API Reference for a full
reference of what’s available to the Starlark environment.

Since Starlark is effectively a subset of Python, executing a PyOxidizer configuration file is effectively running
a sandboxed Python script. It is conceptually similar to running python setup.py to build a Python package.
As functions within the Starlark environment are called, PyOxidizer will perform actions as described by those
functions.
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4.3 Targets

PyOxidizer configuration files are composed of functions registered as named targets. You define a function
that does something then register it as a target by calling the register_target(name, fn, depends=[], default=False,
default_build_script=False) global function provided by our Starlark dialect. e.g.:

def get_python_distribution():
return default_python_distribution()

register_target("dist", get_python_distribution)

When a configuration file is evaluated, PyOxidizer attempts to resolve an ordered list of targets This list of targets
is either specified by the end-user or is derived from the configuration file. The first register_target() target
or the last register_target() call passing default=True is the default target.

When evaluated in Rust build script mode (typically via pyoxidizer run-build-script), the default target
will be the one specified by the last register_target() call passing default_build_script=True, or
the default target if no target defines itself as the default build script target.

PyOxidizer calls the registered target functions in order to resolve the requested set of targets.

Target functions can depend on other targets and dependent target functions will automatically be called and have their
return value passed as an argument to the target function depending on it. See register_target(name, fn, depends=[],
default=False, default_build_script=False) for more.

The value returned by a target function is special. If that value is one of the special types defined by our Starlark dialect
(e.g. PythonDistribution or PythonExecutable), PyOxidizer will attempt to invoke special functionality depending
on the run mode. For example, when running pyoxidizer build to build a target, PyOxidizer will invoke
any build functionality on the value returned by a target function, if present. For example, a PythonExecutable’s
build functionality would compile an executable binary embedding Python.

4.4 Common Operations

4.4.1 Obtain a Python Distribution

A PythonDistribution type defines a Python distribution from which you can derive binaries, perform packaging
actions, etc. Every configuration file will likely utilize this type.

Instances are typically constructed from default_python_distribution() and are registered as their own target, since
multiple targets may want to reference the distribution instance:

def make_dist():
return default_python_distribution()

register_target("dist", make_dist)

4.4.2 Creating an Executable File Embedding Python

A PythonExecutable type defines an executable file embedding Python.

Instances are derived from a PythonDistribution instance, usually by using target dependencies. In this exam-
ple, we create an executable that runs a Python REPL on startup:
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def make_dist():
return default_python_distribution()

def make_exe(dist):
return dist.to_python_executable(

"myapp",
run_repl=True,

)

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"], default=True)

See Packaging User Guide for more examples.

4.4.3 Copying Files Next To Your Application

The FileManifest type represents a collection of files and their content. When FileManifest instances are returned
from a target function, their build action results in their contents being manifested in a directory having the name of
the build target.

FileManifest instances can be used to construct custom file install layouts.

Say you have an existing directory tree of files you want to copy next to your application.

The glob(include, exclude=None, strip_prefix=None) function can be used to discover existing files on the filesystem
and turn them into a FileManifest. You can then return this FileManifest directory or overlay it onto another
instance using FileManifest.add_manifest(manifest). Here’s an example:

def make_install():
m = FileManifest()

templates = glob("/path/to/project/templates/**/*", strip_prefix="/path/to/
→˓project/")

m.add_manifest(templates)

return m

This will take all files /path/to/project/templates/, strip the path prefix /path/to/project/ from
them and then add all those files to your main FileManifest. The files should be installed as templates/*
when the InstallManifest is materialized.

4.4. Common Operations 19
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CHAPTER 5

Packaging User Guide

So you want to package a Python application using PyOxidizer? You’ve come to the right place to learn how!
Read on for all the details on how to oxidize your Python application!

First, you’ll need to install PyOxidizer. See Installing for instructions.

5.1 Creating a PyOxidizer Project

The process for oxidizing every Python application looks the same: you start by creating a new PyOxidizer config-
uration file via the pyoxidizer init-config-file command:

# Create a new configuration file in the directory "pyapp"
$ pyoxidizer init-config-file pyapp

Behind the scenes, PyOxidizer works by leveraging a Rust project to build binaries embedding Python. The auto-
generated project simply instantiates and runs an embedded Python interpreter. If you would like your built binaries
to offer more functionality, you can create a minimal Rust project to embed a Python interpreter and customize from
there:

# Create a new Rust project for your application in ~/src/myapp.
$ pyoxidizer init-rust-project ~/src/myapp

The auto-generated configuration file and Rust project will alunch a Python REPL by default. And the pyoxidizer
executable will look in the current directory for a pyoxidizer.bzl configuration file. Let’s test that the new
configuration file or project works:

$ pyoxidizer run
...

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 53.14s

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
>>>
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If all goes according to plan, you just built a Rust executable which contains an embedded copy of Python. That
executable started an interactive Python debugger on startup. Try typing in some Python code:

>>> print("hello, world")
hello, world

It works!

(To exit the REPL, press CTRL+d or CTRL+z or import sys; sys.exit(0) from the REPL.)

Note: If you have built a Rust project before, the output from building a PyOxidizer application may look familiar
to you. That’s because under the hood Cargo - Rust’s package manager and build system - is doing a lot of the work
to build the application. If you are familiar with Rust development, you can use cargo build and cargo run
directly. However, Rust’s build system is only responsible for build binaries and some of the higher-level functionality
from PyOxidizer’s configuration files (such as application packaging) will likely not be performed unless tweaks
are made to the Rust project’s build.rs.

Now that we’ve got a new project, let’s customize it to do something useful.

5.2 Managing Resources and Their Locations

An important concept in PyOxidizer packaging is how to manage resources and their locations.

A resource is some entity that will be packaged or distributed. Examples of resources include Python module bytecode,
Python extension modules, and arbitrary files on the filesystem.

A location is where that resource will be placed. Examples of locations included embedded in the built binary and in
a file next to the built binary.

Resources are typically represented by a dedicated Starlark type. Locations are typically expressed through a function
name.

5.2.1 Resource Types

The following Starlark types represent individual resources:

PythonSourceModule Source code for a Python module. Roughly equivalent to a .py file.

PythonBytecodeModule Bytecode for a Python module. Roughly equivalent to a .pyc file.

PythonExtensionModule A Python module defined through compiled, machine-native code. On Linux, these are
typically encountered as .so files. On Windows, .pyd files.

PythonPackageResource A non-module resource file loadable by Python resources APIs, such as those in
importlib.resources.

PythonPackageDistributionResource A non-module resource file defining metadata for a Python package. Typically
accessed via importlib.metadata. This is how files in *.dist-info or *.egg-info directories are
represented.

FileContent Represents the content of a filesystem file.

There are also Starlark types that are logically containers for multiple resources:

FileManifest Holds a mapping of relative filesystem paths to FileContent instances. This type effectively allows
modeling a directory tree.
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PythonEmbeddedResources Holds a collection of Python resources of various types. (This type is often hidden away.
e.g. inside a PythonExecutable instance.)

5.2.2 Python Resource Locations

The PythonEmbeddedResources type represents a collection of Python resources of varying resource types and
locations. When adding a Python resource to this type, you have the choice of multiple locations for the resource.

In-Memory

When a Python resource is placed in the in-memory location, the content behind the resource will be embedded in a
built binary and loaded from there by the Python interpreter.

Python modules imported from memory do not have the __file__ attribute set. This can cause compatibility issues
if Python code is relying on the existence of this module. See __file__ and __cached__ Module Attributes for more.

Filesystem-Relative

When a Python resource is placed in the filesystem-relative location, the resource will be materialized as a file next to
the produced entity. e.g. a filesystem-relative PythonSourceModule for the foo.bar Python module added to
a PythonExecutable will be materialized as the file foo/bar.py or foo/bar/__init__.py in a directory
next to the built executable.

Resources added to filesystem-relative locations should be materialized under paths that preserve semantics with stan-
dard Python file layouts. For e.g. Python source and bytecode modules, it should be possible to point sys.path of
any Python interpreter at the destination directory and the modules will be loadable.

During packaging, PyOxidizer indexes all filesystem-relative resources and embeds metadata about them in the built
binary. While the files on the filesystem may look like a standard Python install layout, loading them is serviced by
PyOxidizer’s custom importer, not the standard importer that Python uses by default.

5.2.3 Python Resource Location Policies

When constructing a Starlark type that represents a collection of Python resources, the caller can specify a policy for
what locations are allowed and how to handle a resource if no explicit location is specified. See Python Resources
Policy for the full documentation.

Here are some examples of how policies are used:

def make_exe():
dist = default_python_distribution()

# Only allow resources to be added to the in-memory location.
exe = dist.to_python_executable(

name="myapp",
resources_policy="in-memory-only",

)

# Only allow resources to be added to the filesystem-relative location under
# a "lib" directory.
exe = dist.to_python_executable(

name="myapp",
resources_policy="filesystem-relative-only:lib",

(continues on next page)

5.2. Managing Resources and Their Locations 23



PyOxidizer, Release 0.7.0

(continued from previous page)

)

# Try to add resources to in-memory first. If that fails, add them to a
# "lib" directory relative to the built executable.
exe = dist.to_python_executable(

name="myapp",
resources_policy="prefer-in-memory-fallback-filesystem-relative:lib"

)

return exe

5.2.4 Routing Python Resources to Locations

Python resource collections have various APIs for adding resources to them. For example, to add a
PythonSourceModule to a PythonExecutable:

def make_exe():
dist = default_python_distribution()

exe = dist.to_python_executable(
name="myapp",
resources_policy="prefer-in-memory-fallback-filesystem-relative:lib",

)

for resource in dist.pip_install(["my-package"]):
if type(resource) == "PythonSourceModule":

exe.add_in_memory_module_source(resource)
exe.add_filesystem_relative_module_source("site-packages", resource)

These resource addition APIs are either location-aware or location-agnostic.

Location-aware APIs route a resource to a specific location, such as in-memory or filesystem-
relative. Examples of these APIs include PythonExecutable.add_module_source(module) and PythonExe-
cutable.add_filesystem_relative_python_resource(prefix, ...).

Location-agnostic APIs route a resource to an appropriate location given the resource location policy for the
container. e.g. if in-memory-only is in use, resources will be routed to the in-memory location. Ex-
amples of these APIs include PythonExecutable.add_module_bytecode(module, optimize_level=0) and PythonExe-
cutable.add_python_resources(...).

Resource addition APIs are either type-aware or type-agnostic.

Type-aware APIs require that the resource being passed in be a specific type or an error occurs. Examples of
type-aware APIs include PythonExecutable.add_filesystem_relative_module_source(prefix, module) and PythonEx-
ecutable.add_in_memory_package_resource(resource).

Type-agnostic APIs operate on any instance of an allowed type. It is safe to call these APIs with any ac-
cepted type. Examples of type-agnostic APIs include PythonExecutable.add_python_resource(...) and PythonExe-
cutable.add_in_memory_python_resources(...).

5.2.5 PythonExtensionModule Location Compatibility

Many resources just work in any available location. This is not the case for PythonExtensionModule instances!

While there only exists a single PythonExtensionModule type to represent Python extension modules, Python
extension modules come in various flavors. Examples of flavors include:
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• A module that is part of a Python distribution and is compiled into libpython (a builtin extension module).

• A module that is part of a Python distribution that is compiled as a standalone shared library (e.g. a .so or
.pyd file).

• A non-distribution module that is compiled as a standalone shared library.

• A non-distribution module that is compiled as a static library.

Not all extension module flavors are compatible with all Python distributions. Furthermore, not all flavors are com-
patible with all build configurations.

Here are some of the rules governing extension modules and their locations:

• A builtin extension module that’s part of a Python distribution will always be statically linked into libpython.

• A Windows Python distribution with a statically linked libpython (e.g. the standalone_static distri-
bution flavor) is not capable of loading extension modules defined as shared libraries and only supports loading
builtin extension modules statically linked into the binary.

• A Windows Python distribution with a dynamically linked libpython (e.g. the standalone_dynamic
distribution flavor) is capable of loading shared library backed extension modules from the in-memory location.
Other operating systems do not support the in-memory location for loading shared library extension modules.

• If the current build configuration targets Linux MUSL-libc, shared library extension modules are not supported
and all extensions must be statically linked into the binary.

The location-agnostic addition APIs will generally try to route a resource to an intelligent location based on the policy.
And these APIs are a bit smarter about their actions than what is available in Starlark. For example, these APIs can see
that both a static and shared library is available for an extension module and take a course of action that won’t result
in a build failure.

Note: Extension module handling is one of the more nuanced aspects of PyOxidizer. There are likely many subtle
bugs and room for improvement. If you experience problems handling extension modules, please consider filing an
issue.

5.3 Packaging an Application from a PyPI Package

In this section, we’ll show how to package the pyflakes program using a published PyPI package. (Pyflakes is a Python
linter.)

First, let’s create an empty project:

$ pyoxidizer init-config-file pyflakes

Next, we need to edit the configuration file to tell PyOxidizer about pyflakes. Open the pyflakes/pyoxidizer.
bzl file in your favorite editor.

Find the make_exe() function. This function returns a PythonExecutable instance which defines a standalone
executable containing Python. This function is a registered target, which is a named entity that can be individually built
or run. By returning a PythonExecutable instance, this function/target is saying build an executable containing
Python.

The PythonExecutable type holds all state needed to package and run a Python interpreter. This includes low-
level interpreter configuration settings to which Python resources (like source and bytecode modules) are embedded
in that executable binary. This type exposes an add_in_memory_python_resources() method which adds an iterable of
objects representing Python resources to the set of embedded resources.
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Elsewhere in this function, the dist variable holds an instance of PythonDistribution. This type represents a Python
distribution, which is a fancy way of saying an implementation of Python. In addition to defining the files constitut-
ing that distribution, a PythonDistribution exposes methods for performing Python packaging. One of those
methods is pip_install(), which invokes pip install using that Python distribution.

To add a new Python package to our executable, we call dist.pip_install() then add the results to our
PythonExecutable instance. This is done like so:

exe.add_in_memory_python_resources(dist.pip_install(["pyflakes==2.1.1"]))

The inner call to dist.pip_install() will effectively run pip install pyflakes==2.1.1 and collect a
set of installed Python resources (like module sources and bytecode data) and return that as an iterable data structure.
The exe.add_in_memory_python_resources() call will then embed these resources in the built executable
binary.

Next, we tell PyOxidizer to run pyflakes when the interpreter is executed:

run_eval="from pyflakes.api import main; main()",

This says to effectively run the Python code eval(from pyflakes.api import main; main()) when
the embedded interpreter starts.

The new make_exe() function should look something like the following (with comments removed for brevity):

def make_exe():
dist = default_python_distribution()

config = PythonInterpreterConfig(
run_eval="from pyflakes.api import main; main()",

)

exe = dist.to_python_executable(
name="pyflakes",
config=config,
extension_module_filter="all",
include_sources=True,
include_resources=False,
include_test=False,

)

exe.add_in_memory_python_resources(dist.pip_install(["pyflakes==2.1.1"]))

return exe

With the configuration changes made, we can build and run a pyflakes native executable:

# From outside the ``pyflakes`` directory
$ pyoxidizer run --path /path/to/pyflakes/project -- /path/to/python/file/to/analyze

# From inside the ``pyflakes`` directory
$ pyoxidizer run -- /path/to/python/file/to/analyze

# Or if you prefer the Rust native tools
$ cargo run -- /path/to/python/file/to/analyze

By default, pyflakes analyzes Python source code passed to it via stdin.
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5.4 Packaging Additional Files

By default PyOxidizer will embed Python resources such as modules into the compiled executable. This is the ideal
method to produce distributable Python applications because it can keep the entire application self-contained to a
single executable and can result in performance wins.

But sometimes embedded resources into the binary isn’t desired or doesn’t work. Fear not: PyOxidizer has you
covered!

Let’s give an example of this by attempting to package black, a Python code formatter.

We start by creating a new project:

$ pyoxidizer init-config-file black

Then edit the pyoxidizer.bzl file to have the following:

def make_exe():
dist = default_python_distribution()

config = PythonInterpreterConfig(
run_module="black",

)

exe = dist.to_python_executable(
name="black",

)

exe.add_in_memory_python_resources(dist.pip_install(["black==19.3b0"]))

return exe

Then let’s attempt to build the application:

$ pyoxidizer build --path black
processing config file /home/gps/src/black/pyoxidizer.bzl
resolving Python distribution...
...

Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path black
Traceback (most recent call last):

File "black", line 46, in <module>
File "blib2to3.pygram", line 15, in <module>

NameError: name '__file__' is not defined
SystemError

Uh oh - that’s didn’t work as expected.

As the error message shows, the blib2to3.pygram module is trying to access __file__, which is not defined.
As explained by __file__ and __cached__ Module Attributes, PyOxidizer doesn’t set __file__ for modules
loaded from memory. This is perfectly legal as Python doesn’t mandate that __file__ be defined. So black (and
every other Python file assuming the existence of __file__) is arguably buggy.

Let’s assume we can’t easily change the offending source code to work around the issue.
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To fix this problem, we change the configuration file to install black relative to the built application. This requires
changing our approach a little. Before, we ran dist.pip_install() from make_exe() to collect Python
resources and added them to a PythonEmbeddedResources instance. This meant those resources were embedded
in the self-contained PythonExecutable instance returned from make_exe().

Our auto-generated pyoxidizer.bzl file also contains an install target defined by the make_install()
function. This target produces an FileManifest, which represents a collection of relative files and their content.
When this type is resolved, those files are manifested on the filesystem. To package black’s Python resources next to
our executable instead of embedded within it, we need to move the pip_install() invocation from make_exe()
to make_install().

Change your configuration file to look like the following:

def make_python_dist():
return default_python_distribution()

def make_exe(dist):
python_config = PythonInterpreterConfig(

run_module="black",
sys_paths=["$ORIGIN/lib"],

)

return dist.to_python_executable(
name="black",
config=python_config,
extension_module_filter='all',
include_sources=True,
include_resources=False,
include_test=False,

)

def make_install(dist, exe):
files = FileManifest()

files.add_python_resource(".", exe)

files.add_python_resources("lib", dist.pip_install(["black==19.3b0"]))

return files

register_target("python_dist", make_python_dist)
register_target("exe", make_exe, depends=["python_dist"])
register_target("install", make_install, depends=["python_dist", "exe"], default=True)

resolve_targets()

There are a few changes here.

We added a new make_dist() function and python_dist target to represent obtaining the Python distribution.
This isn’t strictly required, but it helps avoid redundant work during execution.

The PythonInterpreterConfig construction adds a sys_paths=["$ORIGIN/lib"] argument. This ar-
gument says adjust ‘‘sys.path‘‘ at run-time to include the ‘‘lib‘‘ directory next to the executable file. It allows the
Python interpreter to import Python files on the filesystem instead of just from memory.

The make_install() function/target has also gained a call to files.add_python_resources(). This
method call takes the Python resources collected from running pip install black==19.3b0 and adds them
to the FileManifest instance under the lib directory. When the FileManifest is resolved, those Python
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resources will be manifested as files on the filesystem (e.g. as .py and .pyc files).

With the new configuration in place, let’s re-build the application:

$ pyoxidizer build --path black install
...
packaging application into /home/gps/src/black/build/apps/black/x86_64-unknown-linux-
→˓gnu/debug
purging /home/gps/src/black/build/apps/black/x86_64-unknown-linux-gnu/debug
copying /home/gps/src/black/build/target/x86_64-unknown-linux-gnu/debug/black to /
→˓home/gps/src/black/build/apps/black/x86_64-unknown-linux-gnu/debug/black
resolving packaging state...
installing resources into 1 app-relative directories
installing 46 app-relative Python source modules to /home/gps/src/black/build/apps/
→˓black/x86_64-unknown-linux-gnu/debug/lib
...
black packaged into /home/gps/src/black/build/apps/black/x86_64-unknown-linux-gnu/
→˓debug

If you examine the output, you’ll see that various Python modules files were written to the output directory, just as our
configuration file requested!

Let’s try to run the application:

$ pyoxidizer run --path black --target install
No paths given. Nothing to do

Success!

5.5 Trimming Unused Resources

By default, packaging rules are very aggressive about pulling in resources such as Python modules. For example, the
entire Python standard library is embedded into the binary by default. These extra resources take up space and can
make your binary significantly larger than it could be.

It is often desirable to prune your application of unused resources. For example, you may wish to only include Python
modules that your application uses. This is possible with PyOxidizer.

Essentially, all strategies for managing the set of packaged resources boil down to crafting config file logic that chooses
which resources are packaged.

But maintaining explicit lists of resources can be tedious. PyOxidizer offers a more automated approach to solving
this problem.

The PythonInterpreterConfig(...) type defines a write_modules_directory_env setting, which when
enabled will instruct the embedded Python interpreter to write the list of all loaded modules into a ran-
domly named file in the directory identified by the environment variable defined by this setting. For ex-
ample, if you set write_modules_directory_env="PYOXIDIZER_MODULES_DIR" and then run your
binary with PYOXIDIZER_MODULES_DIR=~/tmp/dump-modules, each invocation will write a ~/tmp/
dump-modules/modules-* file containing the list of Python modules loaded by the Python interpreter.

One can therefore use write_modules_directory_env to produce files that can be referenced in a different
build target to filter resources through a set of only include names.

