

    
      
          
            
  
PyOxidizer

PyOxidizer is a utility that aims to solve the problem of how
to distribute Python applications. See Overview for more or
dive into Getting Started to learn how to start using
PyOxidizer.

The official home of the PyOxidizer project is
https://github.com/indygreg/PyOxidizer. Official documentation lives
at Read The Docs
(unreleased/latest commit [https://pyoxidizer.readthedocs.io/en/latest/index.html],
last release [https://pyoxidizer.readthedocs.io/en/stable/index.html]).

The pyoxidizer-users [https://groups.google.com/forum/#!forum/pyoxidizer-users]
mailing list is a forum for users to discuss all things PyOxidizer.

If you want to financially contribute to PyOxidizer, do so
on Patreon [https://www.patreon.com/indygreg] or
via PayPal [https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=gregory%2eszorc%40gmail%2ecom&lc=US&item_name=PyOxidizer&currency_code=USD&bn=PP%2dDonationsBF%3abtn_donate_LG%2egif%3aNonHosted].

The creator and maintainer of PyOxidizer is
Gregory Szorc [https://gregoryszorc.com/].
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Overview

From a very high level, PyOxidizer is a tool for packaging and
distributing Python applications. The over-arching goal of PyOxidizer
is to make this (often complex) problem space simple so application
maintainers can focus on building quality applications instead of
toiling with build systems and packaging tools.

On a lower, more technical level, PyOxidizer has a command line
tool - pyoxidizer - that is capable of building binaries (executables
or libraries) that embed a fully-functional Python interpreter plus
Python extensions and modules in a single binary. Binaries produced
with PyOxidizer are highly portable and can work on nearly every
system without any special requirements like containers, FUSE filesystems,
or even temporary directory access. On Linux, PyOxidizer can
produce executables that are fully statically linked and don’t even
support dynamic loading.

The Oxidizer part of the name comes from Rust: binaries built with
PyOxidizer are compiled from Rust and Rust code is responsible for
managing the embedded Python interpreter and all its operations. But the
existence of Rust should be invisible to many users, much like the fact
that CPython (the official Python distribution available from www.python.org)
is implemented in C. Rust is simply a tool to achieve an end goal (albeit
a rather effective and powerful tool).


Benefits of PyOxidizer

You may be wondering why you should use or care about PyOxidizer.
Great question!

Python application distribution is generally considered an unsolved
problem. At PyCon 2019, Russel Keith-Magee
identified code distribution [https://youtu.be/ftP5BQh1-YM?t=2033] as
a potential black swan for Python during a keynote talk. In their words,
Python hasn’t ever had a consistent story for how I give my code to someone
else, especially if that someone else isn’t a developer and just wants to
use my application. The over-arching goal of PyOxidizer is to solve this
problem. If we’re successful, we help Python become a more attractive
option in more domains and eliminate this potential black swan that
is an existential threat for Python’s longevity.

On a less existential level, there are several benefits to PyOxidizer.


Ease of Application Installation

Installing Python applications can be hard, especially if you aren’t a
developer.

Applications produced with PyOxidizer are self-contained - as small as
a single file executable. From the perspective of the end-user, they get
an executable containing an application that just works. There’s no need
to install a Python distribution on their system. There’s no need to
muck with installing Python packages. There’s no need to configure a
container runtime like Docker. There’s just an executable containing an
embedded Python interpreter and associated Python application code and
running that executable just works. From the perspective of the end-user,
your application is just another platform native executable.




Ease of Packaging and Distribution

Python application developers can spend a large amount of time
managing how their applications are packaged and distributed. There’s
no universal standard for distributing Python applications. Instead, there’s
a hodgepodge of random tools, typically different tools per operating
system.

Python application developers typically need to solve the packaging
and distribution problem N times. This is thankless work and sucks valuable
time away from what could otherwise be spent improving the application
itself. Furthermore, each distinct Python application tends to solve this
problem redundantly.

Again, the over-arching goal of PyOxidizer is to provide a comprehensive
solution to the Python application packaging and distribution problem space.
We want to make it as turn-key as possible for application maintainers to
make their applications usable by novice computer users. If we’re successful,
Python developers can spend less time solving packaging and distribution
problems and more time improving Python applications themselves. That’s
good for the Python ecosystem.






Components

The most visible component of PyOxidizer is the pyoxidizer command
line tool. This tool contains functionality for creating new projects using
PyOxidizer, adding PyOxidizer to existing projects, producing
binaries containing a Python interpreter, and various related functionality.

The pyoxidizer executable is written in Rust. Behind that tool is a pile
of Rust code performing all the functionality exposed by the tool. That code
is conveniently also made available as a library, so anyone wanting to
integrate PyOxidizer’s core functionality without using our pyoxidizer
tool is able to do so.

The pyoxidizer crate and command line tool are effectively glorified build
tools: they simply help with various project management, build, and packaging.

The run-time component of PyOxidizer is completely separate from the
build-time component. The run-time component of PyOxidizer consists of a
Rust crate named pyembed. The role of the pyembed crate is to manage an
embedded Python interpreter. This crate contains all the code needed to
interact with the CPython APIs to create and run a Python interpreter.
pyembed also contains the special functionality required to import
Python modules from memory using zero-copy.




How It Works

The pyoxidizer tool is used to create a new project or add PyOxidizer
to an existing (Rust) project. This entails:


	Generating a boilerplate Rust source file to call into the pyembed crate
to run a Python interpreter.


	Generating a working pyoxidizer.bzl configuration file.


	Telling the project’s Rust build system about PyOxidizer.




When that project’s pyembed crate is built by Rust’s build system, it calls
out to PyOxidizer to process the active PyOxidizer configuration file.
PyOxidizer will obtain a specially-built Python distribution that is
optimized for embedding. It will then use this distribution to finish packaging
itself and any other Python dependencies indicated in the configuration file.
For example, you can process a pip requirements file at build time to include
additional Python packages in the produced binary.

At the end of this sausage grinder, PyOxidizer emits an archive library
containing Python (which can be linked into another library or executable)
and resource files containing Python data (such as Python module sources and
bytecode). Most importantly, PyOxidizer tells Rust’s build system how to
integrate these components into the binary it is building.

From here, Rust’s build system combines the standard Rust bits with the
files produced by PyOxidizer and turns everything into a binary,
typically an executable.

At run time, an instance of the OxidizedPythonInterpreterConfig struct from
the pyembed crate is created to define how an embedded Python interpreter
should behave. (One of the build-time actions performed by PyOxidizer is
to convert the Starlark configuration file into a default instance of this
struct.) This struct is used to instantiate a Python interpreter.

The pyembed crate implements a Python extension module which provides
custom module importing functionality. Light magic is used to coerce the
Python interpreter to load this module very early during initialization.
This allows the module to service Python import requests. The custom module
importer installed by pyembed supports retrieving data from a read-only
data structure embedded in the executable itself. Essentially, the Python
import request calls into some Rust code provided by pyembed and
Rust returns a void * to memory containing data (module source code,
bytecode, etc) that was generated at build time by PyOxidizer and later
embedded into the binary by Rust’s build system.

Once the embedded Python interpreter is initialized, the application works
just like any other Python application! The main differences are that modules
are (probably) getting imported from memory and that Rust - not the Python
distribution’s python executable logic - is driving execution of Python.

Read on to Getting Started to learn how to use PyOxidizer.







          

      

      

    

  

    
      
          
            
  
Getting Started


Python Requirements

PyOxidizer currently targets Python 3.8 or 3.9. Your Python application will
need to already be compatible with 1 of these versions for it to work with
PyOxidizer. See Why is Python 3.8 Required? for more on the minimum Python requirement.




Operating System Requirements

PyOxidizer itself is a Rust program and should theoretically be installable
on any environment that Rust supports.

However, PyOxidizer needs to run Python interpreters on the machine performing
build/packaging actions and the built binary needs to run a Python interpreter
for the target architecture and operating system. These Python interpreters
need to be built/packaged in a specific way so PyOxidizer can interact with
them.

See Available Python Distributions for the full list of
available Python distributions. The supported operating systems and
architectures are:


	Linux x86_64 (glibc 2.19 or musl linked)


	Windows 7+ x86 and x86_64


	macOS 10.9+ Intel x86_64







Installing


Installing Rust

PyOxidizer is a Rust application and requires Rust (1.41 or newer) to be
installed in order to build PyOxidizer itself as well as Python application
binaries.

You can verify your installed version of Rust by running:

$ rustc --version
rustc 1.46.0 (04488afe3 2020-08-24)





If you don’t have Rust installed, https://www.rust-lang.org/ has very detailed
instructions on how to install it.

Rust releases a new version every 6 weeks and language development moves
faster than other programming languages. It is common for the Rust packages
provided by common package managers to lag behind the latest Rust release by
several releases. For that reason, use of the rustup tool for managing
Rust is highly recommended.

If you are a security paranoid individual and don’t want to follow the
official rustup install instructions involving a curl | sh (your
paranoia is understood), you can find instructions for alternative installation
methods at https://github.com/rust-lang/rustup.rs/#other-installation-methods.




Other System Dependencies

You will need a working C compiler/toolchain in order to build some Rust
crates and their dependencies. If Rust cannot find a C compiler, it should
print a message at build time and give you instructions on how to install one.

There is a known issue with PyOxidizer on Fedora 30+ that will require you
to install the libxcrypt-compat package to avoid an error due to a missing
libcrypt.so.1 file. See https://github.com/indygreg/PyOxidizer/issues/89
for more info.




Installing PyOxidizer

PyOxidizer can be installed from its latest published crate:

$ cargo install pyoxidizer





From a Git repository using cargo:

# The latest commit in source control.
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --branch main pyoxidizer

$ A specific release
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --tag <TAG> pyoxidizer





Or by cloning the Git repository and building the project locally:

$ git clone https://github.com/indygreg/PyOxidizer.git
$ cd PyOxidizer
$ cargo install --path pyoxidizer






Note

PyOxidizer’s project policy is for the main branch to be stable. So it
should always be relatively safe to use main instead of a released
version.




Danger

A cargo build from the repository root directory will likely fail due
to how some of the Rust crates are configured.

See Using Cargo with PyOxidizer Source Checkouts for instructions on how to invoke
cargo.



Once the pyoxidizer executable is installed, try to run it:

$ pyoxidizer
PyOxidizer 0.8-pre
Gregory Szorc <gregory.szorc@gmail.com>
Build and distribute Python applications

USAGE:
    pyoxidizer [FLAGS] [SUBCOMMAND]

...





Congratulations, PyOxidizer is installed! Now let’s move on to using it.






High-Level Project Lifecycle

PyOxidizer exposes various functionality through the interaction
of pyoxidizer commands and configuration files.

The first step of any project is to create it. This is achieved
with a pyoxidizer init-* command to create files required by
PyOxidizer.

After that, various pyoxidizer commands can be used to evaluate
configuration files and perform actions from the evaluated file.
PyOxidizer provides functionality for building binaries, installing
files into a directory tree, and running the results of build actions.




Your First PyOxidizer Project

The pyoxidizer init-config-file command will create a new PyOxidizer
configuration file in a directory of your choosing:

$ pyoxidizer init-config-file pyapp





This should have printed out details on what happened and what to do next.
If you actually ran this in a terminal, hopefully you don’t need to continue
following the directions here as the printed instructions are sufficient!
But if you aren’t, keep reading.

The default configuration created by pyoxidizer init-config-file will
produce an executable that embeds Python and starts a Python REPL by default.
Let’s test that:

$ cd pyapp
$ pyoxidizer run
resolving 1 targets
resolving target exe
...
    Compiling pyapp v0.1.0 (/tmp/pyoxidizer.nv7QvpNPRgL5/pyapp)
     Finished dev [unoptimized + debuginfo] target(s) in 26.07s
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
>>>





If all goes according to plan, you just started a Rust executable which
started a Python interpreter, which started an interactive Python debugger!
Try typing in some Python code:

>>> print("hello, world")
hello, world





It works!

(To exit the REPL, press CTRL+d or CTRL+z.)

Continue reading The pyoxidizer Command Line Tool to learn more about the
pyoxidizer tool. Or read on for a preview of how to customize your
application’s behavior.




The pyoxidizer.bzl Configuration File

The most important file for a PyOxidizer project is the pyoxidizer.bzl
configuration file. This is a Starlark file evaluated in a context that
provides special functionality for PyOxidizer.

Starlark is a Python-like interpreted language and its syntax and semantics
should be familiar to any Python programmer.

From a high-level, PyOxidizer’s configuration files define named
targets, which are callable functions associated with a name - the
target - that resolve to an entity. For example, a configuration file
may define a build_exe() function which returns an object representing
a standalone executable file embedding Python. The pyoxidizer build
command can be used to evaluate just that target/function.

Target functions can call out to other target functions. For example, there
may be an install target that creates a set of files composing a full
application. Its function may evaluate the exe target to produce an
executable file.

See Configuration Files for comprehensive documentation of pyoxidizer.bzl
files and their semantics.




Customizing Python and Packaging Behavior

Embedding Python in a Rust executable and starting a REPL is cool and all.
But you probably want to do something more exciting.

The autogenerated pyoxidizer.bzl file created as part of running
pyoxidizer init-config-file defines how your application is configured
and built. It controls everything from what Python distribution to use,
which Python packages to install, how the embedded Python interpreter is
configured, and what code to run in that interpreter.

Open pyoxidizer.bzl in your favorite editor and find the commented lines
assigning to python_config.run_*. Let’s uncomment or add a line
to match the following:

python_config.run_code = "import uuid; print(uuid.uuid4())"





We’re now telling the interpreter to run the Python statement
eval(import uuid; print(uuid.uuid4()) when it starts. Test that out:

$ pyoxidizer run
...
   Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
    Finished dev [unoptimized + debuginfo] target(s) in 3.92s
     Running `target/debug/pyapp`
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
96f776c8-c32d-48d8-8c1c-aef8a735f535





It works!

This is still pretty trivial. But it demonstrates how the pyoxidizer.bzl
is used to influence the behavior of built executables.

Let’s do something a little bit more complicated, like package an existing
Python application!

Find the exe = dist.to_python_executable( line in the
pyoxidizer.bzl file. Let’s add a new line to make_exe() just
below where exe is assigned:

for resource in exe.pip_install(["pyflakes==2.2.0"]):
    resource.add_location = "in-memory"
    exe.add_python_resource(resource)





In addition, set the python_config.run_code attribute to execute pyflakes:

python_config.run_code = "from pyflakes.api import main; main()"





Now let’s try building and running the new configuration:

$ pyoxidizer run -- --help
...
   Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
    Finished dev [unoptimized + debuginfo] target(s) in 5.49s
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
Usage: pyapp [options]

Options:
  --version   show program's version number and exit
  -h, --help  show this help message and exit





You’ve just produced an executable for pyflakes!

There are far more powerful packaging and configuration settings available.
Read all about them at Configuration Files and Packaging User Guide. Or continue
on to The pyoxidizer Command Line Tool to learn more about the pyoxidizer tool.







          

      

      

    

  

    
      
          
            
  
The pyoxidizer Command Line Tool

The pyoxidizer command line tool is a frontend to the various
functionality of PyOxidizer. See Components for more
on the various components of PyOxidizer.


Creating New Projects with init-config-file

The pyoxidizer init-config-file command will create a new
pyoxidizer.bzl configuration file in the target directory:

$ pyoxidizer init-config-file pyapp





This should have printed out details on what happened and what to do next.




Creating New Rust Projects with init-rust-project

The pyoxidizer init-rust-project command creates a minimal
Rust project configured to build an application that runs an
embedded Python interpreter from a configuration defined in a
pyoxidizer.bzl configuration file. Run it by specifying the
directory to contain the new project:

$ pyoxidizer init-rust-project pyapp





This should have printed out details on what happened and what to do next.

The explicit creation of Rust projects to use PyOxidizer is not
required. If your produced binaries only need to perform actions
configurable via PyOxidizer configuration files (like running
some Python code), an explicit Rust project isn’t required, as
PyOxidizer can auto-generate a temporary Rust project at build time.

But if you want to supplement the behavior of the binaries built
with Rust, an explicit and persisted Rust project can facilitate that.
For example, you may want to run custom Rust code before, during, and
after a Python interpreter runs in the process.

See Rust Projects for more on the composition of Rust projects.




Adding PyOxidizer to an Existing Project with add

Do you have an existing Rust project that you want to add an embedded
Python interpreter to? PyOxidizer can help with that too! The
pyoxidizer add command can be used to add an embedded Python
interpreter to an existing Rust project. Simply give the directory
to a project containing a Cargo.toml file:

$ cargo init myrustapp
  Created binary (application) package
$ pyoxidizer add myrustapp





This will add required files and make required modifications to add
an embedded Python interpreter to the target project.


Important

It is highly recommended to have the destination project under version
control so you can see what changes are made by pyoxidizer add and
so you can undo any unwanted changes.




Danger

This command isn’t very well tested. And results have been known to be
wrong. If it doesn’t just work, you may want to run pyoxidizer init
and incorporate relevant files into your project manually. Sorry for
the inconvenience.






Building PyObject Projects with build

The pyoxidizer build command is probably the most important and used
pyoxidizer command. This command evaluates a pyoxidizer.bzl
configuration file by resolving targets in it.

By default, the default target in the configuration file is resolved.
However, callers can specify a list of explicit targets to resolve.
e.g.:

# Resolve the default target.
$ pyoxidizer build

# Resolve the "exe" and "install" targets, in that order.
$ pyoxidizer build exe install





PyOxidizer configuration files are effectively defining a build
system, hence the name build for the command to resolve targets
within.




Running the Result of Building with run

Target functions in PyOxidizer configuration files return objects
that may be runnable. For example, a
PythonExecutable returned by a target
function that defines a Python executable binary can be run by
executing a new process.

The pyoxidizer run command is used to attempt to run an object
returned by a build target. It is effectively pyoxidizer build followed
by running the returned object. e.g.:

# Run the default target.
$ pyoxidizer run

# Run the "install" target.
$ pyoxidizer run --target install








Analyzing Produced Binaries with analyze

The pyoxidizer analyze command is a generic command for analyzing the
contents of executables and libraries. While it is generic, its output is
specifically tailored for PyOxidizer.

Run the command with the path to an executable. For example:

$ pyoxidizer analyze build/apps/myapp/x86_64-unknown-linux-gnu/debug/myapp





Behavior is dependent on the format of the file being analyzed. But the
general theme is that the command attempts to identify the run-time
requirements for that binary. For example, for ELF binaries it will
list all shared library dependencies and analyze glibc symbol
versions and print out which Linux distributions it thinks the binary
is compatible with.


Note

pyoxidizer analyze is not yet implemented for all executable
file types that PyOxidizer supports.