TODO this functionality was temporarily dropped as part of the Starlark port.
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5.6 PyOxidizer’s Importer

Python allows providing custom Python types to handle the low-level machinery behind the import statement. The
way this works is a meta path finder instance (as defined by the importlib.abc.MetaPathFinder interface) is registered
on sys.meta_path. When an import is serviced, Python effectively iterates the objects on sys.meta_path and
asks each one can you service this request until one does.

These meta path finder not only service basic Python module loading, but they can also facilitate loading resource files
and package metadata. There are a handful of optional methods available on implementations.

PyOxidizer implements a custom meta path finder (which we’ll refer to as an importer). This custom importer is
implemented in Rust in the pyembed Rust crate, which provides the run-time functionality of PyOxidizer. The type’s
name is PyOxidizerFinder and it will automatically be registered as the first element in sys.meta_pathwhen
starting a Python interpreter. You can verify this inside a binary built with PyOxidizer:

>>> import sys
>>> sys.meta_path
[<PyOxidizerFinder object at 0x7f16bb6f93d0>]

Contrast with a typical Python environment:

>>> import sys
>>> sys.meta_path
[

<class '_frozen_importlib.BuiltinImporter'>,
<class '_frozen_importlib.FrozenImporter'>,
<class '_frozen_importlib_external.PathFinder'>

]

5.6.1 High-Level Operation

The PyOxidizerFinder instance is constructed while the Python interpreter is initializing. It is registered on
sys.meta_path before the first import is performed, allowing it to service every import for the interpreter,
even those performed during interpreter initialization itself.

Instances of PyOxidizerFinder are bound to a binary blob holding packed resources data. This is a custom data
format that has serialized Python modules, bytecode, extension modules, resource files, etc to be made available to
Python. See the python-packed-resources Rust crate for the data specification and implementation of this
format.

When a PyOxidizerFinder instance is created, the packed resources data is parsed into a data structure. This
data structure allows PyOxidizerFinder to quickly find resources and their corresponding data.

The main PyOxidizerFinder instance also merges other low-level Python interpreter state into its own state. For
example, it creates records in its resources data structure for the built-in extension modules compiled into the Python
interpreter as well as the frozen modules also compiled into the interpreter. This allows PyOxidizerFinder to
subsume functionality normally provided by other meta path finders, which is why the BuiltinImporter and
FrozenImporter meta path finders are not present on sys.meta_path when PyOxidizerFinder is.

When Python’s import machinery calls various methods of the PyOxidizerFinder on sys.meta_path, Rust
code is invoked and Rust code does the heavy work before returning from the called function (either returning a Python
object or raising a Python exception).
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5.6.2 Python API

PyOxidizerFinder instances implement the following interfaces:

• importlib.abc.MetaPathFinder

• importlib.abc.Loader

• importlib.abc.InspectLoader

• importlib.abc.ExecutionLoader

See the importlib.abc documentation for more on these interfaces.

In addition to the methods on the above interfaces, the following methods are exposed:

• get_resource_reader(fullname: str) -> importlib.abc.ResourceReader

• find_distributions(context: Optional[DistributionFinder.Context]) ->
[Distribution]

ResourceReader is documented alongside other importlib.abc interfaces. find_distribution() is
documented in importlib.metadata.

5.6.3 Behavior and Compliance

PyOxidizerFinder strives to be as compliant as possible with other meta path importers. So generally speaking,
the behavior as described by the importlib documentation should be compatible. In other words, things should mostly
just work and any deviance from the importlib documentation constitutes a bug in PyOxidizer.

That being said, PyOxidizer’s approach to loading resources is drastically different from more traditional means,
notably loading files from the filesystem. PyOxidizer breaks a lot of assumptions about how things have worked in
Python and there is some behavior that may seem odd or in violation of documented behavior in Python.

The sections below attempt to call out known areas where PyOxidizer’s importer deviates from typical behavior.

5.6.4 __file__ and __cached__ Module Attributes

Python modules typically have a __file__ attribute holding a str defining the filesystem path the source module
was imported from (usually a path to a .py file). There is also the similar - but lesser known - __cached__ attribute
holding the filesystem path of the bytecode module (usually the path to a .pyc file).

Important: PyOxidizerFinder will not set either attribute when importing modules from memory.

These attributes are not set because it isn’t obvious what the values should be! Typically, __file__ is used by
Python as an anchor point to derive the path to some other file. However, when loading modules from memory, the
traditional filesystem hierarchy of Python modules does not exist. In the opinion of PyOxidizer’s maintainer, exposing
__file__ would be lying and this would cause more potential for harm than good.

While we may make it possible to define __file__ (and __cached__) on modules imported from memory some-
day, we do not yet support this.

PyOxidizerFinder does, however, set __file__ and __cached__ on modules imported from the filesystem.
See Python Resource Locations for more on registering files for filesystem loading. So, a workaround to restore these
missing attributes is to avoid in-memory loading.
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Note: Use of __file__ is commonly encountered in code loading resource files. See Loading Resource Files for
more on this topic, including how to port code to more modern Python APIs for loading resources.

5.6.5 __path__ Module Attribute

Python modules that are also packages must have a __path__ attribute containing an iterable of str. The iterable
can be empty.

If a module is imported from the filesystem, PyOxidizerFinder will set __path__ to the parent directory of the
module’s file, just like the standard filesystem importer would.

If a module is imported from memory, __path__ will be set to the path of the current executable joined with the
package name. e.g. if the current executable is /usr/bin/myapp and the module/package name is foo.bar,
__path__ will be ["/usr/bin/myapp/foo/bar"]. On Windows, paths might look like C:\dev\myapp.
exe\foo\bar. Python’s zipimport importer uses the same approach for modules imported from zip files, so
there is precedence for PyOxidizer doing things this way.

5.6.6 ResourceReader Compatibility

ResourceReader has known compatibility differences with Python’s default filesystem-based importer. See Sup-
port for ResourceReader for details.

5.6.7 ResourceLoader Compatibility

The ResourceLoader interface is implemented but behavior of get_data(path) has some variance with
Python’s filesystem-based importer.

See Support for ResourceLoader for details.

Note: ResourceLoader is deprecated as of Python 3.7. Code should be ported to ResourceReader /
importlib.resources if possible.

5.6.8 importlib.metadata Compatibility

PyOxidizerFinder implements find_distributions() and therefore provides the required hook for
importlib.metadata to resolve Distribution instances. However, the returned objects do not implement
the full Distribution interface.

This is because there is no available Distribution base class in Python 3.7 for PyOxidizer to extend with its
custom functionality. We could implement all of this functionality, but it would be a lot of work: it would be easier to
wait until PyOxidizer requires Python 3.8 and then we can use the types in importlib.metadata directly.

The PyOxidizerDistribution instances returned by PyOxidizerFinder.find_distributions()
have the following behavior:

• read_text(filename) will return a str on success or raise IOError on failure.

• The metadata property will return an email.message.Message instance from the parsed METADATA or
PKG-INFO file, just like the standard library. IOError will be raised if these metadata files cannot be found.

• The version property will resolve to a str on success or raise IOError on failure to resolve metadata.
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• The entry_points, files, and requires properties/attributes will raise NotImplementedError on
access.

In addition, PyOxidizerFinder.find_distributions() ignores the path attribute of the passed
Context instance. Only the name attribute is consulted. If name is None, all packages with registered distribution
files will be returned. Otherwise the returned list contains at most 1 PyOxidizerDistribution corresponding
to the requested package name.

5.7 Loading Resource Files

Many Python application need to load resources. Resources are typically non-Python support files, such as images,
config files, etc. In some cases, resources could be Python source or bytecode files. For example, many plugin
systems load Python modules outside the context of the normal import mechanism and therefore treat standalone
Python source/bytecode files as non-module resources.

PyOxidizer has support for loading resource files. But compatibility with Python’s expected behavior may vary.

5.7.1 Python Resource Loading Mechanisms

Before we talk about PyOxidizer’s support for resource loading, it is important to understand how Python code in the
wild can load resources.

We’ll overview them in the chronological order they were introduced into the Python ecosystem.

The most basic and oldest mechanism to load resources is to perform raw filesystem I/O. Typically, Python code looks
at __file__ to get the filename of the current module. Then, it calculates the directory name and derives paths to
resource files using e.g. os.path.join(). It will usually then open() these paths directly.

Python packaging evolved over time. Packaging tools could express various metadata at build time, such as supple-
mentary resource files. This metadata would be installed next to a package and APIs could be used to access it. One
such API was pkg_resources. Using e.g. pkg_resources.resource_string("foo", "bar.txt"), you
could obtain the content of the resource bar.txt in the foo package.

pkg_resources had useful functionality. And it was the recommended mechanism for loading resource files for
several years. But it wasn’t part of the Python standard library and needed to be explicitly installed. So not everyone
used it.

Python 3.1 added the importlib package, which is the primary home for all core functionality related to import.
Python importers were now defined via interfaces. One of those interfaces is ResourceLoader. It has a sin-
gle method get_data(path). Given a Python module’s loader (e.g. via the __loader__ attribute on the
module), you could call get_data(path) and load a resource. e.g. import foo; foo.__loader__.
get_data("bar.txt").

The standard library only had ResourceLoader for several years. And ResourceLoader wasn’t exactly a
convenient API to use because it was so low-level. Many Python applications continued to use pkg_resources or
direct file-based I/O.

Python 3.7 introduced significant improvements to resource loading in the standard library.

At a low level, module loaders could now implement a get_resource_reader(name) method, which
would return an object implementing the ResourceReader interface. This interface defined methods like
open_resource(name) and contents() to open a file-like handle on a named resource and obtain a list of
all available resources.

At a high level, the importlib.resources package provided a user-friendly API for interacting with ResourceReader
instances. You could call e.g. importlib.resources.open_binary(package, name) to obtain a file-like
handle on a specific resource within a package.
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Python 3.7’s new resource APIs finally gave the Python standard library access to powerful APIs for loading resources
without using a 3rd party package (like pkg_resources).

At the time of writing this in April 2020, it looks like Python 3.9 will invent yet another low-level resource loading
API.

Because Python hasn’t had a robust resource loading API in the standard library for much of its history, lots of Python
code in the wild does not make use of the APIs in the standard library. It is not uncommon to see code in 2020 that
still uses __file__ to load resources. Furthermore, because Python 3.7 is still relatively young and code may wish
to maintain compatibility with older Python versions, the newer APIs may be actively avoided.

Important: As of Python 3.8, ResourceReader and importlib.resources are the most robust mechanisms
for loading resources and PyOxidizer recommends adopting these APIs if possible.

5.7.2 Support for ResourceReader

PyOxidizer’s custom importer implements the ResourceReader interface for loading resource files.

However, compatibility with Python’s default filesystem-based implementation can vary. Unfortunately, various be-
havior with ResourceReader is undefined, so it isn’t clear if CPython or PyOxidizer is buggy here.

PyOxidizer’s custom importer maintains an index of known resource files. This index is logically a dict
of dict``s, where the outer key is the Python package name and the inner key is
the resource name. Package names are fully qualified. e.g. ``foo or foo.bar. Re-
source names are effectively relative filesystem paths. e.g. resource.txt or subdir/resource.txt. The
relative paths always use / as the directory separator, even on Windows.

ResourceReader instances are bound to a specific Python package: that’s how they are defined. When a PyOxi-
dizer ResourceReader receives the name of a resource, it performs a simple lookup in the global resources index.
If the string key is found, it is used. Otherwise, PyOxidizer assumes the resource doesn’t exist.

The ResourceReader.contents() method will return a list of all keys in the internal resources index.

PyOxidizer’s ReaderResource works the same way for in-memory and filesystem-relative Python Resource Lo-
cations because internally both use the same index of resources to drive execution: only the location of the resource
content varies.

PyOxidizer’s implementation varies from the standard library filesystem-based implementation in the following ways:

• ResourceReader.contents()will return keys from the package’s resources dictionary, not all the files in
the same directory as the underlying Python package (the standard library uses os.listdir()). PyOxidizer
will therefore return resource names in sub-directories as long as those sub-directories aren’t themselves Python
packages.

• Resources must be explicitly registered with PyOxidizer as such in order to be exposed via the resources API.
By contrast, the filesystem-based importer - relying on os.listdir() - will expose all files in a directory as
a resource. This includes .py files.

• ResourceReader.is_resource() will return True for resource names containing a slash. Con-
trast with Python’s, which returns False (even though you can open a resource with ResourceReader.
open_resource() for the same path). PyOxidizer’s behavior is more consistent.

5.7.3 Support for ResourceLoader

PyOxidizer’s importer implements the deprecated ResourceLoader interface and get_data(path) will return
bytes instances for registered resources or raise OSError on request of an unregistered resource.
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The path passed to get_data(path) MUST be an absolute path that has the prefix of either the currently running
executable file or the directory containing it.

If the resource path is prefixed with the current executable’s path, the path components after the current executable
path are interpreted as the path to a resource registered for in-memory loading.

If the resource path is prefixed with the current executable’s directory, the path components after this directory are
interpreted as the path to a resource registered for application-relative loading.

All other resource paths aren’t recognized and an OSError will be raised. There is no fallback to loading from the
filesystem, even if a valid filesystem path pointing to an existing file is passed in.

Note: The behavior of not servicing paths that actually exist but aren’t registered with PyOxidizer as resources may
be overly opinionated and undesirable for some applications.

If this is a legitimate use case for your application, please create a GitHub issue to request this feature.

Once a path is recognized as having the prefix of the current executable or its directory, the remaining path components
will be interpreted as the resource path. This resource path logically contains a package name component and a
resource name component. PyOxidizer will traverse all potential package names starting from the longest/deepest up
until the top-level package looking for a known Python package. Once a known package name is encountered, its
resources will be consulted. At most 1 package will be consulted for resources.

Here is a concrete example.

If the path is /usr/bin/myapp/foo/bar/resource.txt and the current executable is /usr/bin/myapp,
the requested resource will be foo/bar/resource.txt. Since the path was prefixed with the executable path,
only resources registered for in-memory loading will be consulted.

Our candidate package names are foo.bar and foo, in that order.

If foo.bar is a known package and resource.txt is registered for in-memory loading, that resource’s contents
will be returned.

If foo.bar is a known package and resource.txt is not registered in that package, OSError is raised.

If foo.bar is not a known package, we proceed to check for package foo.

If foo is a known package and bar/resource.txt is registered for in-memory loading, its contents will be
returned.

Otherwise, we’re out of possible packages, so OSError is raised.

Similar logic holds for resources registered for filesystem-relative loading. The difference here is the stripped path
prefix and we are only looking for resources registered for filesystem-relative loading. Otherwise, the traversal logic
is exactly the same.

If OSError is raised due to a missing resource, its errno is ENOENT and its filename is the passed in
path. Python should automatically translate this to a FileNotFoundError exception. But callers should catch
OSError, as other OSError variants can be raised (e.g. for file permission errors).

5.7.4 Support for __file__

PyOxidizer’s custom importer may or may not set the __file__ attribute on loaded modules. See __file__ and
__cached__ Module Attributes for details.

Therefore, Python code relying on the presence of __file__ to derive paths to resource files may or may not work
with PyOxidizer.
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Code utilizing __file__ for resource loading is highly encouraged to switch to the importlib.resourcesAPI.
If this is not possible, you can change packaging settings to move the Python Resource Locations from in-memory to
filesystem-relative.

5.7.5 Support for pkg_resources

pkg_resources’s APIs for loading resources likely do not work with PyOxidizer.

5.7.6 Porting Code to Modern Resources APIs

Say you have resources next to a Python module. Legacy code inside a module might do something like the following:

def get_resource(name):
"""Return a file handle on a named resource next to this module."""
module_dir = os.path.abspath(os.path.dirname(__file__))
# Warning: there is a path traversal attack possible here if
# name continues values like ../../../../../etc/password.
resource_path = os.path.join(module_dir, name)

return open(resource_path, 'rb')

Modern code targeting Python 3.7+ can use the ResourceReader API directly:

def get_resource(name):
"""Return a file handle on a named resource next to this module."""
# get_resource_reader() may not exist or may return None, which this
# code doesn't handle.
reader = __loader__.get_resource_reader(__name__)
return reader.open_resource(name)

The ResourceReader interface is quite low-level. If you want something higher level or want to access resources
outside the current module, it is recommended to use the importlib.resources APIs. e.g.:

import importlib.resources

with importlib.resources.open_binary('mypackage', 'resource-name') as fh:
data = fh.read()

The importlib.resources functions are glorified wrappers around the low-level interfaces on module loaders.
But they do provide some useful functionality, such as additional error checking and automatic importing of modules,
making them useful in many scenarios, especially when loading resources outside the current package/module.

5.7.7 Maintaining Compatibility With Python <3.7

If you want to maintain compatibility with Python <3.7, you can’t use ResourceReader or importlib.
resources, as they are not available. The recommended solution here is to use a shim.

The best shim to use is importlib_resources. This is a standalone Python package that is a backport of importlib.
resources to older Python versions. Essentially, you can always get the APIs from the latest Python version. This
shim knows about the various APIs available on Loader instances and chooses the best available one. It should just
work with PyOxidizer’s custom ResourceReader interface.

If you want to implement your own shim without introducing a dependency on importlib_resources, the
following code can be used as a starting implementation:
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import importlib

try:
import importlib.resources
# Defeat lazy module importers.
importlib.resources.open_binary
HAVE_RESOURCE_READER = True

except ImportError:
HAVE_RESOURCE_READER = False

try:
import pkg_resources
# Defeat lazy module importers.
pkg_resources.resource_stream
HAVE_PKG_RESOURCES = True

except ImportError:
HAVE_PKG_RESOURCES = False

def get_resource(package, resource):
"""Return a file handle on a named resource in a Package."""

# Prefer ResourceReader APIs, as they are newest.
if HAVE_RESOURCE_READER:

# If we're in the context of a module, we could also use
# ``__loader__.get_resource_reader(__name__).open_resource(resource)``.
# We use open_binary() because it is simple.
return importlib.resources.open_binary(package, resource)

# Fall back to pkg_resources.
if HAVE_PKG_RESOURCES:

return pkg_resources.resource_stream(package, resource)

# Fall back to __file__.

# We need to first import the package so we can find its location.
# This could raise an exception!
mod = importlib.import_module(package)

# Undefined __file__ will raise NameError on variable access.
try:

package_path = os.path.abspath(os.path.dirname(mod.__file__))
except NameError:

package_path = None

if package_path is not None:
# Warning: there is a path traversal attack possible here if
# resource contains values like ../../../../etc/password. Input
# must be trusted or sanitized before blindly opening files or
# you may have a security vulnerability!
resource_path = os.path.join(package_path, resource)

return open(resource_path, 'rb')

# Could not resolve package path from __file__.
raise Exception('do not know how to load resource: %s:%s' % (

package, resource))
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(The above code is dedicated to the public domain and can be used without attribution.)

This code is provided for example purposes only. It may or may not be sufficient for your needs.

5.8 Performance of Built Binaries

Binaries built with PyOxidizer tend to run faster than those executing via a normal python interpreter. There are a
few reasons for this.

5.8.1 Resources Data Compiled Into Binary

Traditionally, when Python needs to import a module, it traverses the entries on sys.path and queries the filesys-
tem to see whether a .pyc file, .py file, etc are available until it finds a suitable file to provide the Python module
data. If you trace the system calls of a Python process (e.g. strace -f python3 ...), you will see tons of
lstat(), open(), and read() calls performing filesystem I/O.

While filesystems cache the data behind these I/O calls, every time Python looks up data in a file the process needs to
context switch into the kernel and then pass data back to Python. Repeated thousands of times - or even millions of
times across hundreds or thousands of process invocations - the few microseconds of overhead plus the I/O overhead
for a cache miss can add up to significant overhead!

When binaries are built with PyOxidizer, all available Python resources are discovered at build time. An index of
these resources along with the raw resource data is packed - often into the executable itself - and made available to
PyOxidizer’s custom importer. When PyOxidizer services an import statement, looking up a module is effectively
looking up a key in a dictionary: there is no explicit filesystem I/O to discover the location of a resource.

PyOxidizer’s packed resources data supports storing raw resource data inline or as a reference via a filesystem path.

If inline storage is used, resources are effectively loaded from memory, often using 0-copy. There is no explicit
filesystem I/O. The only filesystem I/O that can occur is indirect, as the operating system pages a memory page on first
access. But this all happens in the kernel memory subsystem and is typically faster than going through a functionally
equivalent system call to access the filesystem.

If filesystem paths are stored, the only filesystem I/O we require is to open() the file and read() its file descriptor:
all filesystem I/O to locate the backing file is skipped, along with the overhead of any Python code performing this
discovery.

We can attempt to isolate the effect of in-memory module imports by running a Python script that attempts to import the
entirety of the Python standard library. This test is a bit contrived. But it is effective at demonstrating the performance
difference.

Using a stock python3.7 executable and 2 PyOxidizer executables - one configured to load the standard library
from the filesystem using Python’s default importer and another from memory:

$ hyperfine -m 50 -- '/usr/local/bin/python3.7 -S import_stdlib.py' import-stdlib-
→˓filesystem import-stdlib-memory
Benchmark #1: /usr/local/bin/python3.7 -S import_stdlib.py

Time (mean ± 𝜎): 258.8 ms ± 8.9 ms [User: 220.2 ms, System: 34.4 ms]
Range (min ... max): 247.7 ms ... 310.5 ms 50 runs

Benchmark #2: import-stdlib-filesystem
Time (mean ± 𝜎): 249.4 ms ± 3.7 ms [User: 216.3 ms, System: 29.8 ms]
Range (min ... max): 243.5 ms ... 258.5 ms 50 runs

Benchmark #3: import-stdlib-memory
Time (mean ± 𝜎): 217.6 ms ± 6.4 ms [User: 200.4 ms, System: 13.7 ms]

(continues on next page)
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(continued from previous page)

Range (min ... max): 207.9 ms ... 243.1 ms 50 runs

Summary
'import-stdlib-memory' ran
1.15 ± 0.04 times faster than 'import-stdlib-filesystem'
1.19 ± 0.05 times faster than '/usr/local/bin/python3.7 -S import_stdlib.py'

We see that the PyOxidizer executable using the standard Python importer has very similar performance to
python3.7. But the PyOxidizer executable importing from memory is clearly faster. These measurements
were obtained on macOS and the import_stdlib.py script imports 506 modules.

A less contrived example is running the test harness for the Mercurial version control tool. Mercurial’s test harness
creates tens of thousands of new processes that start Python interpreters. So a few milliseconds of overhead starting
interpreters or loading modules can translate to several seconds.

We run the full Mercurial test harness on Linux on a Ryzen 3950X CPU using the following variants:

• hg script with a #!/path/to/python3.7 line (traditional)

• hg PyOxidizer executable using Python’s standard filesystem import (oxidized)

• hg PyOxidizer executable using filesystem-relative resource loading (filesystem)

• hg PyOxidizer executable using in-memory resource loading (in-memory)

The results are quite clear:

Variant CPU Time (s) Delta (s) % Orig
traditional 11,287 0 100
oxidized 10,735 -552 95.1
filesystem 10,186 -1,101 90.2
in-memory 9,883 -1,404 87.6

These results help us isolate specific areas of speedups:

• oxidized over traditional is a rough proxy for the benefits of python -S over python. Although there are
other factors at play that may be influencing the numbers.

• filesystem over oxidized isolates the benefits of using PyOxidizer’s importer instead of Python’s default importer.
The performance wins here are due to a) avoiding excessive I/O system calls to locate the paths to resources and
b) functionality being implemented in Rust instead of Python.

• in-memory over filesystem isolates the benefits of avoiding explicit filesystem I/O to load Python resources. The
Rust code backing these 2 variants is very similar. The only meaningful difference is that in-memory constructs
a Python object from a memory address and filesystem must open and read a file using standard OS mechanisms
before doing so.

From this data, one could draw a few conclusions:

• Processing of the site module during Python interpreter initialization can add substantial overhead.

• Maintaining an index of Python resources such that you can avoid discovery via filesystem I/O provides a
meaningful speedup.

• Loading Python resources from an in-memory data structure is faster than incurring explicit filesystem I/O to do
so.
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5.8.2 Ignoring site

In its default configuration, binaries produced with PyOxidizer configure the embedded Python interpreter differently
from how a python is typically configured.

Notably, PyOxidizer disables the importing of the site module by default (making it roughly equivalent to python
-S). The site module does a number of things, such as look for .pth files, looks for site-packages directories,
etc. These activities can contribute substantial overhead, as measured through a normal python3.7 executable on
macOS:

$ hyperfine -m 500 -- '/usr/local/bin/python3.7 -c 1' '/usr/local/bin/python3.7 -S -c
→˓1'
Benchmark #1: /usr/local/bin/python3.7 -c 1

Time (mean ± 𝜎): 22.7 ms ± 2.0 ms [User: 16.7 ms, System: 4.2 ms]
Range (min ... max): 18.4 ms ... 32.7 ms 500 runs

Benchmark #2: /usr/local/bin/python3.7 -S -c 1
Time (mean ± 𝜎): 12.7 ms ± 1.1 ms [User: 8.2 ms, System: 2.9 ms]
Range (min ... max): 9.8 ms ... 16.9 ms 500 runs

Summary
'/usr/local/bin/python3.7 -S -c 1' ran
1.78 ± 0.22 times faster than '/usr/local/bin/python3.7 -c 1'

Shaving ~10ms off of startup overhead is not trivial!

5.9 Packaging Pitfalls

While PyOxidizer is capable of building fully self-contained binaries containing a Python application, many Python
packages and applications make assumptions that don’t hold inside PyOxidizer. This section talks about all the things
that can go wrong when attempting to package a Python application.

5.9.1 C and Other Native Extension Modules

Many Python packages compile extension modules to native code. (Typically C is used to implement extension mod-
ules.)

The way this typically works is some build system (often distutils via a setup.py script) produces a shared
library file containing the extension. On Linux and macOS, the file extension is typically .so. On Windows, it is
.pyd. When an import is requested, Python’s importing mechanism looks for these files in addition to normal .py
and .pyc files. If an extension module is found, Python will dlopen() the file and load the shared library into
the process. It will then call into an initialization function exported by that shared library to obtain a Python module
instance.

Python packaging has defined various conventions for distributing pre-compiled extension mod-
ules in wheels. If you see an e.g. <package>-<version>-cp38-cp38-win_amd64.
whl, <package>-<version>-cp38-cp38-manylinux2014_x86_64.whl, or
<package>-<version>-cp38-cp38-macosx_10_9_x86_64.whl file, you are installing a Python
package with a pre-compiled extension module. Inside the wheel is a shared library providing the extension module.
And that shared library is configured to work with a Python distribution (typically CPython) built in a specific way.
e.g. with a libpythonXY shared library exporting Python symbols.

PyOxidizer currently has some support for extension modules. The way this works depends on the platform and
Python distribution.
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Dynamically Linked Python Distributions on Windows

When using a dynamically linked Python distribution on Windows (e.g. via the
flavor="standalone_dynamic" argument to default_python_distribution(flavor="standalone",
build_target=None), PyOxidizer:

• Supports importing shared library extension modules (e.g. .pyd files) from memory.

• Automatically detects and uses .pyd files from pre-built binary packages installed as part of packaging.

• Automatically detects and uses .pyd files produced during package building.

However, there are caveats to this support!

PyOxidizer doesn’t currently support resolving additional library dependencies from .pyd extension modules / shared
libraries when importing from memory. If an extension module depends on another shared library (almost certainly
a .dll) outside the normal set of libraries (namely the C Runtime and other common Windows system DLLs), you
will need to manually package this library next to the application .exe. Failure to do this could result in a failure at
import time.

PyOxidizer does support loading shared library extension modules from .pyd files on the filesystem like a typical
Python program. So if you cannot make in-memory extension module importing work, you can fall back to packaging
a .pyd file in a directory registered on sys.path, as set through the PythonInterpreterConfig(...) Starlark primitive.

Extension Modules Everywhere Else

If PyOxidizer is not able to easily reuse a Python extension module built or distributed in a traditional manner, it will
attempt to compile the extension module from source in a way that is compatible with the PyOxidizer distribution and
application configuration.

The way PyOxidizer achieves this is a bit crude, but effective.

When PyOxidizer invokes pip or setup.py to build a package, it installs a modified version of distutils into
the invoked Python’s sys.path. This modified distutils changes the behavior of some key build steps (notably
how C extensions are built) such that the build emits artifacts that PyOxidizer can use to integrate the extension module
into a custom binary. For example, on Linux, PyOxidizer copies the intermediate object files produced by the build
and links them into the same binary containing Python: PyOxidizer completely ignores the shared library that is or
would typically be produced.

If setup.py scripts are following the traditional pattern of using distutils.core.Extension to define extension mod-
ules, things tend to just work (assuming extension modules are supported by PyOxidizer for the target platform).
However, if setup.py scripts are doing their own monkeypatching of distutils, rely on custom build steps or
types to compile extension modules, or invoke separate Python processes to interact with distutils, things may
break.

If you run into an extension module packaging problem that isn’t recorded here or on the static page, please file an
issue so it may be tracked.

5.9.2 Identifying PyOxidizer

Python code may want to know whether it is running in the context of PyOxidizer.

At packaging time, pip and setup.py invocations made by PyOxidizer should set a PYOXIDIZER=1 environment
variable. setup.py scripts, etc can look for this environment variable to determine if they are being packaged by
PyOxidizer.

At run-time, PyOxidizer will always set a sys.oxidized attribute with value True. So, Python code can test
whether it is running in PyOxidizer like so:
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import sys

if getattr(sys, 'oxidized', False):
print('running in PyOxidizer!')

5.10 Masquerading As Other Packaging Tools

Tools to package and distribute Python applications existed several years before PyOxidizer. Many Python pack-
ages have learned to perform special behavior when the _fingerprint* of these tools is detected at run-time.

First, PyOxidizer has its own fingerprint: sys.oxidized = True. The presence of this attribute can indicate
an application running with PyOxidizer. Other applications are discouraged from defining this attribute.

Since PyOxidizer’s run-time behavior is similar to other packaging tools, PyOxidizer supports falsely identify-
ing itself as these other tools by emulating their fingerprints.

The EmbbedPythonConfig configuration section defines the boolean flag sys_frozen to control whether sys.
frozen = True is set. This can allow PyOxidizer to advertise itself as a frozen application.

In addition, the sys_meipass boolean flag controls whether a sys._MEIPASS = <exe directory> attribute
is set. This allows PyOxidizer to masquerade as having been built with PyInstaller.

Warning: Masquerading as other packaging tools is effectively lying and can be dangerous, as code relying on
these attributes won’t know if it is interacting with PyOxidizer or some other tool. It is recommended to only
set these attributes to unblock enabling packages to work with PyOxidizer until other packages learn to check
for sys.oxidized = True. Setting sys._MEIPASS is definitely the more risky option, as a case can be
made that PyOxidizer should set sys.frozen = True by default.

5.11 Binary Compatibility

Binaries produced with PyOxidizer should be able to run nearly anywhere. The details and caveats vary depending on
the operating system and target platform and are documented in the sections below.

Important: Please create issues at https://github.com/indygreg/PyOxidizer/issues when the content of this section is
incomplete or lacks important details.

The pyoxidizer analyze command can be used to analyze the contents of executables and libraries. For ex-
ample, for ELF binaries it will list all shared library dependencies and analyze glibc symbol versions and print out
which Linux distributions it thinks the binary is compatible with. Please note that pyoxidizer analyze is not
yet implemented on all platforms.

5.11.1 Windows

Binaries built with PyOxidizer have a run-time dependency on various DLLs. Most of the DLLs are Windows system
DLLs and should always be installed.

Binaries built with PyOxidizer have a dependency on the Visual Studio C++ Runtime. You will need to distribute a
copy of vcruntimeXXX.dll alongside your binary or trigger the install of the Visual Studio C++ Redistributable
in your application installer so the dependency is managed at the system level (the latter is preferred).
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There is also currently a dependency on the Universal C Runtime (UCRT).

PyOxidizer will eventually make producing Windows installers from packaged applications turnkey. Until that time ar-
rives, see the Microsoft documentation on deployment considerations for Windows binaries. The Dependency Walker
tool is also useful for analyzing DLL dependencies.

5.11.2 macOS

The Python distributions that PyOxidizer consumers are built with MACOSX_DEPLOYMENT_TARGET=10.9, so they
should be compatible with macOS versions 10.9 and newer.

The Python distribution has dependencies against a handful of system libraries and frameworks. These frameworks
should be present on all macOS installations.

5.11.3 Linux

On Linux, a binary built with musl libc should just work on pretty much any Linux machine. See Building Fully
Statically Linked Binaries on Linux for more.

If you are linking against libc.so, things get more complicated because the binary will probably link against the
glibc symbol versions that were present on the build machine. To ensure maximum binary compatibility, compile
your binary in a Debian 7 or 8 environment, as this will use a sufficiently old version of glibc which should work in
most Linux environments.

Of course, if you control the execution environment (like if executables will run on the same machine that built
them), then this may not pose a problem to you. Use the pyoxidizer analyze command to inspect binaries for
compatibility before distributing a binary so you know what the requirements are.

5.12 Static Linking

5.12.1 Building Fully Statically Linked Binaries on Linux

It is possible to produce a fully statically linked executable embedding Python on Linux. The produced binary will
have no external library dependencies nor will it even support loading dynamic libraries. In theory, the executable can
be copied between Linux machines and it will just work.

Building such binaries requires using the x86_64-unknown-linux-musl Rust toolchain target. Using
pyoxidizer:

$ pyoxidizer build --target x86_64-unknown-linux-musl

Specifying --target x86_64-unknown-linux-muslwill cause PyOxidizer to use a Python distribution built
against musl libc as well as tell Rust to target musl on Linux.

Targeting musl requires that Rust have the musl target installed. Standard Rust on Linux installs typically do not have
this installed! To install it:

$ rustup target add x86_64-unknown-linux-musl
info: downloading component 'rust-std' for 'x86_64-unknown-linux-musl'
info: installing component 'rust-std' for 'x86_64-unknown-linux-musl'

If you don’t have the musl target installed, you get a build time error similar to the following:
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error[E0463]: can't find crate for `std`
|
= note: the `x86_64-unknown-linux-musl` target may not be installed

But even installing the target may not be sufficient! The standalone Python builds are using a modern version of
musl and the Rust musl target must also be using this newer version or else you will see linking errors due to missing
symbols. For example:

/build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to `getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to
→˓`getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to
→˓`getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to
→˓`getrandom'

Rust 1.37 or newer is required for the modern musl version compatibility. Rust 1.37 is Rust Nightly until July 4, 2019,
at which point it becomes Rust Beta. It then becomes Rust Stable on August 15, 2019. You may need to override the
Rust toolchain used to build your project so Rust 1.37+ is used. For example:

$ rustup override set nightly
$ rustup target add --toolchain nightly x86_64-unknown-linux-musl

This will tell Rust that the nightly toolchain should be used for the current directory and to install musl support for
the nightly toolchain.

Then you can build away:

$ pyoxidizer build --target x86_64-unknown-linux-musl
$ ldd build/apps/myapp/x86_64-unknown-linux-musl/debug/myapp

not a dynamic executable

Congratulations, you’ve produced a fully statically linked executable containing a Python application!

Important: There are reported performance problems with Python linked against musl libc. Application maintainers
are therefore highly encouraged to evaluate potential performance issues before distributing binaries linked against
musl libc.

It’s worth noting that in the default configuration PyOxidizer binaries will use jemalloc for memory allocations,
bypassing musl’s apparently slower memory allocator implementation. This may help mitigate reported performance
issues.

5.12.2 Implications of Static Linking

Most Python distributions rely heavily on dynamic linking. In addition to python frequently loading a dynamic
libpython, many C extensions are compiled as standalone shared libraries. This includes the modules _ctypes,
_json, _sqlite3, _ssl, and _uuid, which provide the native code interfaces for the respective non-_ prefixed
modules which you may be familiar with.

These C extensions frequently link to other libraries, such as libffi, libsqlite3, libssl, and libcrypto.
And more often than not, that linking is dynamic. And the libraries being linked to are provided by the sys-
tem/environment Python runs in. As a concrete example, on Linux, the _ssl module can be provided by _ssl.
cpython-37m-x86_64-linux-gnu.so, which can have a shared library dependency against libssl.so.
1.1 and libcrypto.so.1.1, which can be located in /usr/lib/x86_64-linux-gnu or a similar location
under /usr.

44 Chapter 5. Packaging User Guide

https://superuser.com/questions/1219609/why-is-the-alpine-docker-image-over-50-slower-than-the-ubuntu-image


PyOxidizer, Release 0.7.0

When Python extensions are statically linked into a binary, the Python extension code is part of the binary instead of
in a standalone file.

If the extension code is linked against a static library, then the code for that dependency library is part of the exten-
sion/binary instead of dynamically loaded from a standalone file.

When PyOxidizer produces a fully statically linked binary, the code for these 3rd party libraries is part of the
produced binary and not loaded from external files at load/import time.

There are a few important implications to this.

One is related to security and bug fixes. When 3rd party libraries are provided by an external source (typically the
operating system) and are dynamically loaded, once the external library is updated, your binary can use the latest
version of the code. When that external library is statically linked, you need to rebuild your binary to pick up the latest
version of that 3rd party library. So if e.g. there is an important security update to OpenSSL, you would need to ship a
new version of your application with the new OpenSSL in order for users of your application to be secure. This shifts
the security onus from e.g. your operating system vendor to you. This is less than ideal because security updates are
one of those problems that tend to benefit from greater centralization, not less.

It’s worth noting that PyOxidizer’s library security story is very similar to that of containers (e.g. Docker images).
If you are OK distributing and running Docker images, you should be OK with distributing executables built with
PyOxidizer.

Another implication of static linking is licensing considerations. Static linking can trigger stronger licensing protec-
tions and requirements. Read more at Licensing Considerations.

5.13 Licensing Considerations

Any time you link libraries together or distribute software, you need to be concerned with the licenses of the underlying
code. Some software licenses - like the GPL - can require that any code linked with them be subject to the license
and therefore be made open source. In addition, many licenses require a license and/or copyright notice be attached
to works that use or are derived from the project using that license. So when building or distributing any software,
you need to be cognizant about all the software going into the final work and any licensing terms that apply. Binaries
produced with PyOxidizer are no different!

PyOxidizer and the code it uses in produced binaries is licensed under the Mozilla Public License version 2.0. The
licensing terms are generally pretty favorable. (If the requirements are too strong, the code that ships with binaries
could potentially use a weaker license. Get in touch with the project author.)

The Rust code PyOxidizer produces relies on a handful of 3rd party Rust crates. These crates have various licenses.
We recommend using the cargo-license, cargo-tree, and cargo-lichking tools to examine the Rust crate dependency
tree and their respective licenses. The cargo-lichking tool can even assemble licenses of Rust dependencies
automatically so you can more easily distribute those texts with your application!

As cool as these Rust tools are, they don’t include licenses for the Python distribution, the libraries its extensions link
against, nor any 3rd party Python packages you may have packaged.

Python and its various dependencies are governed by a handful of licenses. These licenses have various requirements
and restrictions.

At the very minimum, the binary produced with PyOxidizer will have a Python distribution which is governed by a
license. You will almost certainly need to distribute a copy of this license with your application.

Various C-based extension modules part of Python’s standard library link against other C libraries. For self-contained
Python binaries, these libraries will be statically linked if they are present. That can trigger stronger license protections.
For example, if all extension modules are present, the produced binary may contain a copy of the GPL 3.0 licensed
readline and gdbm libraries, thus triggering strong copyleft protections in the GPL license.
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Important: It is critical to audit which Python extensions and packages are being packaged because of licensing
requirements of various extensions.

5.13.1 Showing Python Distribution Licenses

The special Python distributions that PyOxidizer consumes can annotate licenses of software within.

The pyoxidizer python-distribution-licenses command can display the licenses for the Python dis-
tribution and libraries it may link against. This command can be used to evaluate which extensions meet licensing
requirements and what licensing requirements apply if a given extension or library is used.

5.14 Terminfo Database

Note: This content is not relevant to Windows.

If your application interacts with terminals (e.g. command line tools), your application may require the availability of
a terminfo database so your application can properly interact with the terminal. The absence of a terminal database
can result in the inability to properly colorize text, the backspace and arrow keys not working as expected, weird
behavior on window resizing, etc. A terminfo database is also required to use curses or readline module
functionality without issue.

UNIX like systems almost always provide a terminfo database which says which features and properties various
terminals have. Essentially, the TERM environment variable defines the current terminal [emulator] in use and the
terminfo database converts that value to various settings.

From Python, the ncurses library is responsible for consulting the terminfo database and determining how to
interact with the terminal. This interaction with the ncurses library is typically performed from the _curses,
_curses_panel, and _readline C extensions. These C extensions are wrapped by the user-facing curses
and readline Python modules. And these Python modules can be used from various functionality in the Python
standard library. For example, the readline module is used to power pdb.

PyOxidizer applications do not ship a terminfo database. Instead, applications rely on the terminfo database
on the executing machine. (Of course, individual applications could ship a terminfo database if they want: the
functionality just isn’t included in PyOxidizer by default.) The reason PyOxidizer doesn’t ship a terminfo database
is that terminal configurations are very system and user specific: PyOxidizer wants to respect the configuration of the
environment in which applications run. The best way to do this is to use the terminfo database on the executing
machine instead of providing a static database that may not be properly configured for the run-time environment.

PyOxidizer applications have the choice of various modes for resolving the terminfo database location. This is
facilitated mainly via the terminfo_resolution PythonInterpreterConfig config setting.

By default, when Python is initialized PyOxidizer will try to identify the current operating system and choose an
appropriate set of well-known paths for that operating system. If the operating system is well-known (such as a
Debian-based Linux distribution), this set of paths is fixed. If the operating system is not well-known, PyOxidizer will
look for terminfo databases at common paths and use whatever paths are present.

If all goes according to plan, the default behavior just works. On common operating systems, the cost to the default
behavior is reading a single file from the filesystem (in order to resolve the operating system). The overhead should be
negligible. For unknown operating systems, PyOxidizer may need to stat() ~10 paths looking for the terminfo
database. This should also complete fairly quickly. If the overhead is a concern for you, it is recommended to build
applications with a fixed path to the terminfo database.
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Under the hood, when PyOxidizer resolves the terminfo database location, it communicates these paths to
ncurses by setting the TERMINFO_DIRS environment variable. If the TERMINFO_DIRS environment variable is
already set at application run-time, PyOxidizer will never overwrite it.