Inspecting Python Distributions

PyOxidizer uses special pre-built Python distributions to build
binaries containing Python.

These Python distributions are zstandard compressed tar files. Zstandard
is a modern compression format that is really, really, really good.
(PyOxidizer’s maintainer also maintains
Python bindings to zstandard [https://github.com/indygreg/python-zstandard]
and has
written about the benefits of zstandard [https://gregoryszorc.com/blog/2017/03/07/better-compression-with-zstandard/]
on his blog. You should read that blog post so you are enlightened on
how amazing zstandard is.) But because zstandard is relatively new, not
all systems have utilities for decompressing that format yet. So, the
pyoxidizer python-distribution-extract command can be used to extract
the zstandard compressed tar archive to a local filesystem path.

Python distributions contain software governed by a number of licenses.
This of course has implications for application distribution. See
Licensing Considerations for more.

The pyoxidizer python-distribution-licenses command can be used to
inspect a Python distribution archive for information about its licenses.
The command will print information about the licensing of the Python
distribution itself along with a per-extension breakdown of which
libraries are used by which extensions and which licenses apply to what.
This command can be super useful to audit for license usage and only allow
extensions with licenses that you are legally comfortable with.

For example, the entry for the readline extension shows that the
extension links against the ncurses and readline libraries, which
are governed by the X11, and GPL-3.0 licenses:

readline
--------

Dependency: ncurses
Link Type: library

Dependency: readline
Link Type: library

Licenses: GPL-3.0, X11
License Info: https://spdx.org/licenses/GPL-3.0.html
License Info: https://spdx.org/licenses/X11.html






Note

The license annotations in Python distributions are best effort and
can be wrong. They do not constitute a legal promise. Paranoid
individuals may want to double check the license annotations by
verifying with source code distributions, for example.






Debugging Resource Scanning and Identification with find-resources

The pyoxidizer find-resources command can be used to scan for
resources in a given source and then print information on what’s found.

PyOxidizer’s packaging functionality scans directories and files and
classifies them as Python resources which can be operated on. See
Resource Types. PyOxidizer’s run-time importer/loader
(oxidized_importer Python Extension) works by reading a pre-built index of known
resources. This all works in contrast to how Python typically works,
which is to put a bunch of files in directories and let the built-in
importer/loader figure it out by dynamically probing for various files.

Because PyOxidizer has introduced structure where it doesn’t exist
in Python and because there are many subtle nuances with how files
are classified, there can be bugs in PyOxidizer’s resource scanning
code.

The pyoxidizer find-resources command exists to facilitate
debugging PyOxidizer’s resource scanning code.

Simply give the command a path to a directory or Python wheel archive
and it will tell you what it discovers. e.g.:

$ pyoxidizer find-resources dist/oxidized_importer-0.1-cp38-cp38-manylinux1_x86_64.whl
parsing dist/oxidized_importer-0.1-cp38-cp38-manylinux1_x86_64.whl as a wheel archive
PythonExtensionModule { name: oxidized_importer }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name: LICENSE }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name: WHEEL }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name: top_level.txt }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name: METADATA }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name: RECORD }





Or give it the path to a site-packages directory:

$ pyoxidizer find-resources ~/.pyenv/versions/3.8.6/lib/python3.8/site-packages
...





This command needs to use a Python distribution so it knows what file
extensions correspond to Python extensions, etc. By default, it will
download one of the
built-in distributions that is
compatible with the current machine and use that. You can specify a
--distributions-dir to use to cache downloaded distributions:

$ pyoxidizer find-resources --distributions-dir distributions /usr/lib/python3.8
...











          

      

      

    

  

    
      
          
            
  
Configuration Files

PyOxidizer uses Starlark [https://github.com/bazelbuild/starlark]
files to configure run-time behavior.

Starlark is a dialect of Python intended to be used as a configuration
language and the syntax should be familiar to any Python programmer.

This documentation section contains both a high-level overview of
the configuration files and their semantics as well as low-level
documentation for every type and function in the Starlark dialect.



	Automatic File Location Strategy

	Concepts
	Processing

	Targets

	Python Distributions Provide Python

	Python Executables Run Python

	Python Resources

	Specifying Resource Locations





	Resource Attributes Influencing Adding
	add_include

	add_location

	add_location_fallback
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Automatic File Location Strategy

If the PYOXIDIZER_CONFIG environment variable is set, the path specified
by this environment variable will be used as the location of the Starlark
configuration file.

If the OUT_DIR environment variable is set (we’re building from the
context of a Rust project), the ancestor directories will be searched for
a pyoxidizer.bzl file and the first one found will be used.

Otherwise, PyOxidizer will look for a pyoxidizer.bzl file starting in
either the current working directory or from the directory containing the
pyembed crate and then will traverse ancestor directories until a file is
found.

If no configuration file is found, an error occurs.





          

      

      

    

  

    
      
          
            
  
Concepts


Processing

A configuration file is evaluated in a custom Starlark dialect which
provides primitives used by PyOxidizer. This dialect provides some
well-defined global variables (defined in UPPERCASE) as well as some
types and functions that can be constructed and called. See
Global Symbols for a full list of what’s available to the
Starlark environment.

Since Starlark is effectively a subset of Python, executing a PyOxidizer
configuration file is effectively running a sandboxed Python script. It is
conceptually similar to running python setup.py to build a Python
package. As functions within the Starlark environment are called,
PyOxidizer will perform actions as described by those functions.




Targets

PyOxidizer configuration files are composed of functions registered
as named targets. You define a function that does something then
register it as a target by calling the
register_target() global function provided by our Starlark
dialect. e.g.:

def get_python_distribution():
    return default_python_distribution()

register_target("dist", get_python_distribution)





When a configuration file is evaluated, PyOxidizer attempts to
resolve an ordered list of targets This list of targets is either
specified by the end-user or is derived from the configuration file.
The first register_target() target or the last register_target()
call passing default=True is the default target.

When evaluated in Rust build script mode (typically via
pyoxidizer run-build-script), the default target will be the one
specified by the last register_target() call passing
default_build_script=True, or the default target if no target defines
itself as the default build script target.

PyOxidizer calls the registered target functions in order to
resolve the requested set of targets.

Target functions can depend on other targets and dependent target functions
will automatically be called and have their return value passed as an
argument to the target function depending on it. See
register_target() for more.

The value returned by a target function is special. Some types defined by
our Starlark dialect have special build or run behavior associated
with them. If you run pyoxidizer build or pyoxidizer run against
a target that returns one of these types, that behavior will be performed.

For example, if you return a PythonExecutable, the
build behavior is to produce that executable file and the run behavior
is to run that built executable.

See Types with Target Behavior for the full list of types
with registered target behaviors.




Python Distributions Provide Python

The PythonDistribution Starlark
type defines a Python distribution. A Python distribution is an entity
which contains a Python interpreter, Python standard library, and which
PyOxidizer knows how to consume and integrate into a new binary.

PythonDistribution instances are arguably the most important type
in configuration files because without them you can’t perform Python
packaging actions or construct binaries with Python embedded.

Instances of PythonDistribution are typically constructed from
default_python_distribution()
and are registered as their own target, since multiple targets may want
to reference the distribution instance:

def make_dist():
   return default_python_distribution()

register_target("dist", make_dist)








Python Executables Run Python

The PythonExecutable Starlark type
defines an executable file embedding Python. Instances of this type
are used to build an executable file (and possibly other files needed
by it) that contains an embedded Python interpreter and other resources
required by it.

Instances of PythonExecutable are derived from a PythonDistribution
instance via the
PythonDistribution.to_python_executable()
method. There is typically a standalone function/target in config files
for doing this.




Python Resources

At run-time, Python interpreters need to consult resources like Python
module source and bytecode as well as resource/data files. We refer to all
of these as Python Resources.

Configuration files represent Python Resources via the following types:


	PythonModuleSource


	PythonPackageResource


	PythonPackageDistributionResource


	PythonExtensionModule







Specifying Resource Locations

Various functionality relates to the concept of a resource location, or
where a resource should be loaded from at run-time. See
Managing How Resources are Added for more.

Resource locations are represented as strings in Starlark. The mapping
of strings to resource locations is as follows:


	in-memory

	Load the resource from memory.



	filesystem-relative:<prefix>

	Install and load the resource from a filesystem relative path to the
build binary. e.g. filesystem-relative:lib will place resources
in the lib/ directory next to the build binary.











          

      

      

    

  

    
      
          
            
  
Resource Attributes Influencing Adding

Individual Starlark values representing resources expose various
attributes prefixed with add_ which influence what happens when
that resource is added to a resource collector. These attributes are
derived from the PythonPackagingPolicy attached to
the entity creating the resource. But they can be modified by Starlark code
before the resource is added to a collection.

The following sections describe each attribute that influences
how the resource is added to a collection.


add_include

This bool attribute defines a yes/no filter for whether to actually
add this resource to a collection. If a resource with .add_include = False
is added to a collection, that add is processed as a no-op and no change
is made.




add_location

This string attributes defines the primary location this resource
should be added to and loaded from at run-time.

It can be set to the following values:


	in-memory

	The resource should be loaded from memory.

For Python modules and resource files, the module is loaded from
memory using 0-copy by the custom module importer.

For Python extension modules, the extension module may be statically
linked into the built binary or loaded as a shared library from
memory (the latter is not supported on all platforms).



	filesystem-relative:<prefix>

	The resource is materialized on the filesystem relative to the built
entity and loaded from the filesystem at run-time.

<prefix> here is a directory prefix to place the resource in.
. (e.g. filesystem-relative:.) can be used to denote the same
directory as the built entity.








add_location_fallback

This string or None value attribute is equivalent to
add_location except it only comes into play if the location
specified by add_location could not be satisfied.

Some resources (namely Python extension modules) cannot exist in
all locations. Setting this attribute to a different location gives
more flexibility for packaging resources with location constraints.




add_source

This bool attribute defines whether to add source code for a
Python module.

For Python modules, typically only bytecode is required at run-time.
For some applications, the presence of source code doesn’t provide
sufficient value or isn’t desired since the application developer may
want to obfuscate the source code. Setting this attribute to False
prevents Python module source code from being added.




add_bytecode_optimization_level_zero

This bool attributes defines whether to add Python bytecode
for optimization level 0 (the default optimization level).

If True, Python source code will be compiled to bytecode at
build time.

The default value is whatever
PythonPackagingPolicy.bytecode_optimize_level_zero is set to.




add_bytecode_optimization_level_one

This bool attributes defines whether to add Python bytecode for
optimization level 1.

The default value is whatever
PythonPackagingPolicy.bytecode_optimize_level_one is set to.




add_bytecode_optimization_level_two

This bool attributes defines whether to add Python bytecode for
optimization level 2.

The default value is whatever
PythonPackagingPolicy.bytecode_optimize_level_two is set to.







          

      

      

    

  

    
      
          
            
  
Global Symbols

This document lists every single global type, variable, and
function available in PyOxidizer’s Starlark execution environment.

In addition to the symbols provided by PyOxidizer’s Starlark
dialect, there are also the
Starlark built-ins [https://github.com/bazelbuild/starlark/blob/master/spec.md#built-in-constants-and-functions].


Global Types

PyOxidizer’s Starlark dialect defines the following custom types:


	File

	Represents a filesystem path and content.



	FileContent

	Represents the content of a file on the filesystem.

(Unlike File, this does not track the filename
internally.)



	FileManifest

	Represents a mapping of filenames to file content.



	PythonDistribution

	Represents an implementation of Python.

Used for embedding into binaries and running Python code.



	PythonEmbeddedResources

	Represents resources made available to a Python interpreter.



	PythonExecutable

	Represents an executable file containing a Python interpreter.



	PythonExtensionModule

	Represents a compiled Python extension module.



	PythonInterpreterConfig

	Represents the configuration of a Python interpreter.



	PythonPackageDistributionResource

	Represents a file containing Python package distribution metadata.



	PythonPackageResource

	Represents a non-module resource data file.



	PythonPackagingPolicy

	Represents a policy controlling how Python resources are added to a binary.



	PythonModuleSource

	Represents a .py file containing Python source code.








Global Constants

The Starlark execution environment defines various variables in the
global scope which are intended to be used as read-only constants.
The following sections describe these variables.


BUILD_TARGET_TRIPLE

The string Rust target triple that we’re currently building for. Will be
a value like x86_64-unknown-linux-gnu or x86_64-pc-windows-msvc.
Run rustup target list to see a list of targets.




CONFIG_PATH

The string path to the configuration file currently being evaluated.




CONTEXT

Holds build context. This is an internal variable and accessing it will
not provide any value.




CWD

The current working directory. Also the directory containing the active
configuration file.






Global Functions

PyOxidizer’s Starlark dialect defines the following global functions:


	default_python_distribution()

	Obtain the default PythonDistribution
for the active build configuration.



	glob()

	Collect files from the filesystem.



	register_target()

	Register a named target that can
be built.



	resolve_target()

	Build/resolve a specific named target.



	resolve_targets()

	Triggers resolution of requested build
targets.



	set_build_path()

	Set the filesystem path to use for writing files during evaluation.








Types with Target Behavior

As described in Targets, a function registered
as a named target can return a type that has special build or run
behavior.

The following types have special behavior registered:


	FileManifest

	Build behavior is to materialize all files in the file manifest.

Run behavior is to run the last added PythonExecutable
if available, falling back to an executable file installed by the manifest
if there is exactly 1 executable file.



	PythonEmbeddedResources

	Build behavior is to write out files this type represents.

There is no run behavior.



	PythonExecutable

	Build behavior is to build the executable file.

Run behavior is to run that built executable.











          

      

      

    

  

    
      
          
            
  
Functions for Manipulating Global State


set_build_path()

Configure the directory where build artifacts will be written.

Build artifacts include Rust build state, files generated by PyOxidizer,
staging areas for built binaries, etc.

If a relative path is passed, it is interpreted as relative to the
directory containing the configuration file.

The default value is $CWD/build.


Important

This needs to be called before functionality that utilizes the build path,
otherwise the default value will be used.









          

      

      

    

  

    
      
          
            
  
Functions for Managing Targets


register_target()

Registers a named target that can be resolved by the configuration file.

A target consists of a string name, callable function, and an optional list
of targets it depends on.

The callable may return one of the types defined by this Starlark dialect
to facilitate additional behavior, such as how to build and run it.

Arguments:


	name

	(string) The name of the target being register.



	fn

	(function) A function to call when the target is resolved.



	depends

	(list of string or None) List of target strings this target
depends on. If specified, each dependency will be evaluated in order and
its returned value (possibly cached from prior evaluation) will be passed
as a positional argument to this target’s callable.



	default

	(bool) Indicates whether this should be the default target
to evaluate. The last registered target setting this to True
will be the default. If no target sets this to True, the first
registered target is the default.



	default_build_script

	(bool) indicates whether this should be the default target to
evaluate when run from the context of a Rust build script (e.g. from
pyoxidizer run-build-script. It has the same semantics as
default.






Note

It would be easier for target functions to call resolve_target()
within their implementation. However, Starlark doesn’t allow recursive
function calls. So invocation of target callables must be handled
specially to avoid this recursion.






resolve_target()

Triggers resolution of a requested build target.

This function resolves a target registered with register_target() by
calling the target’s registered function or returning the previously
resolved value from calling it.

This function should be used in cases where 1 target depends on the
resolved value of another target. For example, a target to create a
FileManifest may wish to add a PythonExecutable that was resolved
from another target.




resolve_targets()

Triggers resolution of requested build targets.

This is usually the last meaningful line in a config file. It triggers the
building of targets which have been requested to resolve by whatever is invoking
the config file.







          

      

      

    

  

    
      
          
            
  
Functions for Interacting with the Filesystem


glob()

The glob() function resolves file patterns to a
FileManifest.

This function accepts the following arguments:


	include

	(list of string) Defines file patterns that will be
matched using the glob Rust crate. If patterns begin with
/ or look like a filesystem absolute path, they are absolute.
Otherwise they are evaluated relative to the directory of the
current config file.



	exclude

	(list of string or None) File patterns used to
exclude files from the result. All patterns in include are
evaluated before exclude.



	strip_prefix

	(string or None) Prefix to strip from the beginning of
matched files. strip_prefix is stripped after include
and exclude are processed.





Returns a FileManifest.







          

      

      

    

  

    
      
          
            
  
FileContent

This type represents the content of a single file.





          

      

      

    

  

    
      
          
            
  
FileManifest

The FileManifest type represents a set of files and their content.

FileManifest instances are used to represent things like the final
filesystem layout of an installed application.

Conceptually, a FileManifest is a dict mapping relative paths to
file content.


Methods


FileManifest.add_manifest()

This method overlays another FileManifest on this one. If the other
manifest provides a path already in this manifest, its content will be
replaced by what is in the other manifest.




FileManifest.add_python_resource()

This method adds a Python resource to a FileManifest instance in
a specified directory prefix.

Arguments:


	prefix

	(string) Directory prefix to add resource to.



	value

	(various) A Python resource instance to add. e.g.
PythonModuleSource or
PythonPackageResource.





This method can be used to place the Python resources derived from another
type or action in the filesystem next to an application binary.




FileManifest.add_python_resources()

This method adds an iterable of Python resources to a FileManifest
instance in a specified directory prefix. This is effectively a wrapper
for for value in values: self.add_python_resource(prefix, value).

For example, to place the Python distribution’s standard library Python
source modules in a directory named lib:

m = FileManifest()
dist = default_python_distribution()
for resource in dist.python_resources():
    if type(resource) == "PythonModuleSource":
        m.add_python_resource("lib", resource)








FileManifest.install()

This method writes the content of the FileManifest to a directory
specified by path. The path is evaluated relative to the path
specified by BUILD_PATH.

If replace is True (the default), the destination directory will
be deleted and the final state of the destination directory should
exactly match the state of the FileManifest.









          

      

      

    

  

    
      
          
            
  
File

This type represents a concrete file in an abstract filesystem. The
file has a path and content.

Instances can be constructed by calling methods that emit resources
with a PythonPackagingPolicy having
file_scanner_emit_files
set to True.


Attributes

The following sections describe the attributes available on each
instance.


path

(string)

The filesystem path represented. Typically relative. Doesn’t
have to correspond to a valid, existing file on the filesystem.




is_executable

(bool)

Whether the file is executable.




add_*

(various)

See Resource Attributes Influencing Adding.









          

      

      

    

  

    
      
          
            
  
PythonDistribution

The PythonDistribution type defines a Python distribution. A Python
distribution is an entity that defines an implementation of Python. This
entity can be used to create a binary embedding or running Python and
can be used to execute Python code.