The ncurses library that PyOxidizer applications ship with is also configured to look for a terminfo database
in the current user’s home directory (HOME environment variable) by default, specifically $HOME/.terminfo).
Support for termcap databases is not enabled.

Note: terminfo database behavior is intrinsically complicated because various operating systems do things dif-
ferently. If you notice oddities in the interaction of PyOxidizer applications with terminals, there’s a good chance
you found a deficiency in PyOxidizer’s terminal detection logic (which is located in the pyembed::osutils Rust
module).

Please report terminal interaction issues at https://github.com/indygreg/PyOxidizer/issues.
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CHAPTER 6

PyOxidizer for Rust Developers

PyOxidizer is implemented in Rust. Binaries built with PyOxidizer are also built with Rust using standard Rust
projects.

While the existence of Rust should be abstracted away from most users (aside from the existence of the install de-
pendency and build output), a target audience of PyOxidizer is Rust developers who want to embed Python in a Rust
project or Python developers who want to leverage more Rust in their Python applications.

Follow the links below to learn how PyOxidizer uses Rust and how Rust can be leveraged to build more advanced
applications embedding Python.

6.1 Rust Projects

PyOxidizer uses Rust projects to build binaries embedding Python.

If you just have a standalone configuration file (such as when running pyoxidizer init-config-file), a
temporary Rust project will be created as part of building binaries. That project will be built, its build artifacts copied,
and the temporary project will be deleted.

If you use pyoxidizer init-rust-project to initialize a PyOxidizer application, the Rust project exists
side-by-side with the PyOxidizer configuration file and can be modified like any other Rust project.

6.1.1 Layout

Generated Rust projects all have a similar layout:

$ find pyapp -type f | grep -v .git
Cargo.toml
build.rs
pyoxidizer.bzl
src/main.rs
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The Cargo.toml file is the configuration file for the Rust project. Read more in the official Cargo documentation.
The magic lines in this file to enable PyOxidizer are the following:

[package]
build = "build.rs"

[dependencies]
pyembed = ...

These lines declare a dependency on the pyembed package, which holds the smarts for embedding Python in a binary.

In addition, the build = "build.rs" tells runs a script that hooks up the output of the pyembed crate with this
project.

Next let’s look at src/main.rs. If you aren’t familiar with Rust projects, the src/main.rs file is the default
location for the source file implementing an executable. If we open that file, we see a fn main() { line, which
declares the main function for our executable. The file is relatively straightforward. We import some symbols from
the pyembed crate. We then construct a config object, use that to construct a Python interpreter, then we run the
interpreter and pass its exit code to exit(). Succinctly, we instantiate and run an embedded Python interpreter.
That’s our executable.

The pyoxidizer.bzl is our auto-generated PyOxidizer configuration file.

6.2 Crate Configuration

6.2.1 Build Artifacts for pyembed

The pyembed crate needs to reference special artifacts as part of its build process in order to compile a Python
interpreter into a binary. The most important of these artifacts is a library providing Python symbols.

By default, the pyembed crate’s build.rs build script will run pyoxidizer run-build-script, which
will attempt to find a PyOxidizer config file and evaluate its default build script target. Using environment variables
set by cargo and by the build.rs script, artifacts will be placed in the correct locations and pyembed will be
built seemingly like any normal Rust crate.

The special build artifacts are generated by resolving a configuration file target returning a PythonEmbeddedResources
instance. In the auto-generated configuration file, the embedded target returns such a type.

6.2.2 Cargo Features to Control Building

The pyembed crate and generated Rust projects share a set of build-mode-* Cargo feature flags to control how
build artifacts are created and consumed.

The features are described in the following sections.

build-mode-standalone

Do not attempt to invoke pyoxidizer or find artifacts it would have built. It is possible to build the pyembed crate
in this mode if the rust-cpython and python3-sys crates can find a Python interpreter. But, the pyembed
crate may not be usable or work in the way you want it to.

This mode is intended to be used for performing quick testing on the pyembed crate. It is quite possible that linking
errors will occur in this mode unless you take additional actions to point Cargo at appropriate libraries.
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build-mode-pyoxidizer-exe

A pyoxidizer executable will be run to generate build artifacts.

The path to this executable can be defined via the PYOXIDIZER_EXE environment variable. Otherwise PATH will
be used.

At build time, pyoxidizer run-build-script will be run. A PyOxidizer configuration file will be dis-
covered using the heuristics described at Finding Configuration Files. OUT_DIR will be set if running from cargo,
so a pyoxidizer.bzl next to the main Rust project being built should be found and used.

pyoxidizer run-build-scriptwill resolve the default build script target by default. To override which target
should be resolved, specify the target name via the PYOXIDIZER_BUILD_TARGET environment variable. e.g.:

$ PYOXIDIZER_BUILD_TARGET=build-artifacts cargo build

build-mode-prebuilt-artifacts

This mode tells the build script to reuse artifacts that were already built. (Perhaps you called pyoxidizer build
or pyoxidizer run-build-script outside the context of a normal cargo build.)

In this mode, the build script will look for artifacts in the directory specified by PYOXIDIZER_ARTIFACT_DIR if
set, falling back to OUT_DIR. This directory must have a cargo_metadata.txt file, which will be printed to
stdout by the build script to tell Cargo how to link a Python library.

cpython-link-unresolved-static

Configures the link mode of the cpython crate to use a static pythonXY library without resolv-
ing the symbol at its own build time. The pyembed crate or a crate building it will need to emit
cargo:rustc-link-lib=static=pythonXY and any cargo:rustc-link-search=native={} lines
to specify an explicit pythonXY library to link against.

This is the link mode used to produce self-contained binaries containing libpython and pyembed code.

cpython-link-default

Configures the link mode of the cpython crate to use default semantics. The crate’s build script will find a pre-
built Python library by querying the python defined by PYTHON_SYS_EXECUTABLE or found on PATH. See the
cpython crate’s documentation for more.

This link mode should be used when linking against an existing libpython that can be found by the cpython
crate’s build script.

6.3 Controlling Python From Rust Code

PyOxidizer can be used to embed Python in a Rust application.

This page documents what that looks like from a Rust code perspective.
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6.3.1 Interacting with the pyembed Crate

When writing Rust code to interact with a Python interpreter, your primary area of contact will be with the pyembed
crate.

The pyembed crate is a standalone crate maintained as part of the PyOxidizer project. This crate provides the core
run-time functionality for PyOxidizer, such as the implementation of PyOxidizer’s custom importer. It also exposes a
high-level API for initializing a Python interpreter and running code in it.

Under the hood, the pyembed crate uses the cpython and python3-sys crates for interacting with Python’s C
APIs. pyembed exposes the Python object from cpython, which means that once you’ve initialized a Python
interpreter with pyembed, you can use all the functionality in cpython to interact with that interpreter.

6.3.2 Initializing a Python Interpreter

Initialing an embedded Python interpreter in your Rust process is as simple as calling
pyembed::MainPythonInterpreter::new(config: PythonConfig).

The hardest part about this is constructing the pyembed::PythonConfig instance.

Using the Default PythonConfig

If the pyembed crate is configured to emit build artifacts (the default), its build script will gener-
ate a Rust source file containing a fn default_python_config() -> pyembed::PythonConfig
which emits a pyembed::PythonConfig using the configuration as defined by the utilized PyOxidizer
configuration file. Assuming you are using the boilerplate Cargo.toml and build.rs script gener-
ated with pyoxidizer init-rust-project, the path to this generated source file will be in the
PYOXIDIZER_DEFAULT_PYTHON_CONFIG_RS environment variable.

This all means that to use the auto-generated pyembed::PythonConfig instance with your Rust application, you
simply need to do something like the following:

include!(env!("PYOXIDIZER_DEFAULT_PYTHON_CONFIG_RS"));

fn create_interpreter() -> Result<pyembed::MainPythonInterpreter> {
// Calls function from include!()'d file.
let config: pyembed::PythonConfig = default_python_config();

pyembed::MaintPythonInterpreter::new(config)
}

Using a Custom PythonConfig

If you don’t want to use the default pyembed::PythonConfig instance, that’s fine too! However, this will be
slightly more complicated.

First, if you use an explicit PythonConfig, the PythonInterpreterConfig Starlark type defined in your PyOxi-
dizer configuration file doesn’t matter that much. The primary purpose of this Starlark type is to derive the default
PythonConfig Rust struct. And if you are using your own custom PythonConfig instance, you can ignore most
of the arguments when creating the PythonInterpreterConfig instance.

An exception to this is the raw_allocator argument/field. If you are using jemalloc, you will need to enable a
Cargo feature when building the pyembed crate or else you will get a run-time error that jemalloc is not available.

pyembed::PythonConfig::default() can be used to construct a new instance, pre-populated with default
values for each field. The defaults should match what the PythonInterpreterConfig Starlark type would yield.
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The main catch to constructing the instance manually is that the custom meta path importer won’t be able to service
Python import requests unless you populate a few fields. In fact, if you just use the defaults, things will blow up
pretty hard at run-time:

$ myapp
Fatal Python error: initfsencoding: Unable to get the locale encoding
ModuleNotFoundError: No module named 'encodings'

Current thread 0x00007fa0e2cbe9c0 (most recent call first):
Aborted (core dumped)

What’s happening here is that Python interpreter initialization hits a fatal error because it can’t import encodings
(because it can’t locate the Python standard library) and Python’s C code is exiting the process. Rust doesn’t even get
the chance to handle the error, which is why we’re seeing a segfault.

The reason we can’t import encodings is twofold:

1. The default filesystem importer is disabled by default.

2. No Python resources are being registered with the PythonConfig instance.

This error can be addressed by working around either.

To enable the default filesystem importer:

let mut config = pyembed::PythonConfig::default();
config.filesystem_importer = true;
config.sys_paths.push("/path/to/python/standard/library");

As long as the default filesystem importer is enabled and sys.path can find the Python standard library, you should
be able to start a Python interpreter.

Hint: The sys_paths field will expand the special token $ORIGIN to the directory of the running executable.
So if the Python standard library is in e.g. the lib directory next to the executable, you can do something like
config.sys_paths.push("$ORIGIN/lib").

If you want to use the custom PyOxidizer Importer to import Python resources, you will need to update a handful of
fields:

let mut config = pyembed::PythonConfig::default();
config.frozen_importlib_bytecode = ...;
config.frozen_importlib_external_bytecode = ...;
config_packed_resources = ...;
config.use_custom_importlib = true;

The *_bytecode fields define pre-compiled Python bytecode for the importlib._bootstrap and
importlib._bootstrap_external modules. This bytecode is needed to bootstrap Python’s import machin-
ery during interpreter initialization. And there’s an additional twist: the bytecode isn’t merely the bytecode produced
from compiling these modules from the Python standard library: the bytecode must be produced from modified source
code so that PyOxidizer’s custom meta path importer can be registered when it executes.

The easiest way to obtain this Python bytecode data is by using the build artifacts from PyOxidizer. Run pyoxidizer
build-artifacts to process and PyOxidizer configuration file and then consume the importlib_bootstrap
and importlib_bootstrap_external files which it produces. The include_bytes! macro can be useful
here.

The packed_resources field defines a reference to packed resources data (a &[u8]. This is a custom serialization
format for expressing resources to make available to a Python interpreter. See the python-packed-resources
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crate for the format specification and code for serializing it. Again, the easiest way to obtain this data blob is by using
PyOxidizer and consuming the packed-resources build artifact/file, likely though include_bytes!.

Finally, setting use_custom_importlib = true is necessary to enable the custom bytecode and meta path
importer to be used at run-time.

6.3.3 Using a Python Interpreter

Once you’ve constructed a pyembed::MainPythonInterpreter instance, you can call various methods on it
to run Python code and perform other actions. e.g.

fn do_it(interpreter: &MainPythonInterpreter) -> {
match interpreter.run_code("print('hello, world')") {

Ok(_) => print("python code executed successfully"),
Err(e) => print("python error: {:?}", e),

}
}

See the pyembed crate’s documentation for more.

If the methods available on MainPythonInterpreter aren’t sufficient for your needs, you can call
acquire_gil() to obtain a cpython::Python instance, which is the cpython crate’s representation of a
Python interpreter. With that, you can do a lot more than you can with MainPythonInterpreter!

Since CPython’s API relies on static variables (sadly), if you really wanted to, you could call out to CPython C APIs
directly (probably via the bindings in the python3-sys crate) and they would interact with the interpreter started
by the pyembed crate. This is all unsafe, of course, so tread at your own peril.

6.3.4 Finalizing the Interpreter

pyembed::MainPythonInterpreter implements Drop and it will call Py_FinalizeEx() when called.
So to terminate the Python interpreter, simply have the MainPythonInterpreter instance go out of scope or
drop it explicitly.

6.3.5 A Note on the pyembed APIs

The pyembed crate is highly tailored towards PyOxidizer’s default use cases and the APIs are not considered ex-
tremely well polished.

While the functionality should work, the ergonomics may not be great.

It is a goal of the PyOxidizer project to support Rust programmers who want to embed Python in Rust applications.
So contributions to improve the quality of the pyembed crate will likely be greatly appreciated!

6.4 Adding Extension Modules At Run-Time

Normally, PyOxidizer assembles all extension modules needed for a built application and the resources data embedded
in the binary describes all extension modules.

The pyembed crate also supports providing additional extension modules, which are defined outside of PyOxidizer
configuration files. This feature can be useful for Rust applications that want to provide extension modules through
their own means and don’t want to use standard Python packaging tools (like setup.py) or PyOxidizer config files
for building them.
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6.4.1 Statically Linked Extension Modules

You can inform the pyembed crate about the existence of additional Python extension modules which are statically
linked into the binary.

To do this, you will need to populate the extra_extension_modules field of the PythonConfig Rust struct
used to construct the Python interpreter. Simply add an entry defining the extension module’s import name and a
pointer to its C initialization function (often named PyInit_<name>. e.g. if you are defining the extension module
foo, the initialization function would be PyInit_foo by convention.

Please note that Python stores extension modules in a global variable. So instantiating multiple interpreters via the
pyembed interfaces may result in duplicate entries or unwanted extension modules being exposed to the Python
interpreter.

6.4.2 Dynamically Linked Extension Modules

If you have an extension module provided as a shared library (this is typically has Python extension modules work),
it will be possible to load this extension module provided that the build configuration supports loading dynamically
linked Python extension modules. See PythonExtensionModule Location Compatibility for more on this topic.

There is not yet an explicit Rust API for loading additional dynamically linked extension modules. It is theoretically
possible to add an entry to the parsed embedded resources data structure. The path of least resistance is likely to enable
the standard filesystem importer and put your shared library extension module somewhere on Python’s sys.path.
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CHAPTER 7

Configuration File API Reference

This document describes the low-level API for PyOxidizer configuration files. For a higher-level overview of how
configuration files work, see Configuration Files.

7.1 Global Symbols

The following are all global symbols available by default in the Starlark environment:

• Starlark built-ins.

• BUILD_TARGET_TRIPLE

• CONFIG_PATH

• CONTEXT

• CWD

• default_python_distribution(flavor="standalone", build_target=None)

• FileManifest()

• glob(include, exclude=None, strip_prefix=None)

• PythonBytecodeModule

• PythonDistribution(sha256, local_path=None, url=None, flavor="standalone")

• PythonEmbeddedResources

• PythonExecutable

• PythonExtensionModule

• PythonInterpreterConfig(...)

• PythonPackageDistributionResource

• PythonPackageResource
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• PythonSourceModule

• register_target(name, fn, depends=[], default=False, default_build_script=False)

• resolve_target(target)

• resolve_targets()

• set_build_path(path)

7.2 Types

The following custom data types are defined in the Starlark environment:

FileContent Represents the content of a file on the filesystem.

FileManifest Represents a mapping of filenames to file content.

PythonBytecodeModule Represents a .pyc file containing Python bytecode for a given module.

PythonDistribution Represents an implementation of Python.

Used for embedding into binaries and running Python code.

PythonEmbeddedResources Represents resources made available to a Python interpreter.

PythonExecutable Represents an executable file containing a Python interpreter.

PythonExtensionModule Represents a compiled Python extension module.

PythonInterpreterConfig Represents the configuration of a Python interpreter.

PythonPackageDistributionResource Represents a file containing Python package distribution metadata.

PythonPackageResource Represents a non-module resource data file.

PythonSourceModule Represents a .py file containing Python source code.

7.3 Constants

PyOxidizer provides global constants as defined by the following sections.

7.3.1 BUILD_TARGET_TRIPLE

The string Rust target triple that we’re currently building for. Will be a value like x86_64-unknown-linux-gnu
or x86_64-pc-windows-msvc. Run rustup target list to see a list of targets.

7.3.2 CONFIG_PATH

The string path to the configuration file currently being evaluated.

7.3.3 CONTEXT

Holds build context. This is an internal variable and accessing it will not provide any value.
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7.3.4 CWD

The current working directory. Also the directory containing the active configuration file.

7.4 Functions for Manipulating Global State

7.4.1 set_build_path(path)

Configure the directory where build artifacts will be written.

Build artifacts include Rust build state, files generated by PyOxidizer, staging areas for built binaries, etc.

If a relative path is passed, it is interpreted as relative to the directory containing the configuration file.

The default value is $CWD/build.

Important: This needs to be called before functionality that utilizes the build path, otherwise the default value will
be used.

7.5 Functions for Managing Targets

7.5.1 register_target(name, fn, depends=[], default=False, de-
fault_build_script=False)

Registers a named target that can be resolved by the configuration file.

A target consists of a string name, callable function, and an optional list of targets it depends on.

The callable may return one of the types defined by this Starlark dialect to facilitate additional behavior, such as how
to build and run it.

depends is an optional list of target strings this target depends on. If specified, each dependency will be evaluated
in order and its returned value (possibly cached from prior evaluation) will be passed as a positional argument to this
target’s callable.

default indicates whether this should be the default target to evaluate. The last registered target setting this to True
will be the default. If no target sets this to True, the first registered target is the default.

default_build_script indicates whether this should be the default target to evaluate when run from the context
of a Rust build script (e.g. from pyoxidizer run-build-script. It has the same semantics as default.

Note: It would be easier for target functions to call resolve_target() within their implementation. However,
Starlark doesn’t allow recursive function calls. So invocation of target callables must be handled specially to avoid
this recursion.

7.5.2 resolve_target(target)

Triggers resolution of a requested build target.
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This function resolves a target registered with register_target() by calling the target’s registered function or
returning the previously resolved value from calling it.

This function should be used in cases where 1 target depends on the resolved value of another target. For example, a
target to create a FileManifest may wish to add a PythonExecutable that was resolved from another target.

7.5.3 resolve_targets()

Triggers resolution of requested build targets.

This is usually the last meaningful line in a config file. It triggers the building of targets which have been requested to
resolve by whatever is invoking the config file.

7.6 Python Distributions

Python distributions are entities that define an implementation of Python that can be used to create a binary embedding
Python and that can be used to execute Python code.

Python distributions are defined by the PythonDistribution type. This type can be constructed from parameters
or via default_python_distribution(flavor="standalone", build_target=None).

7.6.1 PythonDistribution(sha256, local_path=None, url=None,
flavor="standalone")

Defines a Python distribution that can be embedded into a binary.

A Python distribution is a zstandard-compressed tar archive containing a specially produced build of Python. These
distributions are typically produced by the python-build-standalone project. Pre-built distributions are available at
https://github.com/indygreg/python-build-standalone/releases.

A distribution is defined by a location, and a hash.

One of local_path or url MUST be defined.

sha256 (string) The SHA-256 of the distribution archive file.

local_path (string) Local filesystem path to the distribution archive.

url (string) URL from which a distribution archive can be obtained using an HTTP GET request.

flavor (string) The distribution flavor. Can either by standalone (the default) or windows_embeddable.

Examples:

linux = PythonDistribution(
sha256="11a53f5755773f91111a04f6070a6bc00518a0e8e64d90f58584abf02ca79081",
local_path="/var/python-distributions/cpython-linux64.tar.zst"

)

macos = PythonDistribution(
sha256="b46a861c05cb74b5b668d2ce44dcb65a449b9fef98ba5d9ec6ff6937829d5eec",
url="https://github.com/indygreg/python-build-standalone/releases/download/

→˓20190505/cpython-3.7.3-macos-20190506T0054.tar.zst"
)
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7.6.2 default_python_distribution(flavor="standalone",
build_target=None)

Resolves the default PythonDistribution for the given distribution flavor and build target, which default to a
standalone distribution and the active build target as defined by BUILD_TARGET, respectively.

flavor is a string denoting the distribution flavor. Values can be one of the following:

standalone A distribution produced by the python-build-standalone project. The distribution may be
statically or dynamically linked, depending on the build_target and availability.

standalone_static This is like standalone but the distribution must have a statically linked libpython.

standalone_dynamic This is like standalone but the distribution must have a dynamically linked
libpython.

windows_embeddable A Windows-only distribution format defined by a zip file. These distributions are pro-
duced by the official Python project. Support for this distribution flavor is experimental, doesn’t fully
work, and may be removed in a future release because it may not be viable.

The pyoxidizer binary has a set of known distributions built-in which are automatically available and used by this
function. Typically you don’t need to build your own distribution or change the distribution manually.