Constructors

Instances of PythonDistribution can be constructed via a constructor
function or via
default_python_distribution().


default_python_distribution()

Resolves the default PythonDistribution.

The following named arguments are accepted:


	flavor

	(string) Denotes the distribution flavor. See the section below on
allowed values.

Defaults to standalone.



	build_target

	(string) Denotes the machine target triple that we’re building for.

Defaults to the value of the BUILD_TARGET global constant.



	python_version

	(string) X.Y major.minor string denoting the Python release version
to use.

Supported values are 3.8 and 3.9.

Defaults to 3.8.





flavor is a string denoting the distribution flavor. Values can be one
of the following:


	standalone

	A distribution produced by the python-build-standalone project. The
distribution may be statically or dynamically linked, depending on the
build_target and availability. This option effectively chooses the
best available standalone_dynamic or standalone_static option.

This option is effectively standalone_dynamic for all targets except
musl libc, where it is effectively standalone_static.



	standalone_dynamic

	This is like standalone but guarantees the distribution is dynamically
linked against various system libraries, notably libc. Despite the
dependence on system libraries, binaries built with these distributions can
generally be run in most environments.

This flavor is available for all supported targets except musl libc.



	standalone_static

	This is like standalone but guarantees the distribution is statically
linked and has minimal - possibly none - dependencies on system libraries.

On Windows, the Python distribution does not export Python’s symbols,
meaning that it is impossible to load dynamically linked Python extensions
with it.

On musl libc, statically linked distributions do not support loading
extension modules existing as shared libraries.

This flavor is only available for Windows and musl libc targets.






Note

The static versus dynamic terminology refers to the linking of the
overall distribution, not libpython or the final produced binaries.



The pyoxidizer binary has a set of known distributions built-in
which are automatically available and used by this function. Typically you don’t
need to build your own distribution or change the distribution manually.




PythonDistribution()

Construct a PythonDistribution from arguments.

The following arguments are accepted:


	sha256

	(string) The SHA-256 of the distribution archive file.



	local_path

	(string) Local filesystem path to the distribution archive.



	url

	(string) URL from which a distribution archive can be obtained
using an HTTP GET request.



	flavor

	(string) The distribution flavor. Must be standalone.





A Python distribution is a zstandard-compressed tar archive containing a
specially produced build of Python. These distributions are typically
produced by the
python-build-standalone [https://github.com/indygreg/python-build-standalone]
project. Pre-built distributions are available at
https://github.com/indygreg/python-build-standalone/releases.

A distribution is defined by a location, and a hash.

One of local_path or url MUST be defined.

Examples:

linux = PythonDistribution(
    sha256="11a53f5755773f91111a04f6070a6bc00518a0e8e64d90f58584abf02ca79081",
    local_path="/var/python-distributions/cpython-linux64.tar.zst"
)

macos = PythonDistribution(
     sha256="b46a861c05cb74b5b668d2ce44dcb65a449b9fef98ba5d9ec6ff6937829d5eec",
     url="https://github.com/indygreg/python-build-standalone/releases/download/20190505/cpython-3.7.3-macos-20190506T0054.tar.zst"
)










Methods


PythonDistribution.python_resources()

Returns a list of objects representing Python resources in this
distribution. Returned values can be
PythonModuleSource,
PythonExtensionModule,
PythonPackageResource, etc.

There may be multiple PythonExtensionModule with
the same name.




PythonDistribution.make_python_interpreter_config()

Obtain a PythonInterpreterConfig derived from the
distribution.

The interpreter configuration automatically uses settings appropriate
for the distribution.




PythonDistribution.make_python_packaging_policy()

Obtain a
PythonPackagingPolicy
derived from the distribution.

The policy automatically uses settings globally appropriate for the
distribution.




PythonDistribution.to_python_executable()

This method constructs a PythonExecutable instance. It
essentially says build an executable embedding Python from this
distribution.

The accepted arguments are:


	name

	(string) The name of the application being built. This will be
used to construct the default filename of the executable.



	packaging_policy

	(PythonPackagingPolicy) The packaging policy to apply to the
executable builder.

This influences how Python resources from the distribution are added. It
also influences future resource adds to the executable.



	config

	(PythonInterpreterConfig) The default configuration of the
embedded Python interpreter.

Default is what PythonDistribution.make_python_interpreter_config()
returns.






Important

Libraries that extension modules link against have various software
licenses, including GPL version 3. Adding these extension modules will
also include the library. This typically exposes your program to additional
licensing requirements, including making your application subject to that
license and therefore open source. See Licensing Considerations for
more.











          

      

      

    

  

    
      
          
            
  
PythonEmbeddedResources

The PythonEmbeddedResources type represents resources made available to
a Python interpreter. The resources tracked by this type are consumed by the
pyembed crate at build and run time. The tracked resources include:


	Python module source and bytecode


	Python package resources


	Shared library dependencies




While the type’s name has embedded in it, resources referred to by this
type may or may not actually be embedded in a Python binary or loaded
directly from the binary. Rather, the term embedded comes from the fact
that the data structure describing the resources is typically embedded
in the binary or made available to an embedded Python interpreter.

Instances of this type are constructed by transforming a type representing
a Python binary. e.g. PythonExecutable.to_embedded_resources().

If this type is returned by a target function, its build action will write
out files that represent the various resources encapsulated by this type. There
is no run action associated with this type.





          

      

      

    

  

    
      
          
            
  
PythonExecutable

The PythonExecutable type represents an executable file containing
the Python interpreter, Python resources to make available to the interpreter,
and a default run-time configuration for that interpreter.

Instances are constructed from PythonDistribution
instances using
PythonDistribution.to_python_executable().


Attributes

The following sections describe the attributes available on each instance.


tcl_files_path

(Optional[string])

Defines a directory relative to that of the built executable in which to
install tcl/tk files.

If set to a value, tcl/tk files present in the Python distribution being
used will be installed next to the build executable and the embedded Python
interpreter will automatically set the TCL_LIBRARY environment variable
to load tcl files from this directory.

If None (the default), no tcl/tk files will be installed.




windows_subsystem

(string)

Controls the value to use for the Rust #![windows_subsystem = "..."]
attribute added to the autogenerated Rust program to build the executable.

This attribute only has meaning on Windows. It effectively controls the
value passed to the linker’s /SUBSYSTEM flag.

Rust only supports certain values but PyOxidizer does not impose limitations
on what values are used. Common values include:


	console

	Win32 character-mode application. A console window will be opened when the
application runs.

This value is suitable for command-line executables.



	windows

	Application does not require a console and may provide its own windows.

This value is suitable for GUI applications that do not wish to launch
a console window on start.





Default is console.






Methods


PythonExecutable.make_python_module_source()

This method creates a PythonModuleSource instance
suitable for use with the executable being built.

Arguments are as follows:


	name (string)

	The name of the Python module. This is the fully qualified module
name. e.g. foo or foo.bar.



	source (string)

	Python source code comprising the module.



	is_package (bool)

	Whether the Python module is also a package. (e.g. the equivalent of a
__init__.py file or a module without a . in its name.








PythonExecutable.pip_download()

This method runs pip download <args> with settings appropriate to target
the executable being built.

This always uses --only-binary=:all:, forcing pip to only download wheel
based packages.

This method accepts the following arguments:


	args

	(list of string) Command line arguments to pass to pip download.
Arguments will be added after default arguments added internally.





Returns a list of objects representing Python resources collected
from wheels obtained via pip download.




PythonExecutable.pip_install()

This method runs pip install <args> with settings appropriate to target
the executable being built.


	args

	List of strings defining raw process arguments to pass to pip install.



	extra_envs

	Optional dict of string key-value pairs constituting extra environment
variables to set in the invoked pip process.





Returns a list of objects representing Python resources installed as
part of the operation. The types of these objects can be
PythonModuleSource,
PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or
PythonExecutable to make them available to a packaged
application.




PythonExecutable.read_package_root()

This method discovers resources from a directory on the filesystem.

The specified directory will be scanned for resource files. However,
only specific named packages will be found. e.g. if the directory
contains sub-directories foo/ and bar, you must explicitly
state that you want the foo and/or bar package to be included
so files from these directories will be read.

This rule is frequently used to pull in packages from local source
directories (e.g. directories containing a setup.py file). This
rule doesn’t involve any packaging tools and is a purely driven by
filesystem walking. It is primitive, yet effective.

This rule has the following arguments:


	path (string)

	The filesystem path to the directory to scan.



	packages (list of string)

	List of package names to include.

Filesystem walking will find files in a directory <path>/<value>/ or in
a file <path>/<value>.py.





Returns a list of objects representing Python resources found in the
virtualenv. The types of these objects can be PythonModuleSource,
PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or
PythonExecutable to make them available to a packaged application.




PythonExecutable.read_virtualenv()

This method attempts to read Python resources from an already built
virtualenv.


Important

PyOxidizer only supports finding modules and resources
populated via traditional means (e.g. pip install or python setup.py
install). If .pth or similar mechanisms are used for installing modules,
files may not be discovered properly.



It accepts the following arguments:


	path (string)

	The filesystem path to the root of the virtualenv.

Python modules are typically in a lib/pythonX.Y/site-packages directory
(on UNIX) or Lib/site-packages directory (on Windows) under this path.





Returns a list of objects representing Python resources found in the virtualenv.
The types of these objects can be PythonModuleSource,
PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or
PythonExecutable to make them available to a packaged application.




PythonExecutable.setup_py_install()

This method runs python setup.py install against a package at the
specified path.

It accepts the following arguments:


	package_path

	String filesystem path to directory containing a setup.py to invoke.



	extra_envs={}

	Optional dict of string key-value pairs constituting extra environment
variables to set in the invoked python process.



	extra_global_arguments=[]

	Optional list of strings of extra command line arguments to pass to
python setup.py. These will be added before the install
argument.





Returns a list of objects representing Python resources installed
as part of the operation. The types of these objects can be
PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a FileManifest or
PythonExecutable to make them available to a packaged application.




PythonExecutable.add_python_resource()

This method registers a Python resource of various types with the instance.

It accepts a resource argument which can be a PythonModuleSource,
PythonPackageResource, or PythonExtensionModule and registers that
resource with this instance.

The following arguments are accepted:


	resource

	The resource to add to the embedded Python environment.





This method is a glorified proxy to the various add_python_* methods.
Unlike those methods, this one accepts all types that are known Python
resources.




PythonExecutable.add_python_resources()

This method registers an iterable of Python resources of various types.
This method is identical to
PythonExecutable.add_python_resource() except the argument is
an iterable of resources. All other arguments are identical.




PythonExecutable.filter_from_files()

This method filters all embedded resources (source modules, bytecode modules,
and resource names) currently present on the instance through a set of
resource names resolved from files.

This method accepts the following arguments:


	files (array of string)

	List of filesystem paths to files containing resource names. The file
must be valid UTF-8 and consist of a \n delimited list of resource
names. Empty lines and lines beginning with # are ignored.



	glob_files (array of string)

	List of glob matching patterns of filter files to read. * denotes
all files in a directory. ** denotes recursive directories. This
uses the Rust glob crate under the hood and the documentation for that
crate contains more pattern matching info.

The files read by this argument must be the same format as documented
by the files argument.





All defined files are first read and the resource names encountered are
unioned into a set. This set is then used to filter entities currently
registered with the instance.




PythonExecutable.to_embedded_resources()

Obtains a PythonEmbeddedResources instance representing
resources to be made available to the Python interpreter.

See the PythonEmbeddedResources type documentation for more.









          

      

      

    

  

    
      
          
            
  
PythonExtensionModule

This type represents a compiled Python extension module.


Attributes

The following sections describe the attributes available on each
instance.


name

(string)

Unique name of the module being provided.




is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the
Python distribution).




add_*

(various)

See Resource Attributes Influencing Adding.









          

      

      

    

  

    
      
          
            
  
PythonInterpreterConfig

This type configures the default behavior of the embedded Python interpreter.

Embedded Python interpreters are configured and instantiated using a
Rust pyembed::OxidizedPythonInterpreterConfig data structure. The
pyembed crate defines a default instance of this data structure with
parameters defined by the settings in this type.


Note

If you are writing custom Rust code and constructing a custom
pyembed::OxidizedPythonInterpreterConfig instance and don’t use the
default instance, this config type is not relevant to you and can be
omitted from your config file.




Danger

Some of the settings exposed by Python’s initialization APIs are
extremely low level and brittle. Various combinations can cause
the process to crash/exit ungracefully. Be very cautious when setting
these low-level settings.




Constructors

Instances are constructed by calling
PythonDistribution.make_python_interpreter_config().




Attributes

The PythonInterpreterConfig state is managed via attributes.

There are a ton of attributes and most attributes are not relevant
to most applications. The bulk of the attributes exist to give full
control over Python interpreter initialization.


Attributes For Controlling pyembed Features

This section documents attributes for controlling features
provided by the pyembed Rust crate, which manages the embedded
Python interpreter at run-time.

These attributes provide features and level of control over
embedded Python interpreters beyond what is possible with Python’s
initialization C API [https://docs.python.org/3/c-api/init_config.html].


raw_allocator

(string)

Configures the low-level raw allocator used by Python. Internally,
Python has its own allocator that manages pools of memory. But that
allocator gets its memory from some other allocator. This attribute
defines what that other allocator is. In Python C API speak, this
defines the allocator for the PYMEM_DOMAIN_RAW allocator.

Accepted values are:


	system

	Use the default allocator functions exposed to the binary (malloc(),
free(), etc).



	jemalloc

	Use the jemalloc allocator.



	rust

	Use Rust’s global allocator (whatever that may be).





The jemalloc allocator requires the jemalloc-sys crate to be
available. A run-time error will occur if jemalloc is configured but this
allocator isn’t available.


Important

The rust allocator is not recommended because it introduces performance
overhead. But it may help with debugging in some situations.



Default is jemalloc on non-Windows targets and system on Windows.
(The jemalloc-sys crate doesn’t work on Windows MSVC targets.)




oxidized_importer

(bool)

Whether to install the oxidized_importer meta path importer
(oxidized_importer Python Extension) on sys.meta_path during interpreter
initialization.

Defaults to True.




filesystem_importer

(bool)

Whether to install the standard library path-based importer for
loading Python modules from the filesystem.

If not enabled, Python modules will not be loaded from the filesystem
(via sys.path discovery): only modules indexed by oxidized_importer
will be loadable.

The filesystem importer is enabled automatically if
module_search_paths is
non-empty.




argvb

(bool)

Whether to expose a sys.argvb attribute containing bytes versions
of process arguments.

On platforms where the process receives char * arguments, Python
normalizes these values to unicode and makes them available via
sys.argv. On platforms where the process receives wchar_t *
arguments, Python may interpret the bytes as a certain encoding.
This encoding normalization can be lossy.

Enabling this feature will give Python applications access to the raw
bytes values of arguments that are actually used. The single or
double width bytes nature of the data is preserved.

Unlike sys.argv which may chomp off leading arguments depending
on the Python execution mode, sys.argvb has all the arguments
used to initialize the process. The first argument is always the
executable.




sys_frozen

(bool)

Controls whether to set the sys.frozen attribute to True. If
false, sys.frozen is not set.

Default is False.




sys_meipass

(bool)

Controls whether to set the sys._MEIPASS attribute to the path of
the executable.

Setting this and sys_frozen to True will emulate the
behavior of PyInstaller [https://pyinstaller.readthedocs.io/en/v3.3.1/runtime-information.html]
and could possibly help self-contained applications that are aware of
PyInstaller also work with PyOxidizer.

Default is False.




terminfo_resolution

(string)

Defines how the terminal information database (terminfo) should be
configured.

See Terminfo Database for more about terminal databases.

Accepted values are:


	dynamic

	Looks at the currently running operating system and attempts to do something
reasonable.

For example, on Debian based distributions, it will look for the terminfo
database in /etc/terminfo, /lib/terminfo, and /usr/share/terminfo,
which is how Debian configures ncurses to behave normally. Similar
behavior exists for other recognized operating systems.

If the operating system is unknown, PyOxidizer falls back to looking for the
terminfo database in well-known directories that often contain the
database (like /usr/share/terminfo).



	none

	The value none indicates that no configuration of the terminfo
database path should be performed. This is useful for applications that
don’t interact with terminals. Using none can prevent some filesystem
I/O at application startup.



	static:<path>

	Indicates that a static path should be used for the path to the terminfo
database.

This values consists of a : delimited list of filesystem paths
that ncurses should be configured to use. This value will be used to
populate the TERMINFO_DIRS environment variable at application run time.





terminfo is not used on Windows and this setting is ignored on that
platform.




write_modules_directory_env

(string or None)

Environment variable that defines a directory where modules-<UUID> files
containing a \n delimited list of loaded Python modules (from sys.modules)
will be written upon interpreter shutdown.

If this setting is not defined or if the environment variable specified by its
value is not present at run-time, no special behavior will occur. Otherwise,
the environment variable’s value is interpreted as a directory, that directory
and any of its parents will be created, and a modules-<UUID> file will
be written to the directory.

This setting is useful for determining which Python modules are loaded when
running Python code.






Attributes From PyPreConfig

Attributes in this section correspond to fields of the
PyPreConfig [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig]
C struct used to initialize the Python interpreter.


config_profile

(string)

This attribute controls which set of default values to use for
attributes that aren’t explicitly defined. It effectively controls
which C API to use to initialize the PyPreConfig instance.

Accepted values are:


	isolated

	Use the isolated [https://docs.python.org/3/c-api/init_config.html#isolated-configuration]
configuration.

This configuration is appropriate for applications existing in isolation
and not behaving like python executables.



	python

	Use the Python [https://docs.python.org/3/c-api/init_config.html#python-configuration]
configuration.

This configuration is appropriate for applications attempting to behave
like a python executable would.








allocator

(string or None)

Controls the value of
PyPreConfig.allocator [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.allocator].

Accepted values are:


	None

	Use the default.



	not-set

	PYMEM_ALLOCATOR_NOT_SET



	default

	PYMEM_ALLOCATOR_DEFAULT



	debug

	PYMEM_ALLOCATOR_DEBUG



	malloc

	PYMEM_ALLOCATOR_MALLOC



	malloc-debug

	PYMEM_ALLOCATOR_MALLOC_DEBUG



	py-malloc

	PYMEM_ALLOCATOR_PYMALLOC



	py-malloc-debug

	PYMEM_ALLOCATOR_PYMALLOC_DEBUG








configure_locale

(bool or None)

Controls the value of
PyPreConfig.configure_locale [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.configure_locale].




coerce_c_locale

(string or None)

Controls the value of
PyPreConfig.coerce_c_locale [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale].

Accepted values are:


	LC_CTYPE

	Read LC_CTYPE



	C

	Coerce the C locale.








coerce_c_locale_warn

(bool or None)

Controls the value of
PyPreConfig.coerce_c_locale_warn [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale_warn].




development_mode

(bool or None)

Controls the value of
PyPreConfig.development_mode [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.development_mode].




isolated

(bool or None)

Controls the value of
PyPreConfig.isolated [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.isolated].




legacy_windows_fs_encoding

(bool or None)

Controls the value of
PyPreConfig.legacy_windows_fs_encoding [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.legacy_windows_fs_encoding].




parse_argv

(bool or None)

Controls the value of
PyPreConfig.parse_argv [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.parse_argv].




use_environment

(bool or None)

Controls the value of
PyPreConfig.use_environment [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.use_environment].




utf8_mode

(bool or None)

Controls the value of
PyPreConfig.utf8_mode [https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.utf8_mode].






Attributes From PyConfig

Attributes in this section correspond to fields of the
PyConfig [https://docs.python.org/3/c-api/init_config.html#c.PyConfig]
C struct used to initialize the Python interpreter.


base_exec_prefix

(string or None)

Controls the value of
PyConfig.base_exec_prefix [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_exec_prefix].




base_executable

(string or None)

Controls the value of
PyConfig.base_exectuable [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_executable].




base_prefix

(string or None)

Controls the value of
PyConfig.base_prefix [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_prefix].




buffered_stdio

(bool or None)

Controls the value of
PyConfig.buffered_stdio [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.buffered_stdio].




bytes_warning

(string or None)

Controls the value of
PyConfig.bytes_warning [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.bytes_warning].

Accepted values are:


	None


	none


	warn


	raise







check_hash_pycs_mode

(string or None)

Controls the value of
PyConfig.check_hash_pycs_mode [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.check_hash_pycs_mode].

Accepted values are:


	None


	always


	never


	default







configure_c_stdio

(bool or None)

Controls the value of
PyConfig.configure_c_stdio [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.configure_c_stdio].




dump_refs

(bool or None)

Controls the value of
PyConfig.dump_refs [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.dump_refs].




exec_prefix

(string or None)

Controls the value of
PyConfig.exec_prefix [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.exec_prefix].




executable

(string or None)

Controls the value of
PyConfig.executable [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.executable].




fault_handler

(bool or None)

Controls the value of
PyConfig.fault_handler [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.fault_handler].




filesystem_encoding

(string or None)

Controls the value of
PyConfig.filesystem_encoding [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_encoding].




filesystem_errors

(string or None)

Controls the value of
PyConfig.filesystem_errors [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_errors].




hash_seed

(int or None)

Controls the value of
PyConfig.hash_seed [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.hash_seed].

PyConfig.use_hash_seed will automatically be set if this attribute is
defined.




home

(string or None)

Controls the value of
PyConfig.home [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.home].




import_time

(bool or None)

Controls the value of
PyConfig.import_time [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.import_time].




inspect

(bool or None)

Controls the value of
PyConfig.inspect [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.inspect].




install_signal_handlers

(bool or None)

Controls the value of
PyConfig.install_signal_handlers [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.install_signal_handlers].




interactive

(bool or None)

Controls the value of
PyConfig.interactive [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.interactive].




legacy_windows_stdio

(bool or None)

Controls the value of
PyConfig.legacy_windows_stdio [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.legacy_windows_stdio].




malloc_stats

(bool or None)

Controls the value of
PyConfig.malloc_stats [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.malloc_stats].




module_search_paths

(list[string] or None)

Controls the value of
PyConfig.module_search_paths [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.module_search_paths].

This value effectively controls the initial value of sys.path.

The special string $ORIGIN in values will be expanded to the absolute
path of the directory of the executable at run-time. For example,
if the executable is /opt/my-application/pyapp, $ORIGIN will
expand to /opt/my-application and the value $ORIGIN/lib will
expand to /opt/my-application/lib.

Setting this to a non-empty value also has the side-effect of setting
filesystem_importer = True




optimization_level

(int or None)

Controls the value of
PyConfig.optimization_level [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.optimization_level].

Allowed values are:


	None


	0


	1


	2




This setting is only relevant if write_bytecode is True and
Python modules are being imported from the filesystem using Python’s
standard filesystem importer.




parser_debug

(bool or None)

Controls the value of
PyConfig.parser_debug [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.parser_debug].




pathconfig_warnings

(bool or None)

Controls the value of
PyConfig.pathconfig_warnings [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pathconfig_warnings].




prefix

(string or None)

Controls the value of
PyConfig.prefix [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.prefix].




program_name

(string or None)

Controls the value of
PyConfig.program_name [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.program_name].




pycache_prefix

(string or None)

Controls the value of
PyConfig.pycache_prefix [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pycache_prefix].




python_path_env

(string or None)

Controls the value of
PyConfig.pythonpath_env [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pythonpath_env].




quiet

(bool or None)

Controls the value of
PyConfig.quiet [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.quiet].




run_command

(string or None)

Controls the value of
PyConfig.run_command [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_command].




run_filename

(string or None)

Controls the value of
PyConfig.run_filename [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_filename].




run_module

(string or None)

Controls the value of
PyConfig.run_module [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_module].




show_alloc_count

(bool or None)

Controls the value of
PyConfig.show_alloc_count [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.show_alloc_count].




show_ref_count

(bool or None)

Controls the value of
PyConfig.show_ref_count [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.show_ref_count].




site_import

(bool or None)

Controls the value of
PyConfig.site_import [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.site_import].

The site module is typically not needed for standalone/isolated Python
applications.




skip_first_source_line

(bool or None)

Controls the value of
PyConfig.skip_first_source_line [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.skip_first_source_line].




stdio_encoding

(string or None)

Controls the value of
PyConfig.stdio_encoding [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_encoding].




stdio_errors

(string or None)

Controls the value of
PyConfig.stdio_errors [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_errors].




tracemalloc

(bool or None)

Controls the value of
PyConfig.tracemalloc [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.tracemalloc].




user_site_directory

(bool or None)

Controls the value of
PyConfig.user_site_directory [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.user_site_directory].




verbose

(bool or None)

Controls the value of
PyConfig.verbose [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.verbose].




warn_options

(list[string] or None)

Controls the value of
PyConfig.warn_options [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.warn_options].




write_bytecode

(bool or None)

Controls the value of
PyConfig.write_bytecode [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.write_bytecode].

This only influences the behavior of Python standard path-based importer
(controlled via filesystem_importer).




x_options

(list[string] or None)

Controls the value of
PyConfig.xoptions [https://docs.python.org/3/c-api/init_config.html#c.PyConfig.xoptions].








Starlark Caveats

The PythonInterpreterConfig Starlark type is backed by a Rust data
structure. And when attributes are retrieved, a copy of the underlying
Rust struct field is returned.

This means that if you attempt to mutate a Starlark value (as opposed to
assigning an attribute), the mutation won’t be reflected on the underlying
Rust data structure.

For example:

config = dist.make_python_interpreter_config()

# assigns vec!["foo", "bar"].
config.module_search_paths = ["foo", "bar"]

# Creates a copy of the underlying list and appends to that copy.
# The stored value of `module_search_paths` is still `["foo", "bar"]`.
config.module_search_paths.append("baz")





To append to a list, do something like the following:

value = config.module_search_paths
value.append("baz")
config.module_search_paths = value











          

      

      

    

  

    
      
          
            
  
PythonModuleSource

This type represents Python source modules, agnostic of location.

Instances can be constructed via
PythonExecutable.make_python_module_source() or by calling
methods that emit Python resources.


Attributes

The following sections describe the attributes available on each
instance.


name

(string)

Fully qualified name of the module. e.g. foo.bar.




source

(string)

The Python source code for this module.




is_package

(bool)

Whether this module is also a Python package (or sub-package).




is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the
Python distribution).




add_*

(various)

See Resource Attributes Influencing Adding.









          

      

      

    

  

    
      
          
            
  
PythonPackageResource

This type represents a resource _file_ in a Python package. It is
effectively a named blob associated with a Python package. It is
typically accessed using the importlib.resources API.


Attributes

The following sections describe the attributes available on each
instance.


package

(string)

Python package this resource is associated with.




name

(string)

Name of this resource.




is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the
Python distribution).




add_*

(various)

See Resource Attributes Influencing Adding.









          

      

      

    

  

    
      
          
            
  
PythonPackageDistributionResource

This type represents a named resource to make available as Python package
distribution metadata. These files are typically accessed using the
importlib.metadata API.

Each instance represents a logical file in a <package>-<version>.dist-info
or <package>-<version>.egg-info directory. There are specifically named
files that contain certain data. For example, a *.dist-info/METADATA file
describes high-level metadata about a Python package.


Attributes

The following sections describe the attributes available on each
instance.


package

(string)

Python package this resource is associated with.




name

(string)

Name of this resource.




is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the
Python distribution).




add_*

(various)

See Resource Attributes Influencing Adding.









          

      

      

    

  

    
      
          
            
  
PythonPackagingPolicy

When building a Python binary, there are various settings that control which
Python resources are added, where they are imported from, and other various
settings. This collection of settings is referred to as a Python Packaging
Policy. These settings are represented by the PythonPackagingPolicy type.


Attributes

The following sections describe the attributes available on each
instance.


allow_files

(bool)

Whether to allow the collection of generic file resources.

If false, all collected/packaged resources must be instances of
concrete resource types (PythonModuleSource, PythonPackageResource,
etc).

If true, File instances can be added to resource
collectors.




allow_in_memory_shared_library_loading

(bool)

Whether to allow loading of Python extension modules and shared libraries
from memory at run-time.

Some platforms (notably Windows) allow opening shared libraries from a
memory address. This mode of opening shared libraries allows libraries
to be embedded in binaries without having to statically link them. However,
not every library works correctly when loaded this way.

This flag defines whether to enable this feature where supported. Its
true value can be ignored if the target platform doesn’t support loading
shared library from memory.




bytecode_optimize_level_zero

(bool)

Whether to add Python bytecode at optimization level 0 (the
default optimization level the Python interpreter compiles bytecode for).




bytecode_optimize_level_one

(bool)

Whether to add Python bytecode at optimization level 1.




bytecode_optimize_level_two

(bool)

Whether to add Python bytecode at optimization level 2.




extension_module_filter

(string)

The filter to apply to determine which extension modules to add.
The following values are recognized:


	all

	Every named extension module will be included.



	minimal

	Return only extension modules that are required to initialize a
Python interpreter. This is a very small set and various functionality
from the Python standard library will not work with this value.



	no-libraries

	Return only extension modules that don’t require any additional libraries.

Most common Python extension modules are included. Extension modules
like _ssl (links against OpenSSL) and zlib are not included.



	no-gpl

	Return only extension modules that do not link against GPL licensed
libraries.

Not all Python distributions may annotate license info for all extensions
or the libraries they link against. If license info is missing, the
extension is not included because it could be GPL licensed. Similarly,
the mechanism for determining whether a license is GPL is based on an
explicit list of non-GPL licenses. This ensures new GPL licenses don’t
slip through.





Default is all.




file_scanner_classify_files

(bool)

Whether file scanning should attempt to classify files and emit typed
resources corresponding to the detected file type.

If True, operations that emit resource objects (such as
PythonExecutable.pip_install()) will emit specific
types for each resource flavor. e.g. PythonModuleSource,
PythonExtensionModule, etc.

If False, the file scanner does not attempt to classify the type of
a file and this rich resource types are not emitted.

Can be used in conjunction with
file_scanner_emit_files. If both
are True, there will be a File and an optional non-file
resource for each source file.

Default is True.




file_scanner_emit_files

(bool)

Whether file scanning should emit file resources for each seen file.

If True, operations that emit resource objects (such as
PythonExecutable.pip_install()) will emit
File instances for each encountered file.

If False, File instances will not be emitted.

Can be used in conjunction with
file_scanner_classify_files.

Default is False.




include_classified_resources

(bool)

Whether strongly typed, classified non-File resources have their
add_include attribute set to True by default.

Default is True.




include_distribution_sources

(bool)

Whether to add source code for Python modules in the Python
distribution.

Default is True.




include_distribution_resources

(bool)

Whether to add Python package resources for Python packages
in the Python distribution.

Default is False.




include_file_resources

(bool)

Whether File resources have their add_include attribute
set to True by default.

Default is False.




include_non_distribution_sources

(bool)

Whether to add source code for Python modules not in the Python
distribution.




include_test

(bool)

Whether to add Python resources related to tests.

Not all files associated with tests may be properly flagged as such.
This is a best effort setting.

Default is False.




resources_location

(string)

The location that resources should be added to by default.

Default is in-memory.




resources_location_fallback

(string or None)

The fallback location that resources should be added to if
resources_location fails.

Default is None.




preferred_extension_module_variants

(dict<string, string>) (readonly)

Mapping of extension module name to variant name.

This mapping defines which preferred named variant of an extension module
to use. Some Python distributions offer multiple variants of the same
extension module. This mapping allows defining which variant of which
extension to use when choosing among them.

Keys set on this dict are not reflected in the underlying policy. To set
a key, call the set_preferred_extension_module_variant() method.






Methods

The following sections describe methods on PythonPackagingPolicy instances.


PythonPackagingPolicy.register_resource_callback()

This method registers a Starlark function to be called when resource objects
are created. The passed function receives 2 arguments: this
PythonPackagingPolicy instance and the resource (e.g.
PythonModuleSource) that was created.

The purpose of the callback is to enable Starlark configuration files to
mutate resources upon creation so they can globally influence how those
resources are packaged.




PythonPackagingPolicy.set_preferred_extension_module_variant()

This method will set a preferred Python extension module variant to
use. See the documentation for preferred_extension_module_variants
above for more.

It accepts 2 string arguments defining the extension module name
and its preferred variant.




PythonPackagingPolicy.set_resource_handling_mode()

This method takes a string argument denoting the resource handling mode
to apply to the policy. This string can have the following values:


	classify

	Files are classified as typed resources and handled as such.

Only classified resources can be added by default.



	files

	Files are handled as raw files (as opposed to typed resources).

Only files can be added by default.





This method is effectively a convenience method for bulk-setting
multiple attributes on the instance given a behavior mode.

classify will configure the file scanner to emit classified resources,
configure the add_include attribute to only be True on classified
resources, and will disable the addition of File resources on resource
collectors.

files will configure the file scanner to only emit File resources,
configure the add_include attribute to True on File and classified
resources, and will allow resource collectors to add File instances.









          

      

      

    

  

    
      
          
            
  
Packaging User Guide

So you want to package a Python application using PyOxidizer? You’ve come
to the right place to learn how! Read on for all the details on how to
oxidize your Python application!

First, you’ll need to install PyOxidizer. See Installing for
instructions.
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Creating a PyOxidizer Project

The process for oxidizing every Python application looks the same: you
start by creating a new PyOxidizer configuration file via the
pyoxidizer init-config-file command:

# Create a new configuration file in the directory "pyapp"
$ pyoxidizer init-config-file pyapp





Behind the scenes, PyOxidizer works by leveraging a Rust project to
build binaries embedding Python. The auto-generated project simply
instantiates and runs an embedded Python interpreter. If you would like
your built binaries to offer more functionality, you can create a minimal
Rust project to embed a Python interpreter and customize from there:

# Create a new Rust project for your application in ~/src/myapp.
$ pyoxidizer init-rust-project ~/src/myapp





The auto-generated configuration file and Rust project will launch a Python
REPL by default. And the pyoxidizer executable will look in the current
directory for a pyoxidizer.bzl configuration file. Let’s test that the
new configuration file or project works:

$ pyoxidizer run
...
   Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
    Finished dev [unoptimized + debuginfo] target(s) in 53.14s
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
>>>





If all goes according to plan, you just built a Rust executable which
contains an embedded copy of Python. That executable started an interactive
Python debugger on startup. Try typing in some Python code:

>>> print("hello, world")
hello, world





It works!

(To exit the REPL, press CTRL+d or CTRL+z or import sys; sys.exit(0) from
the REPL.)


Note

If you have built a Rust project before, the output from building a
PyOxidizer application may look familiar to you. That’s because under the
hood Cargo - Rust’s package manager and build system - is doing a lot of the
work to build the application. If you are familiar with Rust development,
you can use cargo build and cargo run directly. However, Rust’s
build system is only responsible for build binaries and some of the
higher-level functionality from PyOxidizer’s configuration files (such
as application packaging) will likely not be performed unless tweaks are
made to the Rust project’s build.rs.



Now that we’ve got a new project, let’s customize it to do something useful.





          

      

      

    

  

    
      
          
            
  
Packaging Primitives in pyoxidizer.bzl Files

PyOxidizer’s run-time behavior is controlled by pyoxidizer.bzl
Starlark (a Python-like language) configuration files. See Configuration Files
for documentation on these files, including low-level API documentation.

This document gives a medium-level overview of the important Starlark
types and functions and how they all interact.


Targets Define Actions

As detailed at Targets, a PyOxidizer configuration
file is composed of named targets, which are functions returning an object
that may have a build or run action attached. Commands like
pyoxidizer build identify a target to evaluate then effectively
walk the dependency graph evaluating dependent targets until the
requested target is built.




Defining an Executable Embedding Python

In this example, we create an executable embedding Python:

def make_dist():
    return default_python_distribution()

def make_exe(dist):
    return dist.to_python_executable("myapp")

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"], default=True)





PythonDistribution.to_python_executable() accepts an optional
PythonPackagingPolicy instance that influences how the executable
is built and what resources are added where. See the
type documentation for the
list of parameters that can be influenced. Some of this behavior
is described in the sections below. Other examples are provided
throughout the Packaging User Guide documentation.




Configuring the Python Interpreter Run-Time Behavior

The PythonInterpreterConfig
Starlark type configures the default behavior of the Python interpreter
embedded in built binaries.

A PythonInterpreterConfig instance is associated with PythonExecutable
instances when they are created. A custom instance can be passed into
PythonDistribution.to_python_executable() to use non-default settings.

In this example (similar to above), we construct a custom
PythonInterpreterConfig instance using non-defaults and then pass
this instance into the constructed PythonExecutable:

def make_dist():
    return default_python_distribution()

def make_exe(dist):
    config = dist.make_python_interpreter_config()
    config.run_code = "print('hello, world')"

    return dist.to_python_executable("myapp", config=config)

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"], default=True)





The PythonInterpreterConfig type exposes a lot of modifiable settings.
See the API documentation for
the complete list. These settings include but are not limited to:


	Control of low-level Python interpreter settings, such as whether
environment variables (like PYTHONPATH) should influence run-time
behavior, whether stdio should be buffered, and the filesystem encoding
to use.


	Whether to enable the importing of Python modules from the filesystem
and what the initial value of sys.path should be.


	The memory allocator that the Python interpreter should use.