7.6.3 PythonDistribution Methods

PythonDistribution.source_modules()

Returns a list of PythonSourceModule representing Python source modules present in this distribution.

PythonDistribution.package_resources(include_test=False)

Returns a list of PythonPackageResource representing resource files present in this distribution.

The include_test boolean argument controls whether resources associated with test packages are included.

PythonDistribution.extension_modules(filter='all', preferred_variants=None)

Returns a list of PythonExtensionModule representing extension modules in this distribution.

The filter argument denotes how to filter the extension modules. The following values are recognized:

all Every named extension module will be included.

minimal Return only extension modules that are required to initialize a Python interpreter. This is a very small set
and various functionality from the Python standard library will not work with this value.

no-libraries Return only extension modules that don’t require any additional libraries.

Most common Python extension modules are included. Extension modules like _ssl (links against OpenSSL)
and zlib are not included.

no-gpl Return only extension modules that do not link against GPL licensed libraries.

Not all Python distributions may annotate license info for all extensions or the libraries they link against. If
license info is missing, the extension is not included because it could be GPL licensed. Similarly, the mechanism
for determining whether a license is GPL is based on an explicit list of non-GPL licenses. This ensures new
GPL licenses don’t slip through.
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The preferred_variants argument denotes a string to string mapping of extension module name to its preferred
variant name. If multiple variants of an extension module meet the filter requirements, the preferred variant from this
mapping will be used. Otherwise the first variant will be used.

Important: Libraries that extension modules link against have various software licenses, including GPL version
3. Adding these extension modules will also include the library. This typically exposes your program to additional
licensing requirements, including making your application subject to that license and therefore open source. See
Licensing Considerations for more.

PythonDistribution.pip_install(args, extra_envs={})

This method runs pip install <args> with the specified distribution.

args List of strings defining raw process arguments to pass to pip install.

extra_envs Optional dict of string key-value pairs constituting extra environment variables to set in the invoked
pip process.

Returns a list of objects representing Python resources installed as part of the operation. The types of these objects
can be PythonSourceModule, PythonBytecodeModule, PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or PythonExecutable to make them available
to a packaged application.

PythonDistribution.read_package_root(path, packages)

This method discovers resources from a directory on the filesystem.

The specified directory will be scanned for resource files. However, only specific named packages will be found. e.g.
if the directory contains sub-directories foo/ and bar, you must explicitly state that you want the foo and/or bar
package to be included so files from these directories will be read.

This rule is frequently used to pull in packages from local source directories (e.g. directories containing a setup.py
file). This rule doesn’t involve any packaging tools and is a purely driven by filesystem walking. It is primitive, yet
effective.

This rule has the following arguments:

path (string) The filesystem path to the directory to scan.

packages (list of string) List of package names to include.

Filesystem walking will find files in a directory <path>/<value>/ or in a file <path>/<value>.py.

Returns a list of objects representing Python resources found in the virtualenv. The types of these objects can be
PythonSourceModule, PythonBytecodeModule, PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or PythonExecutable to make them available
to a packaged application.

PythonDistribution.read_virtualenv(path)

This method attempts to read Python resources from an already built virtualenv.
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Important: PyOxidizer only supports finding modules and resources populated via traditional means (e.g. pip
install or python setup.py install). If .pth or similar mechanisms are used for installing modules,
files may not be discovered properly.

It accepts the following arguments:

path (string) The filesystem path to the root of the virtualenv.

Python modules are typically in a lib/pythonX.Y/site-packages directory (on UNIX) or Lib/
site-packages directory (on Windows) under this path.

Returns a list of objects representing Python resources found in the virtualenv. The types of these objects can be
PythonSourceModule, PythonBytecodeModule, PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or PythonExecutable to make them available
to a packaged application.

PythonDistribution.setup_py_install(...)

This method runs python setup.py install against a package at the specified path.

It accepts the following arguments:

package_path String filesystem path to directory containing a setup.py to invoke.

extra_envs={} Optional dict of string key-value pairs constituting extra environment variables to set in the in-
voked python process.

extra_global_arguments=[] Optional list of strings of extra command line arguments to pass to python
setup.py. These will be added before the install argument.

Returns a list of objects representing Python resources installed as part of the operation. The types of these objects
can be PythonSourceModule, PythonBytecodeModule, PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or PythonExecutable to make them available
to a packaged application.

PythonDistribution.to_python_executable(...)

This method constructs a PythonExecutable instance. It essentially says build an executable embedding Python from
this distribution.

The accepted arguments are:

name (str) The name of the application being built. This will be used to construct the default filename of the
executable.

resources_policy (str) The policy to apply when adding resources to the produced instance.

See Python Resources Policy for documentation on allowed values. The default value is in-memory-only.

config (PythonEmbeddedConfig) The default configuration of the embedded Python interpreter.

Default is what PythonInterpreterConfig() returns.

extension_module_filter (str) The filter to apply to determine which extension modules to add.

See PythonDistribution.extension_modules(filter=’all’, preferred_variants=None) for what values are accepted
and their behavior.

Default is all.
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preferred_extension_module_variants (dict of string to string) Preferred extension module
variants to use. See See PythonDistribution.extension_modules(filter=’all’, preferred_variants=None) for be-
havior.

Default is None, which will use the first variant.

include_sources (bool) Boolean to control whether sources of Python modules are added in addition to byte-
code.

Default is True.

include_resources (bool) Boolean to control whether non-module resource data from the distribution is
added.

Default is False.

include_test (bool) Boolean to control whether test-specific objects are included.

Default is False.

7.7 Python Resources

At run-time, Python interpreters need to consult resources like Python module source and bytecode as well as re-
source/data files. We refer to all of these as Python Resources.

Configuration files represent Python Resources via the types PythonSourceModule, PythonBytecodeModule, Python-
PackageResource, PythonPackageDistributionResource, and PythonExtensionModule.

These are described in detail in the following sections.

7.7.1 PythonSourceModule

This type represents Python source modules, agnostic of location.

Each instance has the following attributes:

name (string) Fully qualified name of the module. e.g. foo.bar.

is_package (bool) Whether this module is also a Python package (or sub-package).

Instances cannot be manually constructed.

7.7.2 PythonBytecodeModule

This type represents a Python module defined through bytecode.

Each instance has the following attributes:

name (string) Fully qualified name of the module. e.g. foo.bar

optimize_level (int) Optimization level of compiled bytecode. Must be the value 0, 1, or 2.

is_package (bool) Whether the module is also a Python package (or sub-package).
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7.7.3 PythonPackageResource

This type represents a resource _file_ in a Python package. It is effectively a named blob associated with a Python
package. It is typically accessed using the importlib.resources API.

Each instance has the following attributes:

package (string) Python package this resource is associated with.

name (string) Name of this resource.

7.7.4 PythonPackageDistributionResource

This type represents a named resource to make available as Python package distribution metadata. These files are
typically accessed using the importlib.metadata API.

Each instance represents a logical file in a <package>-<version>.dist-info or
<package>-<version>.egg-info directory. There are specifically named files that contain certain
data. For example, a *.dist-info/METADATA file describes high-level metadata about a Python package.

Each instance has the following attributes:

package (string) Python package this resource is associated with.

name (string) Name of this resource.

7.7.5 PythonExtensionModule

This type represents a compiled Python extension module.

Each instance has the following attributes:

name (string) Unique name of the module being provided.

7.8 Python Resources Policy

There are various ways to add resources (typically Python resources) to a binary. For example, you can import modules
from memory or the filesystem. Often, configuration files may wish to be explicit about what behavior is and is not
allowed. A Python Resources Policy is used to apply said behavior.

A Python Resources Policy is defined by a str. The following values are recognized.

in-memory-only Resources are to be loaded from in-memory only. If a resource cannot be loaded from memory
(e.g. dynamically linked Python extension modules in some configurations), an error will (likely) occur.

filesystem-relative-only:<prefix> Values starting with filesystem-relative-only: specify
that resources are to be loaded from the filesystem from paths relative to the produced binary. Files will be
installed at the path prefix denoted by the value after the :. e.g. filesystem-relative-only:lib will
install resources in a lib/ directory.

prefer-in-memory-fallback-filesystem-relative:<prefix> Values starting with
prefer-in-memory-fallback-filesystem-relative represent a hybrid between
in-memory-only and filesystem-relative-only:<prefix>. Essentially, if in-memory re-
source loading is supported, it is used. Otherwise we fall back to loading from the filesystem from paths relative
to the produced binary.
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7.9 Python Interpreter Configuration

A Python interpreter has settings to control how it runs. Configuration files represent these settings through the
PythonInterpreterConfig(...) type.

7.9.1 PythonInterpreterConfig(...)

This type configures the default behavior of the embedded Python interpreter.

Embedded Python interpreters are configured and instantiated using a pyembed::PythonConfig data structure.
The pyembed crate defines a default instance of this data structure with parameters defined by the settings in this
type.

Note: If you are writing custom Rust code and constructing a custom pyembed::PythonConfig instance and
don’t use the default instance, this config type is not relevant to you and can be omitted from your config file.

The following arguments can be defined to control the default PythonConfig behavior:

bytes_warning (int) Controls the value of Py_BytesWarningFlag.

Default is 0.

filesystem_importer (bool) Controls whether to enable Python’s filesystem based importer. Enabling this
importer allows Python modules to be imported from the filesystem.

Default is False (since PyOxidizer prefers embedding Python modules in binaries).

ignore_environment (bool) Controls the value of Py_IgnoreEnvironmentFlag.

This is likely wanted for embedded applications that don’t behave like python executables.

Default is True.

inspect (bool) Controls the value of Py_InspectFlag.

Default is False.

interactive (bool) Controls the value of Py_InteractiveFlag.

Default is False.

isolated (bool) Controls the value of Py_IsolatedFlag.

legacy_windows_fs_encoding (bool) Controls the value of Py_LegacyWindowsFSEncodingFlag.

Only affects Windows.

Default is False.

legacy_windows_stdio (bool) Controls the value of Py_LegacyWindowsStdioFlag.

Only affects Windows.

Default is False.

optimize_level (bool) Controls the value of Py_OptimizeFlag.

Default is 0, which is the Python default. Only the values 0, 1, and 2 are accepted.

This setting is only relevant if dont_write_bytecode is false and Python modules are being imported
from the filesystem.
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parser_debug (bool) Controls the value of Py_DebugFlag.

Default is False.

quiet (bool) Controls the value of Py_QuietFlag.

raw_allocator (string) Which memory allocator to use for the PYMEM_DOMAIN_RAW allocator.

This controls the lowest level memory allocator used by Python. All Python memory allocations use memory
allocated by this allocator (higher-level allocators call into this pool to allocate large blocks then allocate memory
out of those blocks instead of using the raw memory allocator).

Values can be jemalloc, rust, or system.

jemalloc will have Python use the jemalloc allocator directly.

rust will use Rust’s global allocator (whatever that may be).

system will use the default allocator functions exposed to the binary (malloc(), free(), etc).

The jemalloc allocator requires the jemalloc-sys crate to be available. A run-time error will occur if
jemalloc is configured but this allocator isn’t available.

Important: the rust crate is not recommended because it introduces performance overhead.

Default is jemalloc on non-Windows targets and system on Windows. (The jemalloc-sys crate doesn’t
work on Windows MSVC targets.)

run_eval (string) Will cause the interpreter to evaluate a Python code string defined by this value after the inter-
preter initializes.

An example value would be import mymodule; mymodule.main().

run_file (string) Will cause the interpreter to evaluate a file at the specified filename.

The filename is resolved at run-time using whatever mechanisms the Python interpreter applies. i.e. this is little
different from running python <path>.

run_module (string) The Python interpreter will load a Python module with this value’s name as the __main__
module and then execute that module.

This mode is similar to python -m <module> but isn’t exactly the same. python -m <module> has ad-
ditional functionality, such as looking for the existence of a <module>.__main__ module. PyOxidizer does
not do this. The value of this argument will be the exact module name that is imported and run as __main__.

run_noop (bool) Instructs the Python interpreter to do nothing after initialization.

run_repl (bool) The Python interpreter will launch an interactive Python REPL connected to stdio. This is similar
to the default behavior of running a python executable without any arguments.

site_import (bool) Controls the inverse value of Py_NoSiteFlag.

The site module is typically not needed for standalone Python applications.

Default is False.

stdio_encoding (string) Defines the encoding and error handling mode for Python’s standard I/O streams (sys.
stdout, etc). Values are of the form encoding:error e.g. utf-8:ignore or latin1-strict.

If defined, the Py_SetStandardStreamEncoding() function is called during Python interpreter initial-
ization. If not, the Python defaults are used.

sys_frozen (bool) Controls whether to set the sys.frozen attribute to True. If false, sys.frozen is not
set.

Default is False.
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sys_meipass (bool) Controls whether to set the sys._MEIPASS attribute to the path of the executable.

Setting this and sys_frozen to true will emulate the behavior of PyInstaller and could possibly help self-
contained applications that are aware of PyInstaller also work with PyOxidizer.

Default is False.

sys_paths (array of strings) Defines filesystem paths to be added to sys.path.

Setting this value will imply filesystem_importer = true.

The special token $ORIGIN in values will be expanded to the absolute path of the directory of the executable
at run-time. For example, if the executable is /opt/my-application/pyapp, $ORIGIN will expand to
/opt/my-application and the value $ORIGIN/lib will expand to /opt/my-application/lib.

If defined in multiple sections, new values completely overwrite old values (values are not merged).

Default is an empty array ([]).

terminfo_resolution (string) How the terminal information database (terminfo) should be configured.

See Terminfo Database for more about terminal databases.

The value dynamic (the default) looks at the currently running operating system and attempts to do something
reasonable. For example, on Debian based distributions, it will look for the terminfo database in /etc/
terminfo, /lib/terminfo, and /usr/share/terminfo, which is how Debian configures ncurses
to behave normally. Similar behavior exists for other recognized operating systems. If the operating system is
unknown, PyOxidizer falls back to looking for the terminfo database in well-known directories that often
contain the database (like /usr/share/terminfo).

The value none indicates that no configuration of the terminfo database path should be performed. This
is useful for applications that don’t interact with terminals. Using none can prevent some filesystem I/O at
application startup.

The value static indicates that a static path should be used for the path to the terminfo database. That
path should be provided by the terminfo_dirs configuration option.

terminfo is not used on Windows and this setting is ignored on that platform.

terminfo_dirs Path to the terminfo database. See the above documentation for terminfo_resolution
for more on the terminfo database.

This value consists of a : delimited list of filesystem paths that ncurses should be configured to use. This
value will be used to populate the TERMINFO_DIRS environment variable at application run time.

unbuffered_stdio (bool) Controls the value of Py_UnbufferedStdioFlag.

Setting this makes the standard I/O streams unbuffered.

Default is False.

use_hash_seed (bool) Controls the value of Py_HashRandomizationFlag.

Default is False.

user_site_directory (bool) Controls the inverse value of Py_NoUserSiteDirectory.

Default is False.

write_bytecode (bool) Controls the inverse value of Py_DontWriteBytecodeFlag.

This is only relevant if the interpreter is configured to import modules from the filesystem.

Default is False.
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write_modules_directory_env (string) Environment variable that defines a directory where
modules-<UUID> files containing a \n delimited list of loaded Python modules (from sys.modules) will
be written upon interpreter shutdown.

If this setting is not defined or if the environment variable specified by its value is not present at run-time,
no special behavior will occur. Otherwise, the environment variable’s value is interpreted as a directory, that
directory and any of its parents will be created, and a modules-<UUID> file will be written to the directory.

This setting is useful for determining which Python modules are loaded when running Python code.

7.10 Python Binaries

Binaries containing an embedded Python interpreter can be defined by configuration files. They are defined via the
PythonExecutable type. In addition, the PythonEmbeddedResources type represents the collection of resources made
available to an embedded Python interpreter.

7.10.1 PythonEmbeddedResources

The PythonEmbeddedResources type represents resources made available to a Python interpreter. The resources
tracked by this type are consumed by the pyembed crate at build and run time. The tracked resources include:

• Python module source and bytecode

• Python package resources

• Shared library dependencies

While the type’s name has embedded in it, resources referred to by this type may or may not actually be embedded in a
Python binary or loaded directly from the binary. Rather, the term embedded comes from the fact that the data structure
describing the resources is typically embedded in the binary or made available to an embedded Python interpreter.

Instances of this type are constructed by transforming a type representing a Python binary. e.g. PythonExe-
cutable.to_embedded_resources().

If this type is returned by a target function, its build action will write out files that represent the various resources
encapsulated by this type. There is no run action associated with this type.

7.10.2 PythonExecutable

The PythonExecutable type represents an executable file containing the Python interpreter, Python resources to
make available to the interpreter, and a default run-time configuration for that interpreter.

Instances are constructed from PythonDistribution instances using PythonDistribu-
tion.to_python_executable(...).

PythonExecutable.add_in_memory_module_source(module)

This method registers a Python source module with a PythonExecutable instance. The module will be imported
from memory at run-time. The argument must be a PythonSourceModule instance.

If called multiple times for the same module, the last write wins.
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PythonExecutable.add_filesystem_relative_module_source(prefix, module)

This method registers a Python source module with a PythonExecutable instance. The module will be imported
from the filesystem from a file relative to the built executable. The directory prefix for the generated file is defined by
prefix.

If called multiple times for the same module, the last write wins.

PythonExecutable.add_module_source(module)

This method registers a Python source module with a PythonExecutable instance.

This method is a glorified proxy to PythonExecutable.add_in_memory_module_source(module) or PythonExe-
cutable.add_filesystem_relative_module_source(prefix, module) depending on the Python Resources Policy in effect.

PythonExecutable.add_in_memory_module_bytecode(module, optimize_level=0)

This method registers Python module bytecode with a PythonExecutable instance. The module will be imported
from memory at run-time.

The first argument must be a PythonSourceModule instance. The 2nd argument the value 0, 1, or 2.

PythonExecutable.add_filesystem_relative_module_bytecode(prefix, module,
optimize_level=0)

This method registers Python module bytecode with a PythonExecutable instance. The module will be imported
from the filesystem from a file relative to the built executable. The directory prefix for the generated file is defined by
prefix.

The module argument must be a PythonSourceModule instance. The optimize_level argument must be
the value 0, 1, or 2.

If called multiple times for the same module, the last write wins.

PythonExecutable.add_module_bytecode(module, optimize_level=0)

This method registers a Python module bytecode with a PythonExecutable instance.

This method is a glorified proxy to PythonExecutable.add_in_memory_module_bytecode(module, optimize_level=0)
or PythonExecutable.add_filesystem_relative_module_bytecode(prefix, module, optimize_level=0) depending on the
Python Resources Policy in effect. See these other methods for documentation of behavior.

PythonExecutable.add_in_memory_package_resource(resource)

This method adds a PythonPackageResource instance to the PythonExecutable instance, making that
resource available via in-memory access.

If multiple resources sharing the same (package, name) pair are added, the last added one is used.
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PythonExecutable.add_filesystem_relative_package_resource(prefix, resource)

This method adds a PythonPackageResource instance to the PythonExecutable instance. The resource
will be materialized on the filesystem next to the produced executable at a path derived from the resource’s attributes.
The directory prefix for the generated file is defined by prefix.

If multiple resources sharing the same (prefix, package, name) tuple are added, the last added one is used.

PythonExecutable.add_package_resource(resource)

This method adds a PythonPackageResource instance to the PythonExecutable instance.

This method is a glorified proxy to PythonExecutable.add_in_memory_package_resource(resource) or PythonExe-
cutable.add_filesystem_relative_package_resource(prefix, resource) depending on the Python Resources Policy in ef-
fect. See these other methods for documentation of behavior.

PythonExecutable.add_in_memory_package_distribution_resource(resource)

This method adds a PythonPackageDistributionResource instance to the PythonExecutable instance,
making that resource available via in-memory access.

If multiple resources sharing the same (package, name) pair are added, the last added one is used.

PythonExecutable.add_filesystem_relative_package_distribution_resource(prefix,
resource)

This method adds a PythonPackageDistributionResource instance to the PythonExecutable instance.
The resource will be materialized on the filesystem next to the produced executable at a path derived from the re-
source’s attributes. The directory prefix for the generated file is defined by prefix.

If multiple resources sharing the same (prefix, package, name) tuple are added, the last added one is used.

PythonExecutable.add_package_distribution_resource(resource)

This method adds a PythonPackageDistributionResource instance to the PythonExecutable instance.

This method is a glorified proxy to PythonExecutable.add_in_memory_package_distribution_resource(resource) or
PythonExecutable.add_filesystem_relative_package_distribution_resource(prefix, resource) depending on the Python
Resources Policy in effect. See these other methods for documentation of behavior.

PythonExecutable.add_in_memory_extension_module(module)

This method registers a PythonExtensionModule instance with a PythonExecutable instance. The exten-
sion module will be loaded from memory via one of the following mechanisms:

• Linking the extension module’s symbols directly into the produced binary.

• Embedded the extension module’s shared library into the produced binary and loading it from memory.

If multiple extension modules with the same name are added, the last added one is used.
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PythonExecutable.add_filesystem_relative_extension_module(prefix, module)

This method registers a PythonExtensionModule instance with a PythonExecutable instance. The exten-
sion module will be loaded from the filesystem from a path relative to the produced executable.