	What Python code to run when the interpreter is started.


	How the terminfo database should be located.




Many of these settings are not needed for most programs and the defaults
are meant to be reasonable for most programs. However, some settings - such
as the run_* arguments defining what Python code to run by default - are
required by most configuration files.




Adding Python Packages to Executables

A just-created PythonExecutable Starlark type contains just the
Python interpreter and standard library derived from the PythonDistribution
from which it came. While you can use PyOxidizer to produce an executable
containing just a normal Python distribution with nothing else, many people
will want to add their own Python packages/code.

The Starlark environment defines various types for representing Python
package resources. These include
PythonModuleSource,
PythonExtensionModule,
PythonPackageDistributionResource,
and more.

Instances of these types can be created dynamically or by performing
common Python packaging operations (such as invoking pip install) via
various methods on PythonExecutable instances. These Python package
resource instances can then be added to PythonExecutable instances
so they are part of the built binary.

See Managing How Resources are Added and Packaging Python Files
for more on this topic, including many examples.




Install Manifests Copy Files Next to Your Application

The FileManifest Starlark type represents a
collection of files and their content. When FileManifest instances are
returned from a target function, their build action results in their contents
being manifested in a directory having the name of the build target.

FileManifest instances can be used to construct custom file install
layouts.

Say you have an existing directory tree of files you want to copy
next to your built executable defined by the PythonExecutable type.

The glob() function can be used to discover existing
files on the filesystem and turn them into a FileManifest. You can then
return this FileManifest directory or overlay it onto another
instance using FileManifest.add_manifest(). Here’s an
example:

def make_dist():
    return default_python_distribution()

def make_exe(dist):
    return dist.to_python_executable("myapp")

def make_install(exe):
    m = FileManifest()

    m.add_python_resource(".", exe)

    templates = glob(["/path/to/project/templates/**/*"], strip_prefix="/path/to/project/")
    m.add_manifest(templates)

    return m

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"])
register_target("install", make_install, depends=["exe"], default=True)





We introduce a new install target and make_install() function which
returns a FileManifest. It adds the PythonExecutable (represented
by the exe argument/variable) to that manifest in the root directory,
signified by ..

Next, it calls glob() to find all files in the
/path/to/project/templates/ directory tree, strips the path prefix
/path/to/project/ from them, and then merges all of these files into
the final manifest.

When the InstallManifest is built, the final layout should look something
like the following:


	install/myapp (or install/myapp.exe on Windows)


	install/templates/foo


	install/templates/...




See Packaging Files Instead of In-Memory Resources for more on this topic.







          

      

      

    

  

    
      
          
            
  
Understanding Python Distributions

The PythonDistribution Starlark type represents
a Python distribution, an entity providing a Python installation
and build files which PyOxidizer uses to build your applications. See
Python Distributions Provide Python for more.


Available Python Distributions

PyOxidizer ships with its own list of available Python distributions.
These are constructed via the
default_python_distribution() Starlark method. Under
most circumstances, you’ll want to use one of these distributions
instead of providing your own because these distributions are tested
and should have maximum compatibility.

Here are the built-in Python distributions:










	Source

	Version

	Flavor

	Build Target





	CPython

	3.8.6

	standalone_dynamic

	x86_64-unknown-linux-gnu



	CPython

	3.9.0

	standalone_dynamic

	x86_64-unknown-linux-gnu



	CPython

	3.8.6

	standalone_static

	x86_64-unknown-linux-musl



	CPython

	3.9.0

	standalone_static

	x86_64-unknown-linux-musl



	CPython

	3.8.6

	standalone_dynamic

	i686-pc-windows-msvc



	CPython

	3.9.0

	standalone_dynamic

	i686-pc-windows-msvc



	CPython

	3.8.6

	standalone_static

	i686-pc-windows-msvc



	CPython

	3.9.0

	standalone_static

	i686-pc-windows-msvc



	CPython

	3.8.6

	standalone_dynamic

	x86_64-pc-windows-msvc



	CPython

	3.9.0

	standalone_dynamic

	x86_64-pc-windows-msvc



	CPython

	3.8.6

	standalone_static

	x86_64-pc-windows-msvc



	CPython

	3.9.0

	standalone_static

	x86_64-pc-windows-msvc



	CPython

	3.8.6

	standalone_dynamic

	x86_64-apple-darwin



	CPython

	3.9.0

	standalone_dynamic

	x86_64-apple-darwin






All of these distributions are provided by the
python-build-standalone [https://github.com/indygreg/python-build-standalone],
and are maintained by the maintainer of PyOxidizer.




Python Version Compatibility

PyOxidizer is capable of working with Python 3.8 and 3.9.

Python 3.8 is the default Python version because it has been around
for a while and is relatively stable. Once Python 3.9 matures, it
will eventually become the default Python version.

PyOxidizer’s tests are run primarily against the default Python
version. So adopting a non-default version may risk running into
subtle bugs.




Choosing a Python Distribution

The Python 3.8 distributions are the default and are better tested
than the Python 3.9 distributions. If you care about stability,
you should use 3.8.

The standalone_dynamic distributions behave much more similarly
to traditional Python build configurations than do their
standalone_static counterparts. The standalone_dynamic
distributions are capable of loading Python extension modules that
exist as shared library files. So when working with standalone_dynamic
distributions, Python wheels containing pre-built Python extension
modules often just work.

The downside to standalone_dynamic distributions is that you cannot
produce a single file, statically-linked executable containing your
application in most circumstances: you will need a standalone_static
distribution to produce a single file executable.

But as soon as you encounter a third party extension module with a
standalone_static distribution, you will need to recompile it. And
this is often unreliable.




Binary Portability of Distributions

The built-in Python distributions are built in such a way that they should
run on nearly every system for the platform they target. This means:


	All 3rd party shared libraries are part of the distribution (e.g.
libssl and libsqlite3) and don’t need to be provided by the
run-time environment.


	Some distributions are statically linked and have no dependencies on
any external shared libraries.


	On the glibc linked Linux distributions, they use an old glibc version
for symbol versions, enabling them to run on Linux distributions created
years ago. (The current version is 2.19, which was released in 2014.)


	Any shared libraries not provided by the distribution are available in
base operating system installs. On Linux, example shared libraries include
libc.so.6 and linux-vdso.so.1, which are part of the Linux Standard
Base Core Configuration and should be present on all conforming Linux
distros. On macOS, referenced dylibs include libSystem, which is part
of the macOS core install.


	On macOS, distributions are compiled with MACOSX_DEPLOYMENT_TARGET=10.9
so they only used SDK features present on macOS >=10.9, enabling them to
run on sufficiently old macOS versions.










          

      

      

    

  

    
      
          
            
  
Managing How Resources are Added

An important concept in PyOxidizer packaging is how to manage resources
that are added to built applications.

A resource is some entity that will be packaged and distributed. Examples
of resources include Python module source and bytecode, Python
extension modules, and arbitrary files on the filesystem.

Resources are represented by a dedicated Starlark type for each
resource flavor (see Resource Types).

During evaluation of PyOxidizer’s Starlark configuration files,
resources are created and added to another Starlark type whose
job is to collect all desired resources and then do something with
them.


Classified Resources Versus Files

All resources in PyOxidizer are ultimately derived from or representable
by a file or a file-like primitive. For example, a
PythonModuleSource is derived from or could be
manifested as a .py file.

Various PyOxidizer functionality works by scanning existing files and
turning those files into resources.

This file scanning functionality has two modes of operation: classified
and files. In files mode, PyOxidizer simply emits resources corresponding
to the raw files it encounters. In classified mode, PyOxidizer attempts to
classify a file as a particular resource and emit a strongly-typed
resource like PythonModuleSource or
PythonExtensionModule.

Classified mode is more powerful because PyOxidizer is able to build
an index of typed resources at packaging time and make this index
available to oxidized_importer Python Extension at run-time to facilitate faster
loading of resources.

However, the main downside to classified mode is it relies on being able
to identify files properly and this is unreliable. Python file layouts are
under-specified and there are many edge cases where PyOxidizer fails to
properly classify a file. See Debugging Resource Scanning and Identification with find-resources for how to identify
problems here.

In files mode, PyOxidizer simply indexes and manages a named file
and its content. There is far less potential for PyOxidizer to make
mistakes about a file’s type and how it is handled. This means that
files mode often just works when classified mode doesn’t. The main
downside to files mode is that oxidized_importer Python Extension doesn’t have a
rich index embedded in the built binary, so you will have to rely on
Python’s default filesystem-based importer, which is slower than
oxidized_importer.




Packaging Policies and Adding Resources

The exact mechanism by which resources are emitted and added to resource
collectors is influenced by a packaging policy (represented by the
PythonPackagingPolicy Starlark type) and attributes on
each resource object influencing how they are added.

When resources are created, the packaging policy determines whether
emitted resources are classified or simply files. And the packaging
policy is applied to each created resource to populate the initial values
for the various add_* attributes on the Starlark resource types.

When a resource is added (e.g. by calling
PythonExecutable.add_python_resource()), these aforementioned
add_* attributes are consulted and used to influence exactly how that
resource is added/packaged.

For example, a PythonModuleSource can set attributes
indicating to exclude source code and only generate bytecode at
a specific optimization level. Or a PythonExtensionModule
can set attributes saying to prefer to compile it into the built
binary or materialize it as a standalone dynamic extension module
(e.g. my_ext.so or my_ext.pyd).




Resource Types

The following Starlark types represent individual resources:


	PythonModuleSource

	Source code for a Python module. Roughly equivalent to a .py file.

This type can also be converted to Python bytecode (roughly equivalent
to a .pyc) when added to a resource collector.



	PythonExtensionModule

	A Python module defined through compiled, machine-native code. On Linux,
these are typically encountered as .so files. On Windows, .pyd files.



	PythonPackageResource

	A non-module resource file loadable by Python resources APIs, such as
those in importlib.resources.



	PythonPackageDistributionResource

	A non-module resource file defining metadata for a Python package.
Typically accessed via importlib.metadata. This is how files in
*.dist-info or *.egg-info directories are represented.



	File

	Represents a filesystem path and its content.



	FileContent

	Represents the content of a filesystem file.

This is different from File in that it only
represents file content and doesn’t have an associated path. (It is
likely these 2 types will be merged someday.)





There are also Starlark types that are logically containers for multiple
resources:


	FileManifest

	Holds a mapping of relative filesystem paths to FileContent instances.
This type effectively allows modeling a directory tree.



	PythonEmbeddedResources

	Holds a collection of Python resources of various types. (This type is often
hidden away. e.g. inside a PythonExecutable instance.)








Resource Locations

Resources have the concept of a location. A resource’s location
determines where the data for that resource is packaged and how that
resource is loaded at run-time.


In-Memory

When a Python resource is placed in the in-memory location, the content
behind the resource will be embedded in a built binary and loaded from there
by the Python interpreter.

Python modules imported from memory do not have the __file__ attribute
set. This can cause compatibility issues if Python code is relying on the
existence of this module. See __file__ and __cached__ Module Attributes for more.




Filesystem-Relative

When a Python resource is placed in the filesystem-relative location,
the resource will be materialized as a file next to the produced entity.
e.g. a filesystem-relative PythonModuleSource for the foo.bar
Python module added to a PythonExecutable will be materialized as the
file foo/bar.py or foo/bar/__init__.py in a directory next to the
built executable.

Resources added to filesystem-relative locations should be materialized
under paths that preserve semantics with standard Python file layouts. For
e.g. Python source and bytecode modules, it should be possible to point
sys.path of any Python interpreter at the destination directory and
the modules will be loadable.

During packaging, PyOxidizer indexes all filesystem-relative resources
and embeds metadata about them in the built binary. While the files on the
filesystem may look like a standard Python install layout, loading them is
serviced by PyOxidizer’s custom importer, not the standard importer that
Python uses by default.






Customizing Python Packaging Policies

As described in Packaging Policies and Adding Resources, a
PythonPackagingPolicy Starlark type instance is bound to every
entity creating resource instances and this packaging policy is
used to derive the default add_* attributes which influence
what happens when a resource is added to some entity.

PythonPackagingPolicy instances can be customized to influence
what the default values of the add_* attributes are.

The primary mechanisms for doing this are:


	Modifying the PythonPackagingPolicy instance’s internal
state. See PythonPackagingPolicy for the full
list of object attributes and methods that can be set or called.


	Registering a function that will be called whenever a resource
is created. This enables custom Starlark code to perform
arbitrarily complex logic to influence settings and enables
application developers to devise packaging strategies more
advanced than what PyOxidizer provides out-of-the-box.




The following sections give examples of customized packaging
policies.


Changing the Resource Handling Mode

As documented in Classified Resources Versus Files, PyOxidizer
can operate on classified resources or files-based resources.

PythonPackagingPolicy.set_resource_handling_mode()
exists to change the operating mode of a PythonPackagingPolicy
instance.

def make_exe():
    dist = default_python_distribution()

    policy = dist.make_python_packaging_policy()

    # Set policy attributes to only operate on "classified" resource types.
    # (This is the default.)
    policy.set_resource_handling_mode("classify")

    # Set policy attributes to only operate on `File` resource types.
    policy.set_resource_handling_mode("files")





PythonPackagingPolicy.set_resource_handling_mode() is
just a convenience method for manipulating a collection of attributes on
PythonPackagingPolicy instances. If you don’t like the behavior of
its pre-defined modes, feel free to adjust attributes to suit your needs.
You can even configure things to emit both classified and files
variants simultaneously!




Customizing Default Resource Locations

The PythonPackagingPolicy.resources_location and
PythonPackagingPolicy.resources_location_fallback attributes define
primary and fallback locations that resources should attempt to be added
to. These effectively define the default values for the add_location
and add_location_fallback attributes on individual resource objects.

The accepted values are:


	in-memory

	Load resources from memory.



	filesystem-relative:prefix

	Load resources from the filesystem at a path relative to some entity
(probably the binary being built).





Additionally, PythonPackagingPolicy.resources_location_fallback can be
set to None to remove a fallback location.

And here is how you would manage these values in Starlark:

def make_exe():
    dist = default_python_distribution()

    policy = dist.make_python_packaging_policy()
    policy.resources_location = "in-memory"
    policy.resources_location_fallback = None

    # Only allow resources to be added to the in-memory location.
    exe = dist.to_python_executable(
        name = "myapp",
        packaging_policy = policy,
    )

    # Only allow resources to be added to the filesystem-relative location under
    # a "lib" directory.

    policy = dist.make_python_packaging_policy()
    policy.resources_location = "filesystem-relative:lib"
    policy.resources_location_fallback = None

    exe = dist.to_python_executable(
        name = "myapp",
        packaging_policy = policy,
    )

    # Try to add resources to in-memory first. If that fails, add them to a
    # "lib" directory relative to the built executable.

    policy = dist.make_python_packaging_policy()
    policy.resources_location = "in-memory"
    policy.resources_location_fallback = "filesystem-relative:lib"

    exe = dist.to_python_executable(
        name = "myapp",
        packaging_policy = policy,
    )

    return exe








Using Callbacks to Influence Resource Attributes

The PythonPackagingPolicy.register_resource_callback(func) method will
register a function to be called when resources are created. This function
receives as arguments the active PythonPackagingPolicy and the newly
created resource.

Functions registered as resource callbacks are called after the
add_* attributes are derived for a resource but before the resource
is otherwise made available to other Starlark code. This means that
these callbacks provide a hook point where resources can be modified as
soon as they are created.

register_resource_callback() can be called multiple times to register
multiple callbacks. Registered functions will be called in order of
registration.

Functions can be leveraged to unify all resource packaging logic in a
single place, making your Starlark configuration files easier to reason
about.

Here’s an example showing how to route all resources belonging to
a single package to a filesystem-relative location and everything
else to memory:

def resource_callback(policy, resource):
    if type(resource) in ("PythonModuleSource", "PythonPackageResource", "PythonPackageDistributionResource"):
        if resource.package == "my_package":
            resource.add_location = "filesystem-relative:lib"
        else:
            resource.add_location = "in-memory"

def make_exe():
    dist = default_python_distribution()

    policy = dist.make_python_packaging_policy()
    policy.register_resource_callback(resource_callback)

    exe = dist.to_python_executable(
        name = "myapp",
        packaging_policy = policy,
    )

    exe.add_python_resources(exe.pip_install(["my_package"]))










PythonExtensionModule Location Compatibility

Many resources just work in any available location. This is not the case for
PythonExtensionModule instances!

While there only exists a single PythonExtensionModule type to represent
Python extension modules, Python extension modules come in various flavors.
Examples of flavors include:


	A module that is part of a Python distribution and is compiled into
libpython (a builtin extension module).


	A module that is part of a Python distribution that is compiled as a
standalone shared library (e.g. a .so or .pyd file).


	A non-distribution module that is compiled as a standalone shared library.


	A non-distribution module that is compiled as a static library.




Not all extension module flavors are compatible with all Python
distributions. Furthermore, not all flavors are compatible with all
build configurations.

Here are some of the rules governing extension modules and their locations:


	A builtin extension module that’s part of a Python distribution will
always be statically linked into libpython.


	A Windows Python distribution with a statically linked libpython
(e.g. the standalone_static distribution flavor) is not capable
of loading extension modules defined as shared libraries and only supports
loading builtin extension modules statically linked into the binary.


	A Windows Python distribution with a dynamically linked libpython
(e.g. the standalone_dynamic distribution flavor) is capable of
loading shared library backed extension modules from the in-memory
location. Other operating systems do not support the in-memory location
for loading shared library extension modules.


	If the current build configuration targets Linux MUSL-libc, shared library
extension modules are not supported and all extensions must be statically
linked into the binary.


	If the object files for the extension module are available, the extension
module may be statically linked into the produced binary.


	If loading extension modules from in-memory import is supported, the
extension module will have its dynamic library embedded in the binary.


	The extension module will be materialized as a file next to the produced
binary and will be loaded from the filesystem. (This is how Python
extension modules typically work.)





Note

Extension module handling is one of the more nuanced aspects of PyOxidizer.
There are likely many subtle bugs and room for improvement. If you
experience problems handling extension modules, please consider
filing an issue [https://github.com/indygreg/PyOxidizer/issues].









          

      

      

    

  

    
      
          
            
  
Packaging Python Files

The most important packaged resource type
are arguably Python files: source modules, bytecode modules,
extension modules, package resources, etc.

For PyOxidizer to recognize these Python resources as Python resources
(as opposed to regular files), you will need to use the methods on the
PythonExecutable Starlark type
to use the settings from the thing being built to scan for resources, possibly
performing a Python packaging action (such as invoking pip install) along
the way.

This documentation covers the available methods and how they can be
used.