If multiple extension modules with the same name are added, the last added one is used.

PythonExecutable.add_extension_module(module)

This method registers a PythonExtensionModule instance with a PythonExecutable instance. The exten-
sion module will be made available to the executable using whatever means are possible, constrained by the Python
Resources Policy set by this PythonExecutable.

The extension module could be packaged in the following manner depending on the capabilities of the underlying
Python distribution and resources policy:

• If the object files for the extension module are available, the extension module may be statically linked into the
produced binary.

• If loading extension modules from in-memory import is supported, the extension module will have its dynamic
library embedded in the binary.

• The extension module will be materialized as a file next to the produced binary and will be loaded from the
filesystem. (This is how Python extension modules typically work.)

If multiple extension modules with the same name are added, the last added one is used.

PythonExecutable.add_in_memory_python_resource(...)

This method registers a Python resource of various types for in-memory loading. It accepts a resource argu-
ment which can be a PythonSourceModule, PythonBytecodeModule, PythonPackageResource, or
PythonExtensionModule and registers that resource with this instance. This method is a glorified proxy to the
appropriate add_in_memory_* method.

The following arguments are accepted:

resource The resource to add to the embedded Python environment.

add_source_module (bool) When the resource is a PythonSourceModule, this flag determines whether to
add the source for that resource.

Default is True.

add_bytecode_module (bool) When the resource is a PythonSourceModule, this flag determines whether
to add the bytecode for that module source.

Default is True.

optimize_level (int) Bytecode optimization level when compiling bytecode.

PythonExecutable.add_filesystem_relative_python_resource(prefix, ...)

This method registers a Python resource of various types for filesystem loading in a path relative to the produced
executable. The arguments for this method are the same as PythonExecutable.add_in_memory_python_resource(...)
except the first argument is the str path prefix to install files into.
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PythonExecutable.add_python_resource(...)

This method registers a Python resource of various types with the instance. The location the resource will be loaded
from will be determined by the Python Resources Policy in effect for the PythonExecutable.

The arguments are the same as for PythonExecutable.add_in_memory_python_resource(...).

PythonExecutable.add_in_memory_python_resources(...)

This method registers an iterable of Python resources of various types. This method is identical to
PythonExecutable.add_in_memory_python_resource() except the first argument is an iterable of re-
sources. All other arguments are identical.

PythonExecutable.add_filesystem_relative_python_resources(prefix, ...)

This method registers an iterable of Python resources of various types. This method is identical to PythonExe-
cutable.add_filesystem_relative_python_resource(prefix, ...) except the first argument is a path prefix to install files
to and the second argument is an iterable of resources. All other arguments are identical.

PythonExecutable.add_python_resources(...)

This method registers an iterable of Python resources of various types. This method is identical to PythonExe-
cutable.add_python_resource(...) except the argument is an iterable of resources. All other arguments are identical.

PythonExecutable.filter_from_files(files=[], glob_patterns=[])

This method filters all embedded resources (source modules, bytecode modules, and resource names) currently present
on the instance through a set of resource names resolved from files.

This method accepts the following arguments:

files (array of string) List of filesystem paths to files containing resource names. The file must be valid UTF-8
and consist of a \n delimited list of resource names. Empty lines and lines beginning with # are ignored.

glob_files (array of string) List of glob matching patterns of filter files to read. * denotes all files in a directory.
** denotes recursive directories. This uses the Rust glob crate under the hood and the documentation for that
crate contains more pattern matching info.

The files read by this argument must be the same format as documented by the files argument.

All defined files are first read and the resource names encountered are unioned into a set. This set is then used to filter
entities currently registered with the instance.

PythonExecutable.to_embedded_resources()

Obtains a PythonEmbeddedResources instance representing resources to be made available to the Python interpreter.

See the PythonEmbeddedResources type documentation for more.
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7.11 Interacting With the Filesystem

7.11.1 FileManifest()

The FileManifest type represents a set of files and their content.

FileManifest instances are used to represent things like the final filesystem layout of an installed application.

Conceptually, a FileManifest is a dict mapping relative paths to file content.

FileManifest.add_manifest(manifest)

This method overlays another FileManifest on this one. If the other manifest provides a path already in this
manifest, its content will be replaced by what is in the other manifest.

FileManifest.add_python_resource(prefix, value)

This method adds a Python resource to a FileManifest instance in a specified directory prefix. A Python
resource here can be a PythonSourceModule, PythonBytecodeModule, PythonPackageResource,
PythonPackageDistributionResource, or PythonExtensionModule.

This method can be used to place the Python resources derived from another type or action in the filesystem next to an
application binary.

FileManifest.add_python_resources(prefix, values)

This method adds an iterable of Python resources to a FileManifest instance in a specified directory prefix. This is
effectively a wrapper for for value in values: self.add_python_resource(prefix, value).

For example, to place the Python distribution’s standard library Python source modules in a directory named lib:

m = FileManifest()
dist = default_python_distribution()
m.add_python_resources(dist.source_modules())

FileManifest.install(path, replace=True)

This method writes the content of the FileManifest to a directory specified by path. The path is evaluated
relative to the path specified by BUILD_PATH.

If replace is True (the default), the destination directory will be deleted and the final state of the destination directory
should exactly match the state of the FileManifest.

7.11.2 FileContent

This type represents the content of a single file.
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7.11.3 glob(include, exclude=None, strip_prefix=None)

The glob() function resolves file patterns to a FileManifest.

include is a list of str containing file patterns that will be matched using the glob Rust crate. If patterns begin
with / or look like a filesystem absolute path, they are absolute. Otherwise they are evaluated relative to the directory
of the current config file.

exclude is an optional list of str and is used to exclude files from the result. All patterns in include are
evaluated before exclude.

strip_prefix is an optional str to strip from the beginning of matched files. strip_prefix is stripped after
include and exclude are processed.

Returns a FileManifest.
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CHAPTER 8

Frequently Asked Questions

8.1 Where Can I Report Bugs / Send Feedback / Request Features?

At https://github.com/indygreg/PyOxidizer/issues

8.2 Why Build Another Python Application Packaging Tool?

It is true that several other tools exist to turn Python code into distributable applications! Comparisons to Other Tools
attempts to exhaustively compare PyOxidizer to these myriad of tools. (If a tool is missing or the comparison
incomplete or unfair, please file an issue so Python application maintainers can make better, informed decisions!)

The long version of how PyOxidizer came to be can be found in the Distributing Standalone Python Applications
blog post. If you really want to understand the motivations for starting a new project rather than using or improving
an existing one, read that post.

If you just want the extra concise version, at the time PyOxidizer was conceived, there were no Python application
packaging/distribution tool which satisfied all of the following requirements:

• Works across all platforms (many tools target e.g. Windows or macOS only).

• Does not require an already-installed Python on the executing system (rules out e.g. zip file based distribution
mechanisms).

• Has no special system requirements (e.g. SquashFS, container runtimes).

• Offers startup performance no worse than traditional python execution.

• Supports single file executables with none or minimal system dependencies.
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8.3 Can Python 2.7 Be Supported?

In theory, yes. However, it is considerable more effort than Python 3. And since Python 2.7 is being deprecated in
2020, in the project author’s opinion it isn’t worth the effort.

8.4 No python interpreter found of version 3.* Error
When Building

This is due to a dependent crate insisting that a Python executable exist on PATH. Set the
PYTHON_SYS_EXECUTABLE environment variable to the path of a Python 3.7 executable and try again.
e.g.:

# UNIX
$ export PYTHON_SYS_EXECUTABLE=/usr/bin/python3.7
# Windows
$ SET PYTHON_SYS_EXECUTABLE=c:\python37\python.exe

Note: The pyoxidizer tool should take care of setting PYTHON_SYS_EXECUTABLE and prevent this error. If
you see this error and you are building with pyoxidizer, it is a bug that should be reported.

8.5 Why Rust?

This is really 2 separate questions:

• Why choose Rust for the run-time/embedding components?

• Why choose Rust for the build-time components?

PyOxidizer binaries require a driver application to interface with the Python C API and that driver application
needs to compile to native code in order to provide a native executable without requiring a run-time on the machine it
executes on. In the author’s opinion, the only appropriate languages for this were C, Rust, and maybe C++.

Of those 3, the project’s author prefers to write new projects in Rust because it is a superior systems programming
language that has built on lessons learned from decades working with its predecessors. The author prefers technologies
that can detect and eliminate entire classes of bugs (like buffer overflow and use-after-free) at compile time. On a
less-opinionated front, Rust’s built-in build system support means that we don’t have to spend considerable effort
solving hard problems like cross-compiling. Implementing the embedding component in Rust also creates interesting
opportunities to embed Python in Rust programs. This is largely an unexplored area in the Python ecosystem and the
author hopes that PyOxidizer plays a part in more people embedding Python in Rust.

For the non-runtime packaging side of PyOxidizer, pretty much any programming language would be appropriate.
The project’s author initially did prototyping in Python 3 but switched to Rust for synergy with the the run-time
driver and because Rust had working solutions for several systems-level problems, such as parsing ELF, DWARF, etc
executables, cross-compiling, integrating custom memory allocators, etc. A minor factor was the author’s desire to
learn more about Rust by starting a real Rust project.
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8.6 Why is the Rust Code. . . Not Great?

This is the project author’s first real Rust project. Suggestions to improve the Rust code would be very much appreci-
ated!

Keep in mind that the pyoxidizer crate is a build-time only crate and arguably doesn’t need to live up to quality
standards as crates containing run-time code. Things like aggressive .unwrap() usage are arguably tolerable.

The run-time code that produced binaries run (pyembed) is held to a higher standard and is largely panic! free.

8.7 What is the Magic Sauce That Makes PyOxidizer Special?

There are 2 technical achievements that make PyOxidizer special.

First, PyOxidizer consumes Python distributions that were specially built with the aim of being used for stan-
dalone/distributable applications. These custom-built Python distributions are compiled in such a way that the re-
sulting binaries have very few external dependencies and run on nearly every target system. Other tools that produce
standalone Python binaries often rely on an existing Python distribution, which often doesn’t have these characteristics.

Second is the ability to import .py/.pyc files from memory. Most other self-contained Python applications rely
on Python’s zipimporter or do work at run-time to extract the standard library to a filesystem (typically a tem-
porary directory or a FUSE filesystem like SquashFS). What PyOxidizer does is expose the .py/.pyc modules
data to the Python interpreter via a Python extension module built-in to the binary. In addition, the importlib.
_bootstrap_external module (which is frozen into libpython) is replaced by a modified version that defines
a custom module importer capable of loading Python modules from the in-memory data structures exposed from the
built-in extension module.

The custom importlib_bootstrap_external frozen module trick is probably the most novel technical
achievement of PyOxidizer. Other Python distribution tools are encouraged to steal this idea!

Following the Documentation link for the pyembed crate for an overview of how the in-memory import machinery
works.

8.8 Can Applications Import Python Modules from the Filesystem?

Yes!

While PyOxidizer supports importing Python resources from in-memory, it also supports filesystem-based import like
traditional Python applications.

This can be achieved by adding Python resources to a non in-memory resource location (see Manag-
ing Resources and Their Locations) or by enabling Python’s standard filesystem-based importer by enabling
filesystem_importer=True (see PythonInterpreterConfig(...)).

8.9 error while loading shared libraries: libcrypt.so.
1: cannot open shared object file: No such file
or directory When Building

If you see this error when building, it is because your Linux system does not conform to the Linux Standard Base
Specification, does not provide a libcrypt.so.1 file, and the Python distribution that PyOxidizer attempts to run
to compile Python source modules to bytecode can’t execute.
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Fedora 30+ are known to have this issue. A workaround is to install the libxcrypt-compat on the machine
running pyoxidizer. See https://github.com/indygreg/PyOxidizer/issues/89 for more info.
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CHAPTER 9

Project Status

PyOxidizer is functional and works for many use cases. However, there are still a number of rough edges, missing
features, and known limitations. Please file issues at https://github.com/indygreg/PyOxidizer/issues!

9.1 What’s Working

The basic functionality of creating binaries that embed a self-contained Python works on Linux, Windows, and macOS.
The general approach should work for other operating systems.

Starlark configuration files allow extensive customization of packaging and run time behavior. Many projects can be
successfully packaged with PyOxidizer today.

9.2 Major Missing Features

9.2.1 An Official Build Environment

Compiling binaries that work on nearly every target system is hard. On Linux, things like glibc symbol versions
from the build machine can leak into the built binary, effectively requiring a new Linux distribution to run a binary.

In order to make the binary build process robust, we will need to provide an execution environment in which to build
portable binaries. On Linux, this likely entails making something like a Docker image available. On Windows and
macOS, we might have to provide a tarball. In all cases, we want this environment to be integrated into pyoxidizer
build so end users don’t have to worry about jumping through hoops to build portable binaries.

9.2.2 Native Extension Modules

Using compiled extension modules (e.g. C extensions) is partially supported.

Building C extensions to be embedded in the produced binary works for Windows, Linux, and macOS.
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Support for extension modules that link additional macOS frameworks not used by Python itself is not yet implemented
(but should be easy to do).

Support for cross-compiling extension modules (including to MUSL) does not work. (It may appear to work and break
at linking or run-time.)

We also do not yet provide a build environment for C extensions. So unexpected behavior could occur if e.g. a different
compiler toolchain is used to build the C extensions from the one that produced the Python distribution.

See also C and Other Native Extension Modules.

9.2.3 Incomplete pyoxidizer Commands

pyoxidizer add and pyoxidizer analyze aren’t fully implemented.

There is no pyoxidizer upgrade command.

Work on all of these is planned.

9.2.4 More Robust Packaging Support

Currently, we produce an executable via Cargo. Often a self-contained executable is not suitable. We may have to
run some Python modules from the filesystem because of limitations in those modules. In addition, some may wish to
install custom files alongside the executable.

We want to add a myriad of features around packaging functionality to facilitate these things. This includes:

• Support for __file__.

• A build mode that produces an instrumented binary, runs it a few times to dump loaded modules into files, then
builds it again with a pruned set of resources.

9.2.5 Making Distribution Easy

We don’t yet have a good story for the distributing part of the application distribution problem. We’re good at pro-
ducing executables. But we’d like to go the extra mile and make it easier for people to produce installers, .dmg files,
tarballs, etc.

This includes providing build environments for e.g. non-MUSL based Linux executables.

It also includes support for auditing for license compatibility (e.g. screening for GPL components in proprietary
applications) and assembling required license texts to satisfy notification requirements in those licenses.

9.2.6 Partial Terminfo and Readline Support

PyOxidizer has partial support for detecting terminfo databases. See Terminfo Database for more.

There’s a good chance PyOxidizer’s ability to locate terminfo databases in the long tail of Python distributions is
lacking. And PyOxidizer doesn’t currently make it easy to distribute a terminfo database alongside the application.

At this time, proper terminal interaction in PyOxidizer applications may be hit-or-miss.

Please file issues at https://github.com/indygreg/PyOxidizer/issues reporting known problems with terminal interaction
or to request new features for terminal interaction, terminfo database support, etc.
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9.3 Lesser Missing Features

9.3.1 Python Version Support

Only Python 3.7 is currently supported. Support for older Python 3 releases is possible. But the project author hopes
we only need to target the latest/greatest Python release.

9.3.2 Reordering Resource Files

There is not yet support for reordering .py and .pyc files in the binary. This feature would facilitate linear read
access, which could lead to faster execution.

9.3.3 Compressed Resource Files

Binary resources are currently stored as raw data. They could be stored compressed to keep binary size in check (at
the cost of run-time memory usage and CPU overhead).

9.3.4 Nightly Rust Required on Windows

Windows currently requires a Nightly Rust to build (you can set the environment variable RUSTC_BOOTSTRAP=1 to
work around this) because the static-nobundle library type is required. https://github.com/rust-lang/rust/issues/
37403 tracks making this feature stable. It might be possible to work around this by adding an __imp_ prefixed
symbol in the right place or by producing a empty import library to satisfy requirements of the static linkage kind.
See https://github.com/rust-lang/rust/issues/26591#issuecomment-123513631 for more.

9.3.5 Cross Compiling

Cross compiling is not yet supported. We hope to and believe we can support this someday. We would like to
eventually get to a state where you can e.g. produce Windows and macOS executables from Linux. It’s possible.

9.3.6 Configuration Files

Naming and semantics in the configuration files can be significantly improved. There’s also various missing packaging
functionality.

9.4 Eventual Features

The immediate goal of PyOxidizer is to solve packaging and distribution problems for Python applications. But
we want PyOxidizer to be more than just a packaging tool: we want to add additional features to PyOxidizer
to bring extra value to the tool and to demonstrate and/or experiment with alternate ways of solving various problems
that Python applications frequently encounter.
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9.4.1 Lazy Module Loading

When a Python module is imported, its code is evaluated. When applications consist of dozens or even hundreds
of modules, the overhead of executing all this code at import time can be substantial and add up to dozens of
milliseconds of overhead - all before your application runs a meaningful line of code.

We would like PyOxidizer to provide lazy module importing so Python’s import machinery can defer evaluating
a module’s code until it is actually needed. With features in modern versions of Python 3, this feature could likely be
enabled by default. And since many PyOxidizer applications are frozen and have total knowledge of all importable
modules at build time, PyOxidizer could return a lazy module object after performing a simple Rust HashMap
lookup. This would be extremely fast.

9.4.2 Alternate Module Serialization Techniques

Related to lazy module loading, there is also the potential to explore alternate module serialization techniques. Cur-
rently, the way PyOxidizer and .pyc files work is that a Python code object is serialized with the marshal
module. At module load time, the code object is deserialized and then executed. This deserialization plus code
execution has overhead.

It is possible to devise alternate serialization and load techniques that don’t rely on marshal and possibly bypass
having to run as much code at module load time. For example, one could devise a format for serializing various
PyObject types and then adjusting pointers inside the structs at run time. This is kind of a crazy idea. But it could
work.

9.4.3 Module Order Tracing

Currently, resource data is serialized on disk in alphabetical order according to the resource name. e.g. the bar
module is serialized before the foo module.

We would like to explore a mechanism to record the order in which modules are loaded as part of application execution
and then reorder the serialized modules such that they are stored in load order. This will facilitate linear reads at
application run time and possibly provide some performance wins (especially on devices with slow I/O).

9.4.4 Module Import Performance Tracing

PyOxidizer has near total visibility into what Python’s module importer is doing. It could be very useful to provide
forensic output of what modules import what, how long it takes to import various modules, etc.

CPython does have some support for module importing tracing. We think we can go a few steps farther. And we can
implement it more easily in Rust than what CPython can do in C. For example, with Rust, one can use the inferno
crate to emit flame graphs directly from Rust, without having to use external tools.

9.4.5 Built-in Profiler

There’s potential to integrate a built-in profiler into PyOxidizer applications. The excellent py-spy sampling pro-
filer (or the core components of it) could potentially be integrated directly into PyOxidizer such that produced
applications could self-profile with minimal overhead.

It should also be possible for PyOxidizer to expose mechanisms for Rust to receive callbacks when Python’s
profiling and tracing hooks fire. This could allow building a powerful debugger or tracer in Rust.
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9.4.6 Command Server

A known problem with Python is its startup overhead. The maintainer of PyOxidizer has raised this issue on
Python’s mailing list a few times.

PyOxidizer helps with this problem by eliminating explicit filesystem I/O and allowing modules to be imported
faster. But there’s only so much that can be done and startup overhead can still be a problem.

One strategy to combat this problem is the use of persistent command server daemons. Essentially, on the first invo-
cation of a program you spawn a background process running Python. That process listens for command requests on
a pipe, socket, etc. You send the current command’s arguments, environment variables, other state, etc to the back-
ground process. It uses its Python interpreter to execute the command and send results back to the main process. On
the 2nd invocation of your program, the Python process/interpreter is already running and meaningful Python code
can be executed immediately, without waiting for the Python interpreter and your application code to initialize.

This approach is used by the Mercurial version control tool, for example, where it can shave dozens of milliseconds
off of hg command service times.

PyOxidizer could potentially support command servers as a built-in feature for any Python application.

9.4.7 PyO3

PyO3 are alternate Rust bindings to Python from rust-cpython, which is what pyembed currently uses.

The PyO3 bindings seem to be ergonomically better than rust-cpython. PyOxidizer may switch to PyO3 someday.
A hard blocker is that as of at least June 2019, PyO3 requires Nightly Rust. We do not wish to make Nightly Rust a
requirement to run PyOxidizer.
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CHAPTER 10

Comparisons to Other Tools

What makes PyOxidizer different from other Python packaging and distribution tools? Read on to find out!

If you are curious why PyOxidizer’s creator felt the need to create a new tool, see Why Build Another Python Applica-
tion Packaging Tool? in the FAQ.

Important: It is important for Python application maintainers to make informed decisions about their use of packag-
ing tools. If you feel the comparisons in this document are incomplete or unfair, please file an issue so this page can
be improved.

10.1 PyInstaller

PyInstaller is a tool to convert regular python scripts to “standalone” executables. The standard packaging produces
a tiny executable and a custom directory structure to host dynamic libraries and Python code (zipped compiled byte-
code). PyInstaller can produce a self-contained executable file containing your application, however, at run-time,
PyInstaller will extract binary files and a custom ZlibArchive to a temporary directory then import modules from the
filesystem. PyOxidizer typically skips this step and loads modules directly from memory using zero-copy. This
makes PyOxidizer executables significantly faster to start.