PythonExecutable Python Resources Methods

The PythonExecutable Starlark type has the following methods that
can be called to perform an action and obtain an iterable of objects
representing discovered resources:


	pip_download(…)

	Invokes pip download with specified arguments and collects
resources discovered from downloaded Python wheels.



	pip_install(…)

	Invokes pip install with specified arguments and collects all
resources installed by that process.



	read_package_root(…)

	Recursively scans a filesystem directory for Python resources in a
typical Python installation layout.



	setup_py_install(…)

	Invokes python setup.py install for a given path and collects
resources installed by that process.



	read_virtualenv(…)

	Reads Python resources present in an already populated virtualenv.





Typically, the Starlark types resolved by these method calls are
passed into a method that adds the resource to a to-be-generated
entity, such as the PythonExecutable
Starlark type.

The following sections demonstrate common use cases.




Packaging an Application from a PyPI Package

In this section, we’ll show how to package the
pyflakes [https://pypi.org/project/pyflakes/] program using a published
PyPI package. (Pyflakes is a Python linter.)

First, let’s create an empty project:

$ pyoxidizer init-config-file pyflakes





Next, we need to edit the configuration file to tell
PyOxidizer about pyflakes. Open the pyflakes/pyoxidizer.bzl file in your
favorite editor.

Find the make_exe() function. This function returns a
PythonExecutable instance which defines
a standalone executable containing Python. This function is a registered
target, which is a named entity that can be individually built or run.
By returning a PythonExecutable instance, this function/target is saying
build an executable containing Python.

The PythonExecutable type holds all state needed to package and run
a Python interpreter. This includes low-level interpreter configuration
settings to which Python resources (like source and bytecode modules)
are embedded in that executable binary. This type exposes an
add_python_resources()
method which adds an iterable of objects representing Python resources to the
set of embedded resources.

Elsewhere in this function, the dist variable holds an instance of
PythonDistribution. This type
represents a Python distribution, which is a fancy way of saying
an implementation of Python.

Two of the methods exposed by PythonExecutable are
pip_download() and
pip_install(), which
invoke pip commands with settings to target the built executable.

To add a new Python package to our executable, we call one of these
methods then add t he results to our PythonExecutable instance. This
is done like so:

exe.add_python_resources(exe.pip_download(["pyflakes==2.2.0"]))
# or
exe.add_python_resources(exe.pip_install(["pyflakes==2.2.0"]))





When called, these methods will effectively run pip download pyflakes==2.2.0
or pip install pyflakes==2.2.0, respectively. Actions are performed in
a temporary directory and after pip runs, PyOxidizer will collect all the
downloaded/installed resources (like module sources and bytecode data) and
return them as an iterable of Starlark values. The
exe.add_python_resources() call will then teach the built executable
binary about the existence of these resources. Many resource types will be
embedded in the binary and loaded from binary. But some resource types (notably
compiled extension modules) may be installed next to the built binary and
loaded from the filesystem.

Next, we tell PyOxidizer to run pyflakes when the interpreter is executed:

python_config.run_code = "from pyflakes.api import main; main()"





This says to effectively run the Python code
eval(from pyflakes.api import main; main()) when the embedded interpreter
starts.

The new make_exe() function should look something like the following (with
comments removed for brevity):

def make_exe(dist):
    policy = dist.make_python_packaging_policy()
    policy.extension_module_filter = "all"
    policy.include_distribution_sources = True
    policy.include_distribution_resources = True
    policy.include_test = False

    config = dist.make_python_interpreter_config()
    config.run_code = "from pyflakes.api import main; main()"

    exe = dist.to_python_executable(
        name="pyflakes",
        packaging_policy=policy,
        config=config,
    )

    exe.add_python_resources(exe.pip_install(["pyflakes==2.1.1"]))

    return exe





With the configuration changes made, we can build and run a pyflakes
native executable:

# From outside the ``pyflakes`` directory
$ pyoxidizer run --path /path/to/pyflakes/project -- /path/to/python/file/to/analyze

# From inside the ``pyflakes`` directory
$ pyoxidizer run -- /path/to/python/file/to/analyze

# Or if you prefer the Rust native tools
$ cargo run -- /path/to/python/file/to/analyze





By default, pyflakes analyzes Python source code passed to it via
stdin.




Packaging an Application from an Existing Virtualenv

This scenario is very similar to the above example. So we’ll only briefly
describe what to do so we don’t repeat ourselves.:

$ pyoxidizer init-config-file /path/to/myapp





Now edit the pyoxidizer.bzl so the make_exe() function look like the
following:

def make_exe(dist):
    policy = dist.make_python_packaging_policy()
    policy.extension_module_filter = "all"
    policy.include_distribution_sources = True
    policy.include_distribution_resources = False
    policy.include_test = False

    config = dist.make_python_interpreter_config()
    config.run_code = "from myapp import main; main()"

    exe = dist.to_python_executable(
        name="myapp",
        packaging_policy=policy,
        config=config,
    )

    exe.add_python_resources(exe.read_virtualenv("/path/to/virtualenv"))

    return exe





Of course, you need a populated virtualenv!:

$ python3.8 -m venv /path/to/virtualenv
$ /path/to/virtualenv/bin/pip install -r /path/to/requirements.txt





Once all the pieces are in place, simply run pyoxidizer to build and
run the application:

$ pyoxidizer run --path /path/to/myapp






Warning

When consuming a pre-populated virtualenv, there may be compatibility
differences between the Python distribution used to populate the virtualenv
and the Python distributed used by PyOxidizer at build and application run
time.

For best results, it is recommended to use a packaging method like
pip_install(...) or setup_py_install(...) to use PyOxidizer’s
Python distribution to invoke Python’s packaging tools.






Packaging an Application from a Local Python Package

Say you have a Python package/application in a local directory. It follows
the typical Python package layout and has a setup.py file and Python
files in sub-directories corresponding to the package name. e.g.:

setup.py
mypackage/__init__.py
mypackage/foo.py





You have a number of choices as to how to proceed here. Again, the
workflow is very similar to what was explained above. The main difference
is the content of the pyoxidizer.bzl file and the exact
method to call
to obtain the Python resources.

You could use pip install <local path> to use pip to process a local
filesystem path:

exe.add_python_resources(exe.pip_install(["/path/to/local/package"]))





If the pyoxidizer.bzl file is in the same directory as the directory you
want to process, you can derive the absolute path to this directory via the
CWD Starlark variable:

exe.add_python_resources(exe.pip_install([CWD]))





If you don’t want to use pip and want to run setup.py directly,
you can do so:

exe.add_python_resources(exe.setup_py_install(package_path=CWD))





Or if you don’t want to run a Python packaging tool at all and just
scan a directory tree for Python files:

exe.add_python_resources(exe.read_package_root(CWD, ["mypackage"]))






Note

In this mode, all Python resources must already be in place in their
final installation layout for things to work correctly. Many setup.py
files perform additional actions such as compiling Python extension
modules, installing additional files, dynamically generating some files,
or changing the final installation layout.

For best results, use a packaging method that invokes a Python packaging
tool (like pip_install(...) or setup_py_install(...).






Choosing Which Packaging Method to Call

There are a handful of different methods for obtaining Python resources that
can be added to a resource collection. Which one should you use?

The reason there are so many methods is because the answer is: it depends.

Each method for obtaining resources has its niche use cases. That being said,
the preferred method for obtaining Python resources is pip_download().
However, pip_download() may not work in all cases, which is why other
methods exist.

PythonExecutable.pip_download() runs pip download and
attempts to fetch Python wheels for specified packages, requirements files,
etc. It then extracts files from inside the wheel and converts them to
Python resources which can be added to resource collectors.


Important

pip_download() will only work if a compatible Python wheel package
(.whl file) is available. If the configured Python package repository
doesn’t offer a compatible wheel for the specified package or any of its
dependencies, the operation will fail.

Many Python packages do not yet publish wheels (only .tar.gz archives)
or don’t publish at all to Python package repositories (this is common in
corporate environments, where you don’t want to publish your proprietary
packages on PyPI or you don’t run a Python package server).




Important

Not all build targets support pip_download() for all published packages.
For example, when targeting Linux musl libc, built binaries are fully static
and aren’t capable of loading Python extension modules (which are shared
libraries). So pip_download() only supports source-only Python wheels
in this configuration.



Another advantage of pip_download() is it supports cross-compiling.
Unlike pip install, pip download supports arguments that tell it
which Python version, platform, implementation, etc to download packages
for. PyOxidizer automatically tells pip download to download wheels
that are compatible with the target environment you are building for. This
means you can do things like download wheels containing Windows binaries
when building on Linux.


Note

Cross-compiling is not yet fully supported by PyOxidizer and likely
doesn’t work in many cases. However, this is a planned feature (at least
for some configurations) and pip_download() is likely the most
future-proof mechanism to support installing Python packages when
cross-compiling.



A potential downside with pip_download() is that it only supports
classical Python binary loading/shipping techniques. If you are trying
to produce a statically linked executable containing custom Python
extension modules, pip_download() won’t work for you.

After pip_download,
PythonExecutable.pip_install() and
PythonExecutable.setup_py_install() are the next most-preferred
packaging methods.

Both of these work by locally running a Python packaging action
(pip install or python setup.py install, respectively) and then
collecting resources installed by that action.

The advantage over pip download is that a pre-built Python wheel
does not have to be available and published on a Python package repository
for these commands to work: you can run either against say a local version
control checkout of a Python project and it should work.

The main disadvantage over pip download is that you are running
Python packaging operations on the local machine as part of building
an executable. If your package contains just Python code, this should
just work. But if you need to compile extension modules, there’s a
good chance your local machine may either not be able to build them
properly or will build those extension modules in such a way that
they aren’t compatible with other machines you want to run them on.

The final options for obtaining Python resources are
PythonExecutable.read_package_root() and
PythonExecutable.read_virtualenv(). Both of these methods
rely on traversing a filesystem tree that is already populated with Python
resources. This should just work if only pure Python resources are in play.
But if there are compiled Python extension modules, all bets are off and
there is no guarantee that found extension modules will be compatible with
PyOxidizer or will have binary compatibility with other machines. These
resource discovery mechanisms also rely on state not under the control of
PyOxidizer and therefore packaging results may be highly inconsistent and
not reproducible across runs. For these reasons, read_package_root()
and read_virtualenv() are the least preferred methods for Python resource
discovery.







          

      

      

    

  

    
      
          
            
  
Packaging Files Instead of In-Memory Resources

By default, PyOxidizer will classify files into typed resources and
attempt to load these resources from memory (with the exception of
compiled extension modules, which require special treatment). Please
read Managing How Resources are Added, specifically
Classified Resources Versus Files and
Resource Locations for more on the concepts of
classification and resource locations.

This is the ideal packaging method because it keeps the entire application
self-contained and can result in
performance wins at run-time.

However, sometimes this approach isn’t desired or flat out doesn’t work.
Fear not: PyOxidizer has you covered.


Examples of Packaging Failures

Let’s give some concrete examples of how PyOxidizer’s default packaging
settings can fail.


black

Let’s demonstrate a failure attempting to package
black [https://github.com/python/black], a Python code formatter.

We start by creating a new project:

$ pyoxidizer init-config-file black





Then edit the pyoxidizer.bzl file to have the following:

def make_exe(dist):
    config = dist.make_python_interpreter_config()
    config.run_module = "black"

    exe = dist.to_python_executable(
        name = "black",
    )

    for resource in exe.pip_install(["black==19.3b0"]):
        resource.add_location = "in-memory"
        exe.add_python_resource(resource)

    return exe





Then let’s attempt to build the application:

$ pyoxidizer build --path black
processing config file /home/gps/src/black/pyoxidizer.bzl
resolving Python distribution...
...





Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path black
Traceback (most recent call last):
  File "black", line 46, in <module>
  File "blib2to3.pygram", line 15, in <module>
NameError: name '__file__' is not defined
SystemError





Uh oh - that’s didn’t work as expected.

As the error message shows, the blib2to3.pygram module is trying to
access __file__, which is not defined. As explained by __file__ and __cached__ Module Attributes,
PyOxidizer doesn’t set __file__ for modules loaded from memory. This is
perfectly legal as Python doesn’t mandate that __file__ be defined. But
black (and many other Python modules) assume __file__ always exists.
So it is a problem we have to deal with.




NumPy

Let’s attempt to package NumPy [https://numpy.org/], a popular Python
package used by the scientific computing crowd.


$ pyoxidizer init-config-file numpy




Then edit the pyoxidizer.bzl file to have the following:

def make_exe(dist):
    policy = dist.make_python_packaging_policy()
    policy.resources_location_fallback = "filesystem-relative:lib"

    exe = dist.to_python_executable(
        name = "numpy",
        packaging_policy = policy,
    )

    for resource in exe.pip_download(["numpy==1.19.0"]):
        resource.add_location = "filesystem-relative:lib"
        exe.add_python_resource(resource)

    return exe





We did things a little differently from the black example above:
we’re explicitly adding NumPy’s resources into the filesystem-relative
location so they are materialized as files instead of loaded from memory.
This is to demonstrate a separate failure mode.

Then let’s attempt to build the application:

$ pyoxidizer build --path numpy
processing config file /home/gps/src/numpy/pyoxidizer.bzl
resolving Python distribution...
...





Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path numpy
...
Python 3.8.6 (default, Oct  3 2020, 20:48:20)
[Clang 10.0.1 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
Traceback (most recent call last):
  File "numpy.core", line 22, in <module>
  File "numpy.core.multiarray", line 12, in <module>
  File "numpy.core.overrides", line 7, in <module>
ImportError: libopenblasp-r0-ae94cfde.3.9.dev.so: cannot open shared object file: No such file or directory

During handling of the above exception, another exception occurred:
...





That’s not good! What happened?

Well, the hint is in the stack trace: libopenblasp-r0-ae94cfde.3.9.dev.so:
cannot open shared object file: No such file or directory. So there’s a file
named libopenblasp-r0-ae94cfde.3.9.dev.so that can’t be found. Let’s
look in our install layout:

$ find numpy/build/x86_64-unknown-linux-gnu/debug/install/ | grep libopenblasp
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-ae94cfde
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-ae94cfde/3
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-ae94cfde/3/9
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-ae94cfde/3/9/dev.so





Well, we found some files, including a .so file! But the filename has been
mangled.

This filename mangling is actually a bug in PyOxidizer’s file/resource
classification. See Incorrect Resource Identification and
Classified Resources Versus Files for more.






Installing Classified Resources on the Filesystem

In the black example above, we saw how
black failed to run with modules imported from memory because of
__file__ not being defined.

In scenarios where in-memory resource loading doesn’t work, the ideal
mitigation is to fix the offending Python modules so they can load
from memory. But this isn’t always trivial or possible with 3rd party
dependencies.

Your next mitigation should be to attempt to place the resource on the
filesystem, next to the built binary.

This will require configuration file changes.

The goal of our new configuration is to materialize Python resources
associated with black on the filesystem instead of in memory.

Change your configuration file so make_exe() looks like the following:

def make_exe(dist):
    policy = dist.make_python_packaging_policy()
    policy.resources_location_fallback = "filesystem-relative:lib"

    python_config = dist.make_python_interpreter_config()
    python_config.run_module = "black"

    exe = dist.to_python_executable(
        name = "black",
        packaging_policy = policy,
        config = python_config,
    )

    for resource in exe.pip_install(["black==19.3b0"]):
        resource.add_location = "filesystem-relative:lib"
        exe.add_python_resource(resource)

    return exe





There are a few changes here.

We constructed a new PythonPackagingPolicy via
PythonDistribution.make_python_packaging_policy() and set
its resources_location_fallback
attribute to filesystem-relative-lib. This allows us to install resources
on the filesystem, relative to the produced binary.

Next, in the for resource in exe.pip_install(...) loop, we set
resource.add_location = "filesystem-relative:lib". What this does
is tell the subsequent call to
PythonExecutable.add_python_resource() to add the resource
as a filesystem-relative resource in the lib directory.

With the new configuration in place, let’s re-build and run the application:

$ pyoxidizer run --path black
...
adding extra file lib/toml-0.10.1.dist-info/top_level.txt to .
installing files to /home/gps/tmp/myapp/build/x86_64-unknown-linux-gnu/debug/install
No paths given. Nothing to do 😴





That No paths given output is from black: it looks like the new
configuration worked!

If you examine the build output, you’ll see a bunch of messages indicating
that extra files are being installed to the lib/ directory. And if you
poke around in the install directory, you will in fact see all these
files.

In this configuration file, the Python distribution’s files are all loaded
from memory but black resources (collected via pip install black) are
materialized on the filesystem. All of the resources are indexed by PyOxidizer
at build time and that index is embedded into the built binary so
oxidized_importer Python Extension can find and load resources more efficiently.

Because only some of the Python modules used by black have a dependency
on __file__, it is probably possible to cherry pick exactly which
resources are materialized on the filesystem and minimize the number of
files present. We’ll leave that as an exercise for the reader.




Installing Unclassified Files on the Filesystem

In Installing Classified Resources on the Filesystem we demonstrated
how to move classified resources from memory to the filesystem in order to
work around issues importing a module from memory.

Astute readers may have already realized that this workaround
(setting .add_location to filesystem-relative:...) was attempted
in the NumPy failure example above. So this
workaround doesn’t always work.

In cases where PyOxidizer’s resource classifier or logic to materialize
those classified resources as files is failing (presumably due to bugs
in PyOxidizer), you can fall back to using unclassified, file-based
resources. See Classified Resources Versus Files for more
on classified versus files based resources.

Our approach here is to switch from classified to files packaging
mode. Using our NumPy example from above, change the make_exe() in
your configuration file to as follows:

def make_exe(dist):
    policy = dist.make_python_packaging_policy()
    policy.set_resource_handling_mode("files")
    policy.resources_location_fallback = "filesystem-relative:lib"

    python_config = dist.make_python_interpreter_config()
    python_config.module_search_paths = ["$ORIGIN/lib"]

    exe = dist.to_python_executable(
        name = "numpy",
        packaging_policy = policy,
        config = python_config,
    )

    for resource in exe.pip_download(["numpy==1.19.0"]):
        resource.add_location = "filesystem-relative:lib"
        exe.add_python_resource(resource)

    return exe





There are a few key lines here.

policy.set_resource_handling_mode("files") calls a method on the
PythonPackagingPolicy to set the resource handling
mode to files. This effectively enables File based
resources to work. Without it, resource scanners won’t emit
File and attempts at adding File
to a resource collection will fail.

Next, we enable file-based resource installs by setting
resources_location_fallback.

Another new line is python_config.module_search_paths = ["$ORIGIN/lib"].
This all-important line to set
module_search_paths effectively
installs the lib directory next to the executable on sys.path at
run-time. And as a side-effect of defining this attribute, Python’s built-in
module importer is enabled (to supplement oxidized_importer). This is
important because because when you are operating in files mode, resources
are indexed as files and not classified/typed resources. This means
oxidized_importer doesn’t recognize them as loadable Python modules.
But since you enable Python’s standard importer and register lib/ as
a search path, Python’s standard importer will be able to find the numpy
package at run-time.

Anyway, let’s see if this actually works:

$ pyoxidizer run --path numpy
...
adding extra file lib/numpy.libs/libgfortran-2e0d59d6.so.5.0.0 to .
adding extra file lib/numpy.libs/libopenblasp-r0-ae94cfde.3.9.dev.so to .
adding extra file lib/numpy.libs/libquadmath-2d0c479f.so.0.0.0 to .
adding extra file lib/numpy.libs/libz-eb09ad1d.so.1.2.3 to .
installing files to /home/gps/tmp/myapp/build/x86_64-unknown-linux-gnu/debug/install
Python 3.8.6 (default, Oct  3 2020, 20:48:20)
[Clang 10.0.1 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> numpy.__loader__
<_frozen_importlib_external.SourceFileLoader object at 0x7f063da1c7f0>





It works!

Critically, we see that the formerly missing libopenblasp-r0-ae94cfde.3.9.dev.so
file is being installed to the correct location. And we can confirm from the
numpy.__loader__ value that the standard library’s module loader is
being used. Contrast with a standard library module:

>>> import pathlib
>>> pathlib.__loader__
<OxidizedFinder object at 0x7f063dc8f8f0>





Enabling files mode and falling back to Python’s importer is often a good
way of working around bugs in PyOxidizer’s resource handling. But it isn’t
bulletproof.


Important

Please file a bug report <https://github.com/indygreg/PyOxidizer/issues>
if you encounter any issues with PyOxidizer’s handling of resources and
paths.









          

      

      

    

  

    
      
          
            
  
Working with Python Extension Modules

Python extension modules are machine native code exposing
functionality to a Python interpreter via Python modules.

PyOxidizer has varying levels of support for extension modules. This
is because some PyOxidizer configurations break assumptions about
how Python interpreters typically run.

This document attempts to capture all the nuances of working with
Python extension modules with PyOxidizer.


Extension Module Flavors

Python extension modules exist as either built-in or standalone.
A built-in extension module is statically linked into libpython
and a standalone extension module is a shared library that is
dynamically loaded at run-time.

Typically, built-in extension modules only exist in Python
distributions (and are part of the Python standard library by definition)
and Python package maintainers only ever produce standalone extension
modules (e.g. as .so or .pyd files).

Python distributions typically contain a mix of built-in and
standalone extension modules. e.g. the _ast extension module is
built-in and the _ssl extension module is standalone.


Important

Because PyOxidizer enables you to build your own binaries embedding
Python and because different Python distributions have different
levels of support for extension modules, it is important to familiarize
yourself with the types of extension modules and how they can be used.






Extension Module Restrictions

PyOxidizer imposes a handful of restrictions on how extension modules
work. These restrictions are typically a side-effect of limitations
of the Python distribution being
used/targeted. These restrictions are documented in the sections below.


musl libc Linux Distributions Only Support Built-in Extension Modules

The Python distributions built against musl libc (build target
*-linux-musl) only support built-in extension modules.

This is because musl libc binaries are statically linked and statically
linked Linux binaries are incapable of calling dlopen() to load a
shared library.

This means Python binaries built in this configuration cannot load
standalone Python extension modules existing as separate files (.so
files typically). This means PyOxidizer cannot consume Python wheels
or other Python resource sources containing pre-built Python extension
modules.

In order for PyOxidizer to support a Python extension module built for
musl libc, it must compile that extension module from source and link
the resulting object files / static library directly into the built
binary and expose that extension module as a built-in. This is done
using Building with a Custom Distutils.




Windows Static Distributions Only Support Built-in Extension Modules

The Windows standalone_static distribution flavor only supports
built-in extension modules and doesn’t support loading shared library
extension modules.

See the above section for implications on this.

The situation of having to rebuild Python extension modules on Windows
is often more complicated than on Linux because oftentimes building
extension modules on Windows isn’t as trivial as on Linux. This is
because many Windows environments don’t have the correct version of
Visual Studio or various library dependencies. If you want a turnkey
experience for Windows packaging, it is recommended to use the
standalone_dynamic distribution flavor.




Loading Extension Modules from in-memory Location

When you attempt to add a PythonExtensionModule
Starlark instance to the in-memory
resource location, the request
may or may not work depending on the state of the extension module
and support from the Python distribution.

The in-memory resource location is interpreted by PyOxidizer as
load this extension from memory, without having a standalone file.
PyOxidizer will try its hardest to satisfy this request.

If the object files / static library of an extension module are known
to PyOxidizer, these will be statically linked into the built binary
and the extension module will be exposed as a built-in extension
module.

If only a shared library is available for the extension module,
PyOxidizer only supports loading shared libraries from memory on
Windows standalone_dynamic distributions: in all other
platforms the request to load a shared library extension module is
rejected.

Some extensions and shared libraries are known to not work when
loaded from memory using the custom shared library loader used by
PyOxidizer. For this reason,
allow_in_memory_shared_library_loading
exists to control this behavior.


Important

Because the in-memory location for extension modules can be
brittle, it is recommended to set a resources policy or
add_location_fallback to allow extension modules to exist as
standalone files. This will provide maximum compatibility with
built Python extension modules and will reduce the complexity of
packaging 3rd party extension modules.








Extension Module Library Dependencies

PyOxidizer doesn’t currently support resolving additional library
dependencies from discovered extension modules outside of the
Python distribution. For example, if your extension module foo.so
has a run-time dependency on bar.so, PyOxidizer doesn’t yet
detect this and doesn’t realize that bar.so needs to be handled.

This means that if you add a PythonExtensionModule
Starlark type and this extension module depends on an additional
library, PyOxidizer will likely not realize this and fail to
distribute that additional library dependency with your application.

If your Python extensions depend on additional libraries, you may need
to manually add these files to your installation via custom
Starlark code.

Note that if your shared library exists as a file in Python package
(a directory with __init__.py somewhere in the hierarchy), PyOxidizer’s
resource scanning may detect the shared library as a
PythonPackageResource and package this resource.
However, the packaged resource won’t be flagged as a shared library.
This means that the run-time importer won’t identify the shared library
dependency and won’t take steps to ensure it is available/loaded before
the extension is loaded. This means that the shared library loading needs
to be handled by the operating system’s default rules. And this means
that the shared library file must exist on the filesystem, next to a
file-based extension module.




Building with a Custom Distutils

If PyOxidizer is not able to reuse an existing shared library
extension module or the build configuration is forcing an extension
to be built as a built-in, PyOxidizer attempts to compile the
extension module from source so that it can be statically linked as
a built-in.

The way PyOxidizer achieves this is a bit crude, but often effective.

When PyOxidizer invokes pip or setup.py to build a package,
it installs a modified version of distutils into the invoked
Python’s sys.path. This modified distutils changes the
behavior of some key build steps (notably how C extensions are compiled)
such that the build emits artifacts that PyOxidizer can statically
link into a custom binary.

For example, on Linux, PyOxidizer copies the intermediate object files
produced by the build and links them into the binary containing the
generated libpython. PyOxidizer completely ignores the shared
library that is or would typically be produced.

If setup.py scripts are following the traditional pattern of using
distutils.core.Extension [https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension]
to define extension modules, things tend to just work (assuming extension
modules are supported by PyOxidizer for the target platform). However,
if setup.py scripts are doing their own monkeypatching of
distutils, rely on custom build steps or types to compile extension
modules, or invoke separate Python processes to interact with distutils,
things may break.

The easiest way to avoid the pitfalls of a custom distutils build
is to not attempt to produce a statically linked binary: use a
standalone_dynamic distribution flavor that supports loading
extension modules from files.

Until PyOxidizer supports telling it additional object files or
static libraries to link into a binary, there’s no easy workaround aside
from giving up on a statically linked binary. Better support will hopefully
be present in future versions of PyOxidizer.







          

      

      

    

  

    
      
          
            
  
Trimming Unused Resources

By default, packaging rules are very aggressive about pulling in
resources such as Python modules. For example, the entire Python standard
library is embedded into the binary by default. These extra resources take up
space and can make your binary significantly larger than it could be.

It is often desirable to prune your application of unused resources. For
example, you may wish to only include Python modules that your application
uses. This is possible with PyOxidizer.

Essentially, all strategies for managing the set of packaged resources
boil down to crafting config file logic that chooses which resources
are packaged.

But maintaining explicit lists of resources can be tedious. PyOxidizer
offers a more automated approach to solving this problem.

The PythonInterpreterConfig type defines a
write_modules_directory_env setting, which when enabled will instruct
the embedded Python interpreter to write the list of all loaded modules
into a randomly named file in the directory identified by the environment
variable defined by this setting. For example, if you set
write_modules_directory_env="PYOXIDIZER_MODULES_DIR" and then
run your binary with PYOXIDIZER_MODULES_DIR=~/tmp/dump-modules,
each invocation will write a ~/tmp/dump-modules/modules-* file
containing the list of Python modules loaded by the Python interpreter.

One can therefore use write_modules_directory_env to produce files
that can be referenced in a different build target to filter resources
through a set of only include names.

TODO this functionality was temporarily dropped as part of the Starlark
port.





          

      

      

    

  

    
      
          
            
  
Performance of Built Binaries

Binaries built with PyOxidizer tend to run faster than those executing via
a normal python interpreter. There are a few reasons for this.


Resources Data Compiled Into Binary

Traditionally, when Python needs to import a module, it traverses
the entries on sys.path and queries the filesystem to see whether
a .pyc file, .py file, etc are available until it finds a
suitable file to provide the Python module data. If you trace the
system calls of a Python process (e.g. strace -f python3 ...),
you will see tons of lstat(), open(), and read() calls
performing filesystem I/O.

While filesystems cache the data behind these I/O calls, every time
Python looks up data in a file the process needs to context switch
into the kernel and then pass data back to Python. Repeated thousands
of times - or even millions of times across hundreds or thousands of
process invocations - the few microseconds of overhead plus the
I/O overhead for a cache miss can add up to significant overhead!

When binaries are built with PyOxidizer, all available Python resources
are discovered at build time. An index of these resources along with
the raw resource data is packed - often into the executable itself -
and made available to PyOxidizer’s
custom importer. When PyOxidizer services an
import statement, looking up a module is effectively looking up a key
in a dictionary: there is no explicit filesystem I/O to discover the
location of a resource.

PyOxidizer’s packed resources data supports storing raw resource data
inline or as a reference via a filesystem path.

If inline storage is used, resources are effectively loaded from memory,
often using 0-copy. There is no explicit filesystem I/O. The only
filesystem I/O that can occur is indirect, as the operating system
pages a memory page on first access. But this all happens in the kernel
memory subsystem and is typically faster than going through a
functionally equivalent system call to access the filesystem.

If filesystem paths are stored, the only filesystem I/O we require
is to open() the file and read() its file descriptor: all
filesystem I/O to locate the backing file is skipped, along with the
overhead of any Python code performing this discovery.

We can attempt to isolate the effect of in-memory module imports by running
a Python script that attempts to import the entirety of the Python standard
library. This test is a bit contrived. But it is effective at demonstrating
the performance difference.

Using a stock python3.7 executable and 2 PyOxidizer executables - one
configured to load the standard library from the filesystem using Python’s
default importer and another from memory:

$ hyperfine -m 50 -- '/usr/local/bin/python3.7 -S import_stdlib.py' import-stdlib-filesystem import-stdlib-memory
Benchmark #1: /usr/local/bin/python3.7 -S import_stdlib.py
  Time (mean ± σ):     258.8 ms ±   8.9 ms    [User: 220.2 ms, System: 34.4 ms]
  Range (min … max):   247.7 ms … 310.5 ms    50 runs

Benchmark #2: import-stdlib-filesystem
  Time (mean ± σ):     249.4 ms ±   3.7 ms    [User: 216.3 ms, System: 29.8 ms]
  Range (min … max):   243.5 ms … 258.5 ms    50 runs

Benchmark #3: import-stdlib-memory
  Time (mean ± σ):     217.6 ms ±   6.4 ms    [User: 200.4 ms, System: 13.7 ms]
  Range (min … max):   207.9 ms … 243.1 ms    50 runs

Summary
  'import-stdlib-memory' ran
    1.15 ± 0.04 times faster than 'import-stdlib-filesystem'
    1.19 ± 0.05 times faster than '/usr/local/bin/python3.7 -S import_stdlib.py'





We see that the PyOxidizer executable using the standard Python importer
has very similar performance to python3.7. But the PyOxidizer executable
importing from memory is clearly faster. These measurements were obtained
on macOS and the import_stdlib.py script imports 506 modules.

A less contrived example is running the test harness for the Mercurial version
control tool. Mercurial’s test harness creates tens of thousands of new processes
that start Python interpreters. So a few milliseconds of overhead starting
interpreters or loading modules can translate to several seconds.

We run the full Mercurial test harness on Linux on a Ryzen 3950X CPU using the
following variants:


	hg script with a #!/path/to/python3.7 line (traditional)


	hg PyOxidizer executable using Python’s standard filesystem import (oxidized)


	hg PyOxidizer executable using filesystem-relative resource loading (filesystem)


	hg PyOxidizer executable using in-memory resource loading (in-memory)




The results are quite clear:









	Variant

	CPU Time (s)

	Delta (s)

	% Orig





	traditional

	11,287

	0

	100



	oxidized

	10,735

	-552

	95.1



	filesystem

	10,186

	-1,101

	90.2



	in-memory

	9,883

	-1,404

	87.6






These results help us isolate specific areas of speedups:


	oxidized over traditional is a rough proxy for the benefits of
python -S over python. Although there are other factors at
play that may be influencing the numbers.


	filesystem over oxidized isolates the benefits of using PyOxidizer’s
importer instead of Python’s default importer. The performance wins here
are due to a) avoiding excessive I/O system calls to locate the paths
to resources and b) functionality being implemented in Rust instead
of Python.


	in-memory over filesystem isolates the benefits of avoiding
explicit filesystem I/O to load Python resources. The Rust code
backing these 2 variants is very similar. The only meaningful
difference is that in-memory constructs a Python object from
a memory address and filesystem must open and read a file using
standard OS mechanisms before doing so.




From this data, one could draw a few conclusions:


	Processing of the site module during Python interpreter
initialization can add substantial overhead.


	Maintaining an index of Python resources such that you can avoid
discovery via filesystem I/O provides a meaningful speedup.


	Loading Python resources from an in-memory data structure is
faster than incurring explicit filesystem I/O to do so.







Ignoring site

In its default configuration, binaries produced with PyOxidizer configure
the embedded Python interpreter differently from how a python is
typically configured.

Notably, PyOxidizer disables the importing of the site module by
default (making it roughly equivalent to python -S). The site module
does a number of things, such as look for .pth files, looks for
site-packages directories, etc. These activities can contribute
substantial overhead, as measured through a normal python3.7 executable
on macOS:

$ hyperfine -m 500 -- '/usr/local/bin/python3.7 -c 1' '/usr/local/bin/python3.7 -S -c 1'
Benchmark #1: /usr/local/bin/python3.7 -c 1
  Time (mean ± σ):      22.7 ms ±   2.0 ms    [User: 16.7 ms, System: 4.2 ms]
  Range (min … max):    18.4 ms …  32.7 ms    500 runs

Benchmark #2: /usr/local/bin/python3.7 -S -c 1
  Time (mean ± σ):      12.7 ms ±   1.1 ms    [User: 8.2 ms, System: 2.9 ms]
  Range (min … max):     9.8 ms …  16.9 ms    500 runs

Summary
  '/usr/local/bin/python3.7 -S -c 1' ran
    1.78 ± 0.22 times faster than '/usr/local/bin/python3.7 -c 1'





Shaving ~10ms off of startup overhead is not trivial!







          

      

      

    

  

    
      
          
            
  
Packaging Pitfalls

While PyOxidizer is capable of building fully self-contained binaries
containing a Python application, many Python packages and applications make
assumptions that don’t hold inside PyOxidizer. This section talks about
all the things that can go wrong when attempting to package a Python
application.


C and Other Native Extension Modules

Many Python packages compile extension modules to native code. (Typically
C is used to implement extension modules.)

PyOxidizer has varying levels of support for Python extension modules.
In many cases, everything just works. But there are known incompatibilities
and corner cases. See Working with Python Extension Modules for details.




Identifying PyOxidizer

Python code may want to know whether it is running in the context of
PyOxidizer.

At packaging time, pip and setup.py invocations made by PyOxidizer
should set a PYOXIDIZER=1 environment variable. setup.py scripts,
etc can look for this environment variable to determine if they are being
packaged by PyOxidizer.

At run-time, PyOxidizer will always set a sys.oxidized attribute with
value True. So, Python code can test whether it is running in PyOxidizer
like so:

import sys

if getattr(sys, 'oxidized', False):
    print('running in PyOxidizer!')








Incorrect Resource Identification

PyOxidizer has custom code for scanning for and indexing files as specific
Python resource types. This code is somewhat complex and nuanced and there
are known bugs that will cause PyOxidizer to fail to identify or classify a
file appropriately.

To help debug problems with this code, the pyoxidizer find-resources
command can be employed. See Debugging Resource Scanning and Identification with find-resources for more.


Important

Please file a bug [https://github.com/indygreg/PyOxidizer/issues/new]
to report problems!



See Classified Resources Versus Files for more on this topic.







          

      

      

    

  

    
      
          
            
  
Masquerading As Other Packaging Tools

Tools to package and distribute Python applications existed several
years before PyOxidizer. Many Python packages have learned to perform
special behavior when the _fingerprint* of these tools is detected at
run-time.

First, PyOxidizer has its own fingerprint: sys.oxidized = True. The
presence of this attribute can indicate an application running with
PyOxidizer. Other applications are discouraged from defining this
attribute.

Since PyOxidizer’s run-time behavior is similar to other packaging
tools, PyOxidizer supports falsely identifying itself as these other
tools by emulating their fingerprints.

The EmbbedPythonConfig configuration section defines the
boolean flag sys_frozen to control whether sys.frozen = True
is set. This can allow PyOxidizer to advertise itself as a frozen
application.

In addition, the sys_meipass boolean flag controls whether a
sys._MEIPASS = <exe directory> attribute is set. This allows
PyOxidizer to masquerade as having been built with PyInstaller.