Currently a big difference is that PyOxidizer needs to build all the binary dependencies from scratch to facilitate
linking into single file, PyInstaller can work with normal Python packages with a complex system of hooks to
find the runtime dependencies, this allow a lot of not easy to build packages like PyQt to work out of the box.

10.2 py2exe

py2exe is a tool for converting Python scripts into Windows programs, able to run without requiring an installation.

The goals of py2exe and PyOxidizer are conceptually very similar.
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One major difference between the two is that py2exe works on just Windows whereas PyOxidizer works on
multiple platforms.

One trick that py2exe employs is that it can load libpython and Python extension modules (which are actually dy-
namic link libraries) and other libraries from memory - not filesystem files. They employ a really clever hack to do this!
This is similar in nature to what Google does internally with a custom build of glibc providing a dlopen_from_offset().
Essentially, py2exe embeds DLLs and other entities as resources in the PE file (the binary executable format for
Windows) and is capable of loading them from memory. This allows py2exe to run things from a single binary, just
like PyOxidizer! The main difference is py2exe relies on clever DLL loading tricks rather than PyOxidizer’s
approach of using custom builds of Python (which exist as a single binary/library) to facilitate this. This is a really
clever solution and py2exe’s authors deserve commendation for pulling this off!

The approach to packaging that py2exe and PyOxidizer take is substantially different. py2exe embeds itself into
setup.py as a distutils extension. PyOxidizer wants to exist at a higher level and interact with the output
of setup.py rather than get involved in the convoluted mess of distutils internals. This enables PyOxidizer
to provide value beyond what setup.py/distutils can provide.

py2exe is a mature Python packaging/distribution tool for Windows. It offers a lot of similar functionality to
PyOxidizer.

10.3 py2app

py2app is a setuptools command which will allow you to make standalone application bundles and plugins from
Python scripts.

py2app only works on macOS. This makes it like a macOS version of py2exe. Most comparisons to py2exe are
analogous for py2app.

10.4 cx_Freeze

cx_Freeze is a set of scripts and modules for freezing Python scripts into executables.

The goals of cx_Freeze and PyOxidizer are conceptually very similar.

Like other tools in the produce executables space, cx_Freeze packages Python traditionally. On Windows, this
entails shipping a pythonXY.dll. cx_Freeze will also package dependent libraries found by binaries you are
shipping. This introduces portability problems, especially on Linux.

PyOxidizer uses custom Python distributions that are built in such a way that they are highly portable across
machines. PyOxidizer can also produce single file executables.

10.5 Shiv

Shiv is a packager for zip file based Python applications. The Python interpreter has built-in support for running
self-contained Python applications that are distributed as zip files.

Shiv requires the target system to have a Python executable and for the target to support shebangs in executable
files. This is acceptable for controlled *NIX environments. It isn’t acceptable for Windows (which doesn’t support
shebangs) nor for environments where you can’t guarantee an appropriate Python executable is available.

Also, by distributing our own Python interpreter with the application, PyOxidizer has stronger guarantees about the
run-time environment. For example, your application can aggressively target the latest Python version. Another
benefit of distributing your own Python interpreter is you can run a Python interpreter with various optimizations,
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such as profile-guided optimization (PGO) and link-time optimization (LTO). You can also easily configure custom
memory allocators or tweak memory allocators for optimal performance.

10.6 PEX

PEX is a packager for zip file based Python applications. For purposes of comparison, PEX and Shiv have the same
properties. See Shiv for this comparison.

10.7 XAR

XAR requires the use of SquashFS. SquashFS requires Linux.

PyOxidizer is a target native executable and doesn’t require any special filesystems or other properties to run.

10.8 Docker / Running a Container

It is increasingly popular to distribute applications as self-contained container environments. e.g. Docker images. This
distribution mechanism is effective for Linux users.

PyOxidizer will almost certainly produce a smaller distribution than container-based applications. This is because
many container-based applications contain a lot of extra content that isn’t needed by the processes within.

PyOxidizer also doesn’t require a container execution environment. Not every user has the capability to run certain
container formats. However, nearly every user can run an executable.

At run time, PyOxidizer executes a native binary and doesn’t have to go through any additional execution layers.
Contrast this with Docker, which uses HTTP requests to create containers, set up temporary filesystems and networks
for the container, etc. Spawning a process in a new Docker container can take hundreds of milliseconds or more. This
overhead can be prohibitive for low latency applications like CLI tools. This overhead does not exist for PyOxidizer
executables.

10.9 Nuitka

Nuitka can compile Python programs to single executables. And the emphasis is on compile: Nuitka actually converts
Python to C and compiles that. Nuitka is effectively an alternate Python interpreter.

Nuitka is a cool project and purports to produce significant speed-ups compared to CPython!

Since Nuitka is effectively a new Python interpreter, there are risks to running Python in this environment. Some code
has dependencies on CPython behaviors. There may be subtle bugs are lacking features from Nuitka. However, Nuitka
supposedly supports every Python construct, so many applications should just work.

Given the performance benefits of Nuitka, it is a compelling alternative to PyOxidizer.

10.10 PyRun

PyRun can produce single file executables. The author isn’t sure how it works. PyRun doesn’t appear to support
modern Python versions. And it appears to require shared libraries (like bzip2) on the target system. PyOxidizer
supports the latest Python and doesn’t require shared libraries that aren’t in nearly every environment.
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10.11 pynsist

pynsist is a tool for building Windows installers for Python applications. pynsist is very similar in spirit to PyOxidizer.

A major difference between the projects is that pynsist focuses on solving the application distribution problem on Win-
dows where PyOxidizer aims to solve larger problems around Python application distribution, such as performance
optimization (via loading Python modules from memory instead of the filesystem).

PyOxidizer has yet to invest significantly into making producing distributable artifacts (such as Windows installers)
simple, so pynsist still has an advantage over PyOxidizer here.
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CHAPTER 11

Contributing to PyOxidizer

This page documents how to contribute to PyOxidizer.

11.1 As a User

PyOxidizer is currently a relative young project and could substantially benefit from reports from its users.

Try to package applications with PyOxidizer. If things break or are hard to learn, file an issue on GitHub.

You can also join the pyoxidizer-users mailing list to report your experience, get in touch with other users, etc.

11.2 As a Developer

If you would like to contribute to the code behind PyOxidizer, you can do so using a standard GitHub workflow
through the canonical project home at https://github.com/indygreg/PyOxidizer.

Please note that PyOxidizer’s maintainer can be quite busy from time to time. So please be patient. He will be patient
with you.

The documentation around how to hack on the PyOxidizer codebase is a bit lacking. Sorry for that!

The most important command for contributors to know how to run is cargo run --bin pyoxidizer. This
will compile the pyoxidizer executable program and run it. Use it like cargo run --bin pyoxidizer --
init ~/tmp/myapp to run pyoxidizer init ~/tmp/myapp for example. If you just run cargo build,
it will also build the pyapp project, which is an in-repo project that attempts to use PyOxidizer.

11.3 Financial Contributions

If you would like to thank the PyOxidizer maintainer via a financial contribution, you can do so on his Patreon or via
PayPal.
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Financial contributions of any amount are appreciated. Please do not feel obligated to donate money: only donate if
you are financially able and feel the maintainer deserves the reward for a job well done.
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CHAPTER 12

Project History

Work on PyOxidizer started in November 2018 by Gregory Szorc.

12.1 Blog Posts

• PyOxidizer 0.7 (2020-04-09)

• C Extension Support in PyOxidizer (2019-06-30)

• Building Standalone Python Applications with PyOxidizer (2019-06-24)

• PyOxidizer Support for Windows (2019-01-06)

• Faster In-Memory Python Module Importing (2018-12-28)

• Distributing Standalone Python Applications (2018-12-18)

12.2 Version History

12.2.1 0.7.0

Released April 9, 2020.

Backwards Compatibility Notes

• Packages imported from memory using PyOxidizer now set __path__ with a value formed by joining the
current executable’s path with the package name. This mimics the behavior of zipimport.

• Resolved Python resource names have changed behavior. See the note in the bug fixes section below.
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• The PythonDistribution.to_python_executable() Starlark method has added a
resources_policy named argument as its 2nd argument / 1st named argument. If you were affected by
this, you should add argument names to all arguments passed to this method.

• The default Rust project for built executables now builds executables such that dynamic symbols are exported
from the executable. This change is necessary in order to support executables loading Python extension modules,
which are shared libraries which need access to Python symbols defined in executables.

• The PythonResourceData Starlark type has been renamed to PythonPackageResource.

• The PythonDistribution.resources_data() Starlark method has been renamed to
PythonDistribution.package_resources().

• The PythonExecutable.to_embedded_data() Starlark method has been renamed to
PythonExecutable.to_embedded_resources().

• The PythonEmbeddedData Starlark type has been renamed to PythonEmbeddedResources.

• The format of Python resource data embedded in binaries has been completely rewritten. The separate modules
and resource data structures have been merged into a single data structure. Embedded resources data can now
express more primitives such as package distribution metadata and different bytecode optimization levels.

• The pyembed crate now has a dev dependency on the pyoxidizer crate in order to run tests.

Bug Fixes

• PyOxidizer’s importer now always sets __path__ on imported packages in accordance with Python’s stated
behavior (#51).

• The mechanism for resolving Python resource files from the filesystem has been rewritten. Before, it was possi-
ble for files like package/resources/foo.txt to be normalized to a (package, resource_name) tuple of
(package, resources.foo.txt), which was weird and not compatible with Python’s resource loading mechanism.
Resources in sub-directories should no longer encounter munging of directory separators to .. In the above
example, the resource path will now be expressed as (package, resources/foo.txt).

• Certain packaging actions are only performed once during building instead of twice. The user-visible impact of
this change is that some duplicate log messages no longer appear.

• Added a missing ) for add_python_resources() in auto-generated pyoxidizer.bzl files.

New Features

• Python resource scanning now recognizes *.dist-info and *.egg-info directories as package distri-
bution metadata. Files within these directories are exposed to Starlark as PythonPackageDistributionResource
instances. These resources can be added to the embedded resources payload and made available for load-
ing from memory or the filesystem, just like any other resource. The custom Python importer implements
get_distributions() and returns objects that expose package distribution files. However, functionality
of the returned distribution objects is not yet complete. See importlib.metadata Compatibility for details.

• The custom Python importer now implements get_data(path), allowing loading of resources from filesys-
tem paths (#139).

• The PythonDistribution.to_python_executable() Starlark method now accepts a
resources_policy argument to control a policy and default behavior for resources on the produced
executable. Using this argument, it is possible to control how resources should be materialized. For example,
you can specify that resources should be loaded from memory if supported and from the filesystem if not.
The argument can also be used to materialize the Python standard library on the filesystem, like how Python
distributions typically work.
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• Python resources can now be installed next to built binaries using the new Starlark functions
PythonExecutable.add_filesystem_relative_module_source(), PythonExecutable.
add_filesystem_relative_module_bytecode(), PythonExecutable.
add_filesystem_relative_package_resource(), PythonExecutable.
add_filesystem_relative_extension_module(), PythonExecutable.
add_filesystem_relative_python_resource(), PythonExecutable.
add_filesystem_relative_package_distribution_resource(), and
PythonExecutable.add_filesystem_relative_python_resources(). Unlike adding
Python resources to FileManifest instances, Python resources added this way have their metadata
serialized into the built executable. This allows the special Python module importer present in built binaries
to service the import request without going through Python’s default filesystem-based importer. Because
metadata for the file-based Python resources is frozen into the application, Python has to do far less work at
run-time to load resources, making operations faster. Resources loaded from the filesystem in this manner
have attributes like __file__, __cached__, and __path__ set, emulating behavior of the default Python
importer. The custom import now also implements the importlib.abc.ExecutionLoader interface.

• Windows binaries can now import extension modules defined as shared libraries (e.g. .pyd files) from memory.
PyOxidizer will detect .pyd files during packaging and embed them into the binary as resources. When the
module is imported, the extension module/shared library is loaded from memory and initialized. This feature
enables PyOxidizer to package pre-built extension modules (e.g. from Windows binary wheels published on
PyPI) while still maintaining the property of a (mostly) self-contained executable.

• Multiple bytecode optimization levels can now be embedded in binaries. Previously, it was only possible to
embed bytecode for a given module at a single optimization level.

• The default_python_distribution() Starlark function now accepts values standalone_static
and standalone_dynamic to specify a standalone distribution that is either statically or dynamically linked.

• Support for parsing version 4 of the PYTHON.json distribution descriptor present in standalone Python distri-
bution archives.

• Default Python distributions upgraded to CPython 3.7.7.

Other Relevant Changes

• The directory for downloaded Python distributions in the build directory now uses a truncated SHA-256 hash
instead of the full hash to help avoid path length limit issues (#224).

• The documentation for the pyembed crate has been moved out of the Sphinx documentation and into the Rust
crate itself. Rendered docs can be seen by following the Documentation link at https://crates.io/crates/pyembed
or by running cargo doc from a source checkout.

12.2.2 0.6.0

Released February 12, 2020.

Backwards Compatibility Notes

• The default_python_distribution() Starlark function now accepts a flavor argument denoting
the distribution flavor.

• The pyembed crate no longer includes the auto-generated default configuration file. Instead, it is consumed by
the application that instantiates a Python interpreter.

• Rust projects for the main executable now utilize and require a Cargo build script so metadata can be passed
from pyembed to the project that is consuming it.
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• The pyembed crate is no longer added to created Rust projects. Instead, the generated Cargo.toml will
reference a version of the pyembed crate identical to the PyOxidizer version currently running. Or if
pyoxidizer is running from a Git checkout of the canonical PyOxidizer Git repository, a local filesystem
path will be used.

• The fields of EmbeddedPythonConfig and pyembed::PythonConfig have been renamed and re-
ordered to align with Python 3.8’s config API naming. This was done for the Starlark type in version 0.5.
We have made similar changes to 0.6 so naming is consistent across the various types.

Bug Fixes

• Module names without a . are now properly recognized when scanning the filesystem for Python resources and
a package allow list is used (#223). Previously, if filtering scanned resources through an explicit list of allowed
packages, the top-level module/package without a dot in its full name would not be passed through the filter.

New Features

• The PythonDistribution() Starlark function now accepts a flavor argument to denote the distribution
type. This allows construction of alternate distribution types.

• The default_python_distribution() Starlark function now accepts a flavor argument which can
be set to windows_embeddable to return a distribution based on the zip file distributions published by the
official CPython project.

• The pyembed crate and generated Rust projects now have various build-mode-* feature flags to control
how build artifacts are built. See Rust Projects for more.

• The pyembed crate can now be built standalone, without being bound to a specific PyOxidizer configura-
tion.

• The register_target() Starlark function now accepts an optional default_build_script argu-
ment to define the default target when evaluating in Rust build script mode.

• The pyembed crate now builds against published cpython and python3-sys crates instead of a a specific
Git commit.

• Embedded Python interpreters can now be configured to run a file specified by a filename. See the run_file
argument of PythonInterpreterConfig(...).

Other Relevant Changes

• Rust internals have been overhauled to use traits to represent various types, namely Python distributions. The
goal is to allow different Python distribution flavors to implement different logic for building binaries.

• The pyembed crate’s build.rs has been tweaked so it can support calling out to pyoxidizer. It also no
longer has a build dependency on pyoxidizer.

12.2.3 0.5.1

Released January 26, 2020.
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Bug Fixes

• Fixed bad Starlark example for building black in docs.

• Remove resources attached to packages that don’t exist. (This was a regression in 0.5.)

• Warn on failure to annotate a package. (This was a regression in 0.5.)

• Building embedded Python resources now emits warnings when __file__ is seen. (This was a regression in
0.5.)

• Missing parent packages are now automatically added when constructing embedded resources. (This was a
regression in 0.5.)

12.2.4 0.5.0

Released January 26, 2020.

General Notes

This release of PyOxidizer is significant rewrite of the previous version. The impetus for the rewrite is to transition
from TOML to Starlark configuration files. The new configuration file format should allow vastly greater flexibility
for building applications and will unlock a world of new possibilities.

The transition to Starlark configuration files represented a shift from static configuration to something more dynamic.
This required refactoring a ton of code.

As part of refactoring code, we took the opportunity to shore up lots of the code base. PyOxidizer was the project
author’s first real Rust project and a lot of bad practices (such as use of .unwrap()/panics) were prevalent. The code
mostly now has proper error handling. Another new addition to the code is unit tests. While coverage still isn’t great,
we now have tests performing meaningful packaging activities. So regressions should hopefully be less common going
forward.

Because of the scale of the rewritten code in this release, it is expected that there are tons of bugs of regressions. This
will likely be a transitional release with a more robust release to follow.

Backwards Compatibility Notes

• Support for building distributions/installers has been temporarily dropped.

• Support for installing license files has been temporarily dropped.

• Python interpreter configuration setting names have been changed to reflect names from Python 3.8’s interpreter
initialization API.

• .egg-info directories are now ignored when scanning for Python resources on the filesystem (matching the
behavior for .dist-info directories).

• The pyoxidizer init sub-command has been renamed to init-rust-project.

• The pyoxidizer app-path sub-command has been removed.

• Support for building distributions has been removed.

• The minimum Rust version to build has been increased from 1.31 to 1.36. This is mainly due to requirements
from the starlark crate. We could potentially reduce the minimum version requirements again with minimal
changes to 3rd party crates.
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• PyOxidizer configuration files are now Starlark instead of TOML files. The default file name is pyoxidizer.
bzl instead of pyoxidizer.toml. All existing configuration files will need to be ported to the new format.

Bug Fixes

• The repl run mode now properly exits with a non-zero exit code if an error occurs.

• Compiled C extensions now properly honor the ext_package argument passed to setup(), resulting in
extensions which properly have the package name in their extension name (#26).

New Features

• A glob(include, exclude=None, strip_prefix=None) function has been added to config files to allow referencing
existing files on the filesystem.

• The in-memory MetaPathFinder now implements find_module().

• A pyoxidizer init-config-file command has been implemented to create just a pyoxidizer.
bzl configuration file.

• A pyoxidizer python-distribution-info command has been implemented to print information
about a Python distribution archive.

• The EmbeddedPythonConfig() config function now accepts a legacy_windows_stdio argument to
control the value of Py_LegacyWindowsStdioFlag (#190).

• The EmbeddedPythonConfig() config function now accepts a legacy_windows_fs_encoding ar-
gument to control the value of Py_LegacyWindowsFSEncodingFlag.

• The EmbeddedPythonConfig() config function now accepts an isolated argument to control the value
of Py_IsolatedFlag.

• The EmbeddedPythonConfig() config function now accepts a use_hash_seed argument to control the
value of Py_HashRandomizationFlag.

• The EmbeddedPythonConfig() config function now accepts an inspect argument to control the value
of Py_InspectFlag.

• The EmbeddedPythonConfig() config function now accepts an interactive argument to control the
value of Py_InteractiveFlag.

• The EmbeddedPythonConfig() config function now accepts a quiet argument to control the value of
Py_QuietFlag.

• The EmbeddedPythonConfig() config function now accepts a verbose argument to control the value of
Py_VerboseFlag.

• The EmbeddedPythonConfig() config function now accepts a parser_debug argument to control the
value of Py_DebugFlag.

• The EmbeddedPythonConfig() config function now accepts a bytes_warning argument to control the
value of Py_BytesWarningFlag.

• The Stdlib() packaging rule now now accepts an optional excludes list of modules to ignore. This is
useful for removing unnecessary Python packages such as distutils, pip, and ensurepip.

• The PipRequirementsFile() and PipInstallSimple() packaging rules now accept an optional
extra_env dict of extra environment variables to set when invoking pip install.

• The PipRequirementsFile() packaging rule now accepts an optional extra_args list of extra com-
mand line arguments to pass to pip install.
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Other Relevant Changes

• PyOxidizer no longer requires a forked version of the rust-cpython project (the python3-sys and
cpython crates. All changes required by PyOxidizer are now present in the official project.

12.2.5 0.4.0

Released October 27, 2019.

Backwards Compatibility Notes

• The setup-py-install packaging rule now has its package_path evaluated relative to the PyOxidizer
config file path rather than the current working directory.

Bug Fixes

• Windows now explicitly requires dynamic linking against msvcrt. Previously, this wasn’t explicit. And some-
times linking the final executable would result in unresolved symbol errors because the Windows Python dis-
tributions used external linkage of CRT symbols and for some reason Cargo wasn’t dynamically linking the
CRT.

• Read-only files in Python distributions are now made writable to avoid future permissions errors (#123).

• In-memory InspectLoader.get_source() implementation no longer errors due to passing a
memoryview to a function that can’t handle it (#134).

• In-memory ResourceReader now properly handles multiple resources (#128).

New Features

• Added an app-path command that prints the path to a packaged application. This command can be useful for
tools calling PyOxidizer, as it will emit the path containing the packaged files without forcing the caller to parse
command output.

• The setup-py-install packaging rule now has an excludes option that allows ignoring specific pack-
ages or modules.

• .py files installed into app-relative locations now have corresponding .pyc bytecode files written.

• The setup-py-install packaging rule now has an extra_global_arguments option to allow pass-
ing additional command line arguments to the setup.py invocation.