Warning

Masquerading as other packaging tools is effectively lying and can
be dangerous, as code relying on these attributes won’t know if
it is interacting with PyOxidizer or some other tool. It is
recommended    to only set these attributes to unblock enabling
packages to work with PyOxidizer until other packages learn to
check for sys.oxidized = True. Setting sys._MEIPASS is
definitely the more risky option, as a case can be made that
PyOxidizer should set sys.frozen = True by default.







          

      

      

    

  

    
      
          
            
  
Portability of Binaries Built with PyOxidizer

Binary portability refers to the property that a binary built in
machine/environment X is able to run on machine/environment Y.
In other words, you’ve achieved binary portability if you are able
to copy a binary to another machine and run it without modifications.

It is exceptionally difficult to achieve high levels of binary
portability for various reasons.

PyOxidizer is capable of building binaries that are highly portable.
However, the steps for doing so can be nuanced and vary substantially
by operating system and target platform. This document attempts to
capture the various steps and caveats involved.


Important

Please create issues at https://github.com/indygreg/PyOxidizer/issues
when documentation on this page is inaccurate or lacks critical
details.




Using pyoxidizer analyze For Assessing Binary Portability

The pyoxidizer analyze command can be used to analyze the contents
of executables and libraries. It can be used as a PyOxidizer-specific
tool for assessing the portability of built binaries.

For example, for ELF binaries (the binary format used on Linux), this
command will list all shared library dependencies and analyze glibc
symbol versions and print out which Linux distribution versions it
thinks the binary is compatible with.


Note

pyoxidizer analyze is not yet feature complete on all platforms.






Python Distribution Versus Built Application Portability

PyOxidizer ships with specially built Python distributions that are
highly portable. See Available Python Distributions
for the full list of these distributions and
Binary Portability of Distributions for details on the
portability of these Python distributions.

Generally speaking, you don’t have to worry about the portability
of the Python distributions because the distributions tend to
just work.


Important

The machine and environment you use to run pyoxidizer has
critical implications for the portability of built binaries.



When you use PyOxidizer to produce a new binary (an executable or
library), you are compiling new code and linking it in an environment
that is different from the specialized environment used to build the
built-in Python distributions. This means that the binary portability
of your built binary is effectively defined by the environment
pyoxidizer was run from.




Windows

The built-in Python distributions have a run-time dependency on
various DLLs. All 3rd party DLLs (OpenSSL, SQLite3, etc) required
by Python extensions are provided by the built-in distributions.

Many DLL dependencies should be present in any Windows installation.

The Python distributions also have a dependency on the Visual Studio
C++ Runtime. You will need to distribute a copy of vcruntimeXXX.dll
alongside your binary or trigger the install of the Visual Stdio
C++ Redistributable in your application installer so the dependency
is managed at the system level. (Installing the redistributable via
an installer is preferred.)

There is also currently a dependency on the Universal C Runtime (UCRT).

PyOxidizer will eventually make producing Windows installers from packaged
applications turnkey
(#279 [https://github.com/indygreg/PyOxidizer/issues/279]).
Until that time arrives, see the
Microsoft documentation [https://docs.microsoft.com/en-us/cpp/windows/deploying-native-desktop-applications-visual-cpp?view=vs-2019]
on deployment considerations for Windows binaries. The
Dependency Walker [http://www.dependencywalker.com/] tool is also
useful for analyzing DLL dependencies.

Windows binaries tend to be highly portable by default. If you follow
Microsoft’s guidelines and install all required DLLs, you should be
set.




macOS

The built-in Python distributions are built with
MACOSX_DEPLOYMENT_TARGET=10.9, so they should be compatible with
macOS versions 10.9 and newer.

The Python distribution has dependencies against a handful of system
libraries and frameworks. These frameworks should be present on all
macOS installations.

From your build environment, you may want to also ensure
MACOSX_DEPLOYMENT_TARGET is set to ensure references to newer
macOS SDK features aren’t present.

Apple’s Xcode documentation [https://developer.apple.com/documentation/xcode]
has various guides useful for further consideration.




Linux

Linux is the most difficult platform to tackle for binary portability.
There’s a strongly held attitude that binaries should be managed as
packages by the operating system and these packages are built in such
a way that the package manager handles all the details for you. If you
stray from the paved road and choose not to use the package manager
provided by your operating system with the package sources configured
by default, things get very challenging very quickly.

The best way to produce a portable Linux binary is to produce a
fully statically-linked binary. There are no shared libraries to
worry about and generally speaking these binaries just work. See
Building Fully Statically Linked Binaries on Linux for more.

If you produce a dynamic binary with library dependencies, things are
complicated.

Nearly every binary built on Linux will require linking against libc
and will require a symbol provided by glibc. glibc versions
it symbols. And when the linker resolves those symbols at link time,
it usually uses the version of glibc being linked against. For
example, if you link on a machine with glibc 2.19, the symbol
versions in the produced binary will be against version 2.19 and
the binary will load against glibc versions >=2.19. But if
you link on a machine with glibc 2.29, symbol versions are against
version 2.29 and you can only load against versions >= 2.29.

This means that to ensure maximum portability, you want to link against
old glibc symbol versions. While it is possible to use old symbol
versions when a more modern glibc is present, the path of least
resistance is to build in an environment that has an older glibc.

The built-in Linux distributions use Debian 8 (Jessie) as their build
environment. So a Debian 8 build environment is a good candidate
to build on. Ubuntu 14.04, OpenSUSE 13.2, OpenSUSE 42.1, RHEL/CentOS 7,
and Fedora 21 (glibc 2.20) are also good candidates for build
environments.

Of course, if you are producing distribution-specific binaries and/or
control installation (so e.g. dependencies are installed automatically),
this matters less to you.

Again, the pyoxidizer analyze command can be very useful for
inspecting binaries for portability and alerting you to any potential
issues.







          

      

      

    

  

    
      
          
            
  
Static Linking

This document describes how to statically link binaries embedding Python.

See also Working with Python Extension Modules for extensive documentation
about extension modules, which are often a pain point when it comes to
static linking.


Building Fully Statically Linked Binaries on Linux

It is possible to produce a fully statically linked executable embedding
Python on Linux. The produced binary will have no external library
dependencies nor will it even support loading dynamic libraries. In theory,
the executable can be copied between Linux machines and it will just work.

Building such binaries requires using the x86_64-unknown-linux-musl
Rust toolchain target. Using pyoxidizer:

$ pyoxidizer build --target x86_64-unknown-linux-musl





Specifying --target x86_64-unknown-linux-musl will cause PyOxidizer
to use a Python distribution built against
musl libc [https://www.musl-libc.org/] as well as tell Rust to target
musl on Linux.

Targeting musl requires that Rust have the musl target installed. Standard
Rust on Linux installs typically do not have this installed! To install it:

$ rustup target add x86_64-unknown-linux-musl
info: downloading component 'rust-std' for 'x86_64-unknown-linux-musl'
info: installing component 'rust-std' for 'x86_64-unknown-linux-musl'





If you don’t have the musl target installed, you get a build time error
similar to the following:

error[E0463]: can't find crate for `std`
  |
  = note: the `x86_64-unknown-linux-musl` target may not be installed





But even installing the target may not be sufficient! The standalone
Python builds are using a modern version of musl and the Rust musl
target must also be using this newer version or else you will see
linking errors due to missing symbols. For example:

/build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to `getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to `getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to `getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to `getrandom'





Rust 1.37 or newer is required for the modern musl version compatibility.
Rust 1.37 is Rust Nightly until July 4, 2019, at which point it becomes
Rust Beta. It then becomes Rust Stable on August 15, 2019. You may need to
override the Rust toolchain used to build your project so Rust 1.37+ is
used. For example:

$ rustup override set nightly
$ rustup target add --toolchain nightly x86_64-unknown-linux-musl





This will tell Rust that the nightly toolchain should be used for
the current directory and to install musl support for the nightly
toolchain.

Then you can build away:

$ pyoxidizer build --target x86_64-unknown-linux-musl
$ ldd build/apps/myapp/x86_64-unknown-linux-musl/debug/myapp
     not a dynamic executable





Congratulations, you’ve produced a fully statically linked executable containing
a Python application!


Important

There are
reported performance problems [https://superuser.com/questions/1219609/why-is-the-alpine-docker-image-over-50-slower-than-the-ubuntu-image]
with Python linked against musl libc. Application maintainers are therefore
highly encouraged to evaluate potential performance issues before distributing
binaries linked against musl libc.

It’s worth noting that in the default configuration PyOxidizer binaries
will use jemalloc for memory allocations, bypassing musl’s apparently
slower memory allocator implementation. This may help mitigate reported
performance issues.






Implications of Static Linking

Most Python distributions rely heavily on dynamic linking. In addition to
python frequently loading a dynamic libpython, many C extensions
are compiled as standalone shared libraries. This includes the modules
_ctypes, _json, _sqlite3, _ssl, and _uuid, which
provide the native code interfaces for the respective non-_ prefixed
modules which you may be familiar with.

These C extensions frequently link to other libraries, such as libffi,
libsqlite3, libssl, and libcrypto. And more often than not,
that linking is dynamic. And the libraries being linked to are provided
by the system/environment Python runs in. As a concrete example, on
Linux, the _ssl module can be provided by
_ssl.cpython-37m-x86_64-linux-gnu.so, which can have a shared library
dependency against libssl.so.1.1 and libcrypto.so.1.1, which
can be located in /usr/lib/x86_64-linux-gnu or a similar location
under /usr.

When Python extensions are statically linked into a binary, the Python
extension code is part of the binary instead of in a standalone file.

If the extension code is linked against a static library, then the code
for that dependency library is part of the extension/binary instead of
dynamically loaded from a standalone file.

When PyOxidizer produces a fully statically linked binary, the code
for these 3rd party libraries is part of the produced binary and not
loaded from external files at load/import time.

There are a few important implications to this.

One is related to security and bug fixes. When 3rd party libraries are
provided by an external source (typically the operating system) and are
dynamically loaded, once the external library is updated, your binary
can use the latest version of the code. When that external library is
statically linked, you need to rebuild your binary to pick up the latest
version of that 3rd party library. So if e.g. there is an important
security update to OpenSSL, you would need to ship a new version of your
application with the new OpenSSL in order for users of your application
to be secure. This shifts the security onus from e.g. your operating
system vendor to you. This is less than ideal because security updates
are one of those problems that tend to benefit from greater centralization,
not less.

It’s worth noting that PyOxidizer’s library security story is very similar
to that of containers (e.g. Docker images). If you are OK distributing and
running Docker images, you should be OK with distributing executables
built with PyOxidizer.

Another implication of static linking is licensing considerations. Static
linking can trigger stronger licensing protections and requirements.
Read more at Licensing Considerations.







          

      

      

    

  

    
      
          
            
  
Licensing Considerations

Any time you link libraries together or distribute software, you need
to be concerned with the licenses of the underlying code. Some software
licenses - like the GPL - can require that any code linked with them be
subject to the license and therefore be made open source. In addition,
many licenses require a license and/or copyright notice be attached to
works that use or are derived from the project using that license. So
when building or distributing any software, you need to be cognizant
about all the software going into the final work and any licensing
terms that apply. Binaries produced with PyOxidizer are no different!

PyOxidizer and the code it uses in produced binaries is licensed under
the Mozilla Public License version 2.0. The licensing terms are
generally pretty favorable. (If the requirements are too strong, the
code that ships with binaries could potentially use a weaker license.
Get in touch with the project author.)

The Rust code PyOxidizer produces relies on a handful of 3rd party
Rust crates. These crates have various licenses. We recommend using
the cargo-license [https://github.com/onur/cargo-license],
cargo-tree [https://github.com/sfackler/cargo-tree], and
cargo-lichking [https://github.com/Nemo157/cargo-lichking] tools to
examine the Rust crate dependency tree and their respective licenses.
The cargo-lichking tool can even assemble licenses of Rust dependencies
automatically so you can more easily distribute those texts with your
application!

As cool as these Rust tools are, they don’t include licenses for the
Python distribution, the libraries its extensions link against, nor any
3rd party Python packages you may have packaged.

Python and its various dependencies are governed by a handful of licenses.
These licenses have various requirements and restrictions.

At the very minimum, the binary produced with PyOxidizer will have a
Python distribution which is governed by a license. You will almost certainly
need to distribute a copy of this license with your application.

Various C-based extension modules part of Python’s standard library
link against other C libraries. For self-contained Python binaries,
these libraries will be statically linked if they are present. That
can trigger stronger license protections. For example, if all
extension modules are present, the produced binary may contain a copy
of the GPL 3.0 licensed readline and gdbm libraries, thus triggering
strong copyleft protections in the GPL license.


Important

It is critical to audit which Python extensions and packages are being
packaged because of licensing requirements of various extensions.

Consider using a package such as
pip-licenses [https://github.com/raimon49/pip-licenses] to
generate a license report for your Python packages.




Showing Python Distribution Licenses

The special Python distributions that PyOxidizer consumes can annotate
licenses of software within.

The pyoxidizer python-distribution-licenses command can display the
licenses for the Python distribution and libraries it may link against.
This command can be used to evaluate which extensions meet licensing
requirements and what licensing requirements apply if a given extension
or library is used.







          

      

      

    

  

    
      
          
            
  
Terminfo Database


Note

This content is not relevant to Windows.



If your application interacts with terminals (e.g. command line tools), your
application may require the availability of a terminfo database so your
application can properly interact with the terminal. The absence of a terminal
database can result in the inability to properly colorize text, the backspace
and arrow keys not working as expected, weird behavior on window resizing, etc.
A terminfo database is also required to use curses or readline
module functionality without issue.

UNIX like systems almost always provide a terminfo database which says
which features and properties various terminals have. Essentially, the
TERM environment variable defines the current terminal [emulator] in
use and the terminfo database converts that value to various settings.

From Python, the ncurses library is responsible for consulting the
terminfo database and determining how to interact with the terminal.
This interaction with the ncurses library is typically performed from
the _curses, _curses_panel, and _readline C extensions. These
C extensions are wrapped by the user-facing curses and readline
Python modules. And these Python modules can be used from various
functionality in the Python standard library. For example, the readline
module is used to power pdb.

PyOxidizer applications do not ship a terminfo database. Instead,
applications rely on the terminfo database on the executing machine.
(Of course, individual applications could ship a terminfo database if
they want: the functionality just isn’t included in PyOxidizer by default.)
The reason PyOxidizer doesn’t ship a terminfo database is that terminal
configurations are very system and user specific: PyOxidizer wants to
respect the configuration of the environment in which applications run. The
best way to do this is to use the terminfo database on the executing
machine instead of providing a static database that may not be properly
configured for the run-time environment.

PyOxidizer applications have the choice of various modes for resolving
the terminfo database location. This is facilitated mainly via the
terminfo_resolution
PythonInterpreterConfig.terminfo_resolution config setting.

By default, when Python is initialized PyOxidizer will try to identify
the current operating system and choose an appropriate set of well-known
paths for that operating system. If the operating system is well-known
(such as a Debian-based Linux distribution), this set of paths is fixed.
If the operating system is not well-known, PyOxidizer will look for
terminfo databases at common paths and use whatever paths are
present.

If all goes according to plan, the default behavior just works. On
common operating systems, the cost to the default behavior is reading
a single file from the filesystem (in order to resolve the operating
system). The overhead should be negligible. For unknown operating
systems, PyOxidizer may need to stat() ~10 paths looking for the
terminfo database. This should also complete fairly quickly. If
the overhead is a concern for you, it is recommended to build applications
with a fixed path to the terminfo database.

Under the hood, when PyOxidizer resolves the terminfo database
location, it communicates these paths to ncurses by setting the
TERMINFO_DIRS environment variable. If the TERMINFO_DIRS
environment variable is already set at application run-time, PyOxidizer
will never overwrite it.

The ncurses library that PyOxidizer applications ship with is also
configured to look for a terminfo database in the current user’s
home directory (HOME environment variable) by default, specifically
$HOME/.terminfo). Support for termcap databases is not enabled.


Note

terminfo database behavior is intrinsically complicated because
various operating systems do things differently. If you notice oddities
in the interaction of PyOxidizer applications with terminals, there’s
a good chance you found a deficiency in PyOxidizer’s terminal detection
logic (which is located in the pyembed::osutils Rust module).

Please report terminal interaction issues at
https://github.com/indygreg/PyOxidizer/issues.







          

      

      

    

  

    
      
          
            
  
Using the tkinter Python Module

The tkinter [https://docs.python.org/3/library/tkinter.html] Python
standard library module/package provides a Python interface to
tcl/tk/tkinter. This interface allows you to create GUI applications.

PyOxidizer has partial support for using tkinter. Since tkinter
isn’t a commonly used Python feature, you must opt in to enabling it.


Installing tcl Files

tkinter requires both a Python extension module compiled against
tcl/tk and tcl support files to be loaded at run-time.

All the
built-in Python distributions
shipping with PyOxidizer provide tkinter support with the exception of the
Windows standalone_static distributions.

However, the tcl support files aren’t installed by default.

To install tcl support files, you will need to set the
tcl_files_path attribute of a
PythonExecutable instance to the directory you
want to install these files into. e.g.

def make_exe(dist):
    exe = dist.to_python_executable(name="myapp")
    exe.tcl_files_path = "lib"

    return exe





When tcl_files_path is set to a non-None value, the tcl files
required by tkinter are installed in that directory and the built
executable will automatically set the TCL_LIBRARY environment variable
at run-time so the tcl interpreter uses those files.




tcl Files Prevent Self-Contained Executables

The tcl interpreter needs to load various files off the filesystem
at run-time. PyOxidizer does not (yet) support embedding these files in
the binary and loading them from memory or extracting them at run-time.

So if you need to use tkinter, you cannot have a single-file executable
that works without a dependency on tcl files elsewhere on the filesystem.







          

      

      

    

  

    
      
          
            
  
Building an Executable that Behaves Like python

It is possible to use PyOxidizer to build an executable that would
behave like a typical python executable would.

To start, initialize a new config file:

$ pyoxidizer init-config-file python





Then, we’ll want to modify the pyoxidizer.bzl configuration
file to look something like the following:

def make_dist():
    return default_python_distribution()

def make_exe(dist):
    policy = dist.make_python_packaging_policy()
    policy.extension_module_filter = "all"
    policy.include_distribution_resources = True

    # Add resources to the filesytem, next to the built executable.
    # You can add resources to memory too. But this makes the install
    # layout somewhat consistent with what Python expects.
    policy.resources_location = "filesystem-relative:lib"

    python_config = dist.make_python_interpreter_config()

    # This is the all-important line to make the embedded Python interpreter
    # behave like `python`.
    python_config.config_profile = "python"

    # Enable the stdlib path-based importer.
    python_config.filesystem_importer = True

    # You could also disable the Rust importer if you really want your
    # executable to behave like `python`.
    # python_config.oxidized