• Packaging rules that invoke pip or setup.pywill now set a PYOXIDIZER=1 environment variable so Python
code knows at packaging time whether it is running in the context of PyOxidizer.

• The setup-py-install packaging rule now has an extra_env option to allow passing additional envi-
ronment variables to setup.py invocations.

• [[embedded_python_config]] now supports a sys_frozen flag to control setting sys.frozen =
True.

• [[embedded_python_config]] now supports a sys_meipass flag to control setting sys._MEIPASS
= <exe directory>.

• Default Python distribution upgraded to 3.7.5 (from 3.7.4). Various dependency packages also upgraded to latest
versions.
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All Other Relevant Changes

• Built extension modules marked as app-relative are now embedded in the finaly binary rather than being ignored.

12.2.6 0.3.0

Released on August 16, 2019.

Backwards Compatibility Notes

• The pyembed::PythonConfig struct now has an additional extra_extension_modules field.

• The default musl Python distribution now uses LibreSSL instead of OpenSSL. This should hopefully be an
invisible change.

• Default Python distributions now use CPython 3.7.4 instead of 3.7.3.

• Applications are now built into directories named apps/<app_name>/<target>/<build_type> rather
than apps/<app_name>/<build_type>. This enables builds for multiple targets to coexist in an appli-
cation’s output directory.

• The program_name field from the [[embedded_python_config]] config section has been removed.
At run-time, the current executable’s path is always used when calling Py_SetProgramName().

• The format of embedded Python module data has changed. The pyembed crate and pyoxidizer versions
must match exactly or else the pyembed crate will likely crash at run-time when parsing module data.

Bug Fixes

• The libedit extension variant for the readline extension should now link on Linux. Before, attempting to
link a binary using this extension variant would result in missing symbol errors.

• The setup-py-install [[packaging_rule]] now performs actions to appease setuptools, thus
allowing installation of packages using setuptools to (hopefully) work without issue (#70).

• The virtualenv [[packaging_rule]] now properly finds the site-packages directory on Win-
dows (#83).

• The filter-include [[packaging_rule]] no longer requires both files and glob_files be
defined (#88).

• import ctypes now works on Windows (#61).

• The in-memory module importer now implements get_resource_reader() instead of
get_resource_loader(). (The CPython documentation steered us in the wrong direction -
https://bugs.python.org/issue37459.)

• The in-memory module importer now correctly populates __package__ in more cases than it did previously.
Before, whether a module was a package was derived from the presence of a foo.bar module. Now, a module
will be identified as a package if the file providing it is named __init__. This more closely matches the
behavior of Python’s filesystem based importer. (#53)

New Features

• The default Python distributions have been updated. Archives are generally about half the size from before.
Tcl/tk is included in the Linux and macOS distributions (but PyOxidizer doesn’t yet package the Tcl files).
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• Extra extension modules can now be registered with PythonConfig instances. This can be useful for having
the application embedding Python provide its own extension modules without having to go through Python build
mechanisms to integrate those extension modules into the Python executable parts.

• Built applications now have the ability to detect and use terminfo databases on the execution machine. This
allows applications to interact with terminals properly. (e.g. the backspace key will now work in interactive
pdb sessions). By default, applications on non-Windows platforms will look for terminfo databases at well-
known locations and attempt to load them.

• Default Python distributions now use CPython 3.7.4 instead of 3.7.3.

• A warning is now emitted when a Python source file contains __file__. This should help trace down modules
using __file__.

• Added 32-bit Windows distribution.

• New pyoxidizer distribution command for producing distributable artifacts of applications. Cur-
rently supports building tar archives and .msi and .exe installers using the WiX Toolset.

• Libraries required by C extensions are now passed into the linker as library dependencies. This should allow C
extensions linked against libraries to be embedded into produced executables.

• pyoxidizer --verbose will now pass verbose to invoked pip and setup.py scripts. This can help
debug what Python packaging tools are doing.

All Other Relevant Changes

• The list of modules being added by the Python standard library is no longer printed during rule execution unless
--verbose is used. The output was excessive and usually not very informative.

12.2.7 0.2.0

Released on June 30, 2019.

Backwards Compatibility Notes

• Applications are now built into an apps/<appname>/(debug|release) directory instead of apps/
<appname>. This allows debug and release builds to exist side-by-side.

Bug Fixes

• Extracted .egg directories in Python package directories should now have their resources detected properly
and not as Python packages with the name *.egg.

• site-packages directories are now recognized as Python resource package roots and no longer have their
contents packaged under a site-packages Python package.

New Features

• Support for building and embedding C extensions on Windows, Linux, and macOS in many circumstances. See
Native Extension Modules for support status.

• pyoxidizer init now accepts a --pip-install option to pre-configure generated pyoxidizer.
toml files with packages to install via pip. Combined with the --python-code option, it is now possible
to create pyoxidizer.toml files for a ready-to-use Python application!
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• pyoxidizer now accepts a --verbose flag to make operations more verbose. Various low-level output is
no longer printed by default and requires --verbose to see.

All Other Relevant Changes

• Packaging now automatically creates empty modules for missing parent packages. This prevents a module from
being packaged without its parent. This could occur with namespace packages, for example.

• pip-install-simple rule now passes --no-binary :all: to pip.

• Cargo packages updated to latest versions.

12.2.8 0.1.3

Released on June 29, 2019.

Bug Fixes

• Fix Python refcounting bug involving call to PyImport_AddModule() when mode = module evaluation
mode is used. The bug would likely lead to a segfault when destroying the Python interpreter. (#31)

• Various functionality will no longer fail when running pyoxidizer from a Git repository that isn’t the canon-
ical PyOxidizer repository. (#34)

New Features

• pyoxidizer init now accepts a --python-code option to control which Python code is evaluated in
the produced executable. This can be used to create applications that do not run a Python REPL by default.

• pip-install-simple packaging rule now supports excludes for excluding resources from packaging.
(#21)

• pip-install-simple packaging rule now supports extra_args for adding parameters to the pip install
command. (#42)

All Relevant Changes

• Minimum Rust version decreased to 1.31 (the first Rust 2018 release). (#24)

• Added CI powered by Azure Pipelines. (#45)

• Comments in auto-generated pyoxidizer.toml have been tweaked to improve understanding. (#29)

12.2.9 0.1.2

Released on June 25, 2019.

Bug Fixes

• Honor HTTP_PROXY and HTTPS_PROXY environment variables when downloading Python distributions.
(#15)

• Handle BOM when compiling Python source files to bytecode. (#13)
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All Relevant Changes

• pyoxidizer now verifies the minimum Rust version meets requirements before building.

12.2.10 0.1.1

Released on June 24, 2019.

Bug Fixes

• pyoxidizer binaries built from crates should now properly refer to an appropriate commit/tag in PyOxidizer’s
canonical Git repository in auto-generated Cargo.toml files. (#11)

12.2.11 0.1

Released on June 24, 2019. This is the initial formal release of PyOxidizer. The first pyoxidizer crate was
published to crates.io.

New Features

• Support for building standalone, single file executables embedding Python for 64-bit Windows, macOS, and
Linux.

• Support for importing Python modules from memory using zero-copy.

• Basic Python packaging support.

• Support for jemalloc as Python’s memory allocator.

• pyoxidizer CLI command with basic support for managing project lifecycle.
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CHAPTER 13

Technical Notes

13.1 CPython Initialization

Most code lives in pylifecycle.c.

Call tree with Python 3.7:

``Py_Initialize()``
``Py_InitializeEx()``
``_Py_InitializeFromConfig(_PyCoreConfig config)``

``_Py_InitializeCore(PyInterpreterState, _PyCoreConfig)``
Sets up allocators.
``_Py_InitializeCore_impl(PyInterpreterState, _PyCoreConfig)``
Does most of the initialization.
Runtime, new interpreter state, thread state, GIL, built-in types,
Initializes sys module and sets up sys.modules.
Initializes builtins module.
``_PyImport_Init()``

Copies ``interp->builtins`` to ``interp->builtins_copy``.
``_PyImportHooks_Init()``

Sets up ``sys.meta_path``, ``sys.path_importer_cache``,
``sys.path_hooks`` to empty data structures.

``initimport()``
``PyImport_ImportFrozenModule("_frozen_importlib")``
``PyImport_AddModule("_frozen_importlib")``
``interp->importlib = importlib``
``interp->import_func = interp->builtins.__import__``
``PyInit__imp()``
Initializes ``_imp`` module, which is implemented in C.

``sys.modules["_imp"} = imp``
``importlib._install(sys, _imp)``
``_PyImportZip_Init()``

``_Py_InitializeMainInterpreter(interp, _PyMainInterpreterConfig)``

(continues on next page)
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(continued from previous page)

``_PySys_EndInit()``
``sys.path = XXX``
``sys.executable = XXX``
``sys.prefix = XXX``
``sys.base_prefix = XXX``
``sys.exec_prefix = XXX``
``sys.base_exec_prefix = XXX``
``sys.argv = XXX``
``sys.warnoptions = XXX``
``sys._xoptions = XXX``
``sys.flags = XXX``
``sys.dont_write_bytecode = XXX``

``initexternalimport()``
``interp->importlib._install_external_importers()``

``initfsencoding()``
``_PyCodec_Lookup(Py_FilesystemDefaultEncoding)``
``_PyCodecRegistry_Init()``
``interp->codec_search_path = []``
``interp->codec_search_cache = {}``
``interp->codec_error_registry = {}``
# This is the first non-frozen import during startup.
``PyImport_ImportModuleNoBlock("encodings")``

``interp->codec_search_cache[codec_name]``
``for p in interp->codec_search_path: p[codec_name]``

``initsigs()``
``add_main_module()``
``PyImport_AddModule("__main__")``

``init_sys_streams()``
``PyImport_ImportModule("encodings.utf_8")``
``PyImport_ImportModule("encodings.latin_1")``
``PyImport_ImportModule("io")``
Consults ``PYTHONIOENCODING`` and gets encoding and error mode.
Sets up ``sys.__stdin__``, ``sys.__stdout__``, ``sys.__stderr__``.

Sets warning options.
Sets ``_PyRuntime.initialized``, which is what ``Py_IsInitialized()``
returns.
``initsite()``
``PyImport_ImportModule("site")``

13.2 CPython Importing Mechanism

Lib/importlib defines importing mechanisms and is 100% Python.

Programs/_freeze_importlib.c is a program that takes a path to an input .py file and path to output .h
file. It initializes a Python interpreter and compiles the .py file to marshalled bytecode. It writes out a .h file with an
inline const unsigned char _Py_M__importlib array containing bytecode.

Lib/importlib/_bootstrap_external.py compiled to Python/importlib_external.h with
_Py_M__importlib_external[].

Lib/importlib/_bootstrap.py compiled to Python/importlib.h with _Py_M__importlib[].

Python/frozen.c has _PyImport_FrozenModules[] effectively mapping _frozen_importlib
to importlib._bootstrap and _frozen_importlib_external to importlib.
_bootstrap_external.
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initimport() calls PyImport_ImportFrozenModule("_frozen_importlib"), effectively import
importlib._bootstrap. Module import doesn’t appear to have meaningful side-effects.

importlib._bootstrap.__import__ is installed as interp->import_func.

C implemented _imp module is initialized.

importlib._bootstrap._install(sys, _imp is called. Calls _setup(sys, _imp) and adds
BuiltinImporter and FrozenImporter to sys.meta_path.

_setup() defines globals _imp and sys. Populates __name__, __loader__, __package__, __spec__,
__path__, __file__, __cached__ on all sys.modules entries. Also loads builtins _thread, _warnings,
and _weakref.

Later during interpreter initialization, initexternal() effectively calls importlib._bootstrap.
_install_external_importers(). This runs import _frozen_importlib_external, which is
effectively import importlib._bootstrap_external. This module handle is aliased to importlib.
_bootstrap._bootstrap_external.

importlib._bootstrap_external import doesn’t appear to have significant side-effects.

importlib._bootstrap_external._install() is called with a reference to importlib.
_bootstrap. _setup() is called.

importlib._bootstrap._setup() imports builtins _io, _warnings, _builtins, marshal. Either
posix or nt imported depending on OS. Various module-level attributes set defining run-time environment. This
includes _winreg. SOURCE_SUFFIXES and EXTENSION_SUFFIXES are updated accordingly.

importlib._bootstrap._get_supported_file_loaders() returns various loaders.
ExtensionFileLoader configured from _imp.extension_suffixes(). SourceFileLoader
configured from SOURCE_SUFFIXES. SourcelessFileLoader configured from BYTECODE_SUFFIXES.

FileFinder.path_hook() called with all loaders and result added to sys.path_hooks. PathFinder
added to sys.meta_path.

13.2. CPython Importing Mechanism 107



PyOxidizer, Release 0.7.0

13.3 sys.modules After Interpreter Init

Module Type Source
__main__ add_main_module()
_abc builtin abc
_codecs builtin initfsencoding()
_frozen_importlib frozen initimport()
_frozen_importlib_external frozen initexternal()
_imp builtin initimport()
_io builtin importlib._bootstrap._setup()
_signal builtin initsigs()
_thread builtin importlib._bootstrap._setup()
_warnings builtin importlib._bootstrap._setup()
_weakref builtin importlib._bootstrap._setup()
_winreg builtin importlib._bootstrap._setup()
abc py
builtins builtin _Py_InitializeCore_impl()
codecs py encodings via initfsencoding()
encodings py initfsencoding()
encodings.aliases py encodings
encodings.latin_1 py init_sys_streams()
encodings.utf_8 py init_sys_streams() + initfsencoding()
io py init_sys_streams()
marshal builtin importlib._bootstrap._setup()
nt builtin importlib._bootstrap._setup()
posix builtin importlib._bootstrap._setup()
readline builtin
sys builtin _Py_InitializeCore_impl()
zipimport builtin initimport()

13.4 Modules Imported by site.py

_collections_abc _sitebuiltins _stat atexit genericpath os os.path posixpath
rlcompleter site stat

13.5 Random Notes

Frozen importer iterates an array looking for module names. On each item, it calls
_PyUnicode_EqualToASCIIString(), which verifies the search name is ASCII. Performing an O(n)
scan for every frozen module if there are a large number of frozen modules could contribute performance overhead.
A better frozen importer would use a map/hash/dict for lookups. This //may// require CPython API breakages, as the
PyImport_FrozenModules data structure is documented as part of the public API and its value could be updated
dynamically at run-time.

importlib._bootstrap cannot call import because the global import hook isn’t registered until after
initimport().

importlib._bootstrap_external is the best place to monkeypatch because of the limited run-time function-
ality available during importlib._bootstrap.
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It’s a bit wonky that Py_Initialize()will import modules from the standard library and it doesn’t appear possible
to disable this. If site.py is disabled, non-extension builtins are limited to codecs, encodings, abc, and
whatever encodings.* modules are needed by initfsencoding() and init_sys_streams().

An attempt was made to freeze the set of standard library modules loaded during initialization. However, the built-
in extension importer doesn’t set all of the module attributes that are expected of the modules system. The from
. import aliases in encodings/__init__.py is confused without these attributes. And relative imports
seemed to have issues as well. One would think it would be possible to run an embedded interpreter with all standard
library modules frozen, but this doesn’t work.

13.6 Desired Changes from Python to Aid PyOxidizer

As part of implementing PyOxidizer, we’ve encountered numerous shortcomings in Python that have made implemen-
tation more difficult. This section attempts to capture those along with our desired outcomes.

13.6.1 General Lack of Clear Specifications

PyOxidizer has had to implement a lot of low-level functionality, notably around interpreter initialization and mod-
ule/resource importing. We have also had to reinvent aspects of packaging so it can be performed in Rust.

Various Python functionality is not defined in specifications. Rather, it is defined by PEPs plus implementations in
code. And when there are PEPs, often there isn’t a single PEP outlining the clear current state of the world: many
PEPs are stated like builds on top of PEP XYZ. Often the only canonical source of how something works is the
implementation in code. And when there are questions for clarification, it isn’t clear whether code or a PEP is wrong
because oftentimes there isn’t a single PEP that is the canonical source of truth.

It would be highly preferred for Python to publish clear specifications for how various mechanisms work. A PEP
would be a diff to a specification (possibly creating a new specification) and a discussion around it. That way there
would be a clear specification that can be consulted as the source of truth for how things should behave.

13.6.2 __file__ Ambiguity

It isn’t clear whether __file__ is actually required and what all is derived from existence of __file__. It also
isn’t clear what __file__ should be set to if it wouldn’t be a concrete filesystem path. Can __file__ be virtual?
Can it refer to a binary/archive containing the module?

Semantics of __file__ need more clarification.

13.6.3 importlib.metadata Documentation Deficiencies

See https://bugs.python.org/issue38594.

13.6.4 importlib Resources Directory Ambiguity

See https://bugs.python.org/issue36128, https://gitlab.com/python-devs/importlib_resources/issues/58, and https://
gitlab.com/python-devs/importlib_resources/-/issues/90.
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13.6.5 Standardizing a Python Distribution Format

PyOxidizer consumes Python distributions and repackages them. e.g. it takes an archive containing a Python exe-
cutable, standard library, support libraries, etc and transforms them into new binaries or distributable artifacts.

There is no standard for representing a Python distribution. This is something that PyOxidizer has had to invent itself
via the python-build-standalone project and its PYTHON.json files.

Should Python have a standardized way of describing Python distribution archives and should CPython distribute said
distributions, it would make PyOxidizer largely agnostic of the distributor flavor being consumed and allow PyOxidizer
(and other Python packaging tools) to more easily target other distribution flavors. e.g. you could swap out CPython
for PyPy and tooling largely wouldn’t care.

13.6.6 Ability to Install Meta Path Importers Before Py_Initialize()

Py_Initialize() will import some standard library modules during its execution. It does so using the default
meta path importers available to the distribution. This means that standard library modules must come from the
filesystem (PathImporter), frozen modules, built-in extension modules, or zip files (via PathImporter).

This restriction prevents importing the entirety of the standard library from the binary containing Python, in effect
preventing the use of self-contained executables. PyOxidizer works around this by patching the importlib.
_bootstrap and importlib._bootstrap_external source code, compiling that to bytecode, and making
said bytecode available as a frozen module. The patched code (which runs as part of Py_Initialize()) installs a
sys.meta_path importer which imports modules from memory. This solution is extremely hacky, but is necessary
to achieve single file executables with all imports serviced from memory.

In order for this to work, PyOxidizer needs a copy of these importlib modules so it can patch them and compile
them to bytecode. This is problematic in some cases because e.g. the Windows embeddable Python distributions ship
only the bytecode of these modules in a pythonXY.zip file. So PyOxidizer needs to find the source code from
another location when consuming these distributions.

But patching the importlib bootstrap modules is hacky itself. It would be better if PyOxidizer didn’t need to do
this at all. This could be achieved by splitting up the interpreter initialization APIs to give embedding applications
the opportunity to muck with sys.meta_path before any import is performed. It could also be achieved by
introducing an initialization config option to somehow inject code at the right point during startup to register the
sys.meta_path importer. This could be done by importing a named module (presumably serviced by the frozen or
built-in importer) and having that module run code to modify sys.meta_path as a side-effect of module evaluation
at import time. A variation would be to define a callable in said module to call after the module is importer. Whatever
the solution, there needs to be a way to somehow inject a sys.meta_path importer before any import not serviced
by the frozen or built-in importers is performed.

13.6.7 Lacking Support for Statically Linked Builds

Python really wants you to be using shared libraries for libpython and extension modules seem to strongly insist
on this.

On Windows, there is no official Visual Studio project configuration for static builds. Actually achieving one requires
a lot of hacks to the build system (see python-build-standalone project).

There is ~0 support for building statically linked extension modules in packaging tools, from the build step itself all
the way up to distribution. (PyOxidizer’s approach is to hack distutils to record and save the object files that were
compiled and then PyOxidizer manually links these object files into the final binary.)

To achieve a statically linked executable containing libpython and extension modules, you effectively need to build
everything from source. And if you want to distribute that executable, you often need to build with special toolchains
to ensure binary portability.
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There is tons of room for Python to better support static linking. A possible good place to start would be for packaging
tools to support building extension modules which don’t rely on a dynamic libpython. If artifacts containing the
raw object files designed for static linking were made available on PyPI, PyOxidizer could download pre-built binaries
and link them directly into an executable or custom libpython. This would avoid having to recompile said extension
modules at repackaging time. The compatibility guarantees would likely look a lot like existing binary wheels.

On a related front, it would be nice if musl libc based binary wheels were standardized. There are some concerns
about the performance and compatibility of musl libc when it comes to Python. But musl libc is a valid deploy target
nonetheless and it would be nice if Python officially supported it. (FWIW the performance concerns seem to stem from
memory allocator performance and PyOxidizer supports using jemalloc as the allocator, bypassing this problem.)

13.6.8 Windows Embeddable Distributions Missing Functionality

The Windows embeddable zip file distributions of CPython are missing certain functionality.

The distributions do not contain source code for Python modules in the standard library. This means PyOxidizer can’t
easily bundle sources from these distributions.

The ensurepip module is not present in the distribution. So there is no way to install pip using the distribution
itself.

The venv module is also not present in the distribution. So there’s no way to create virtualenvs using the distribution
itself.

The Python C development headers are not part of the distribution, so even if you install packaging tools, you can’t
build C extensions.
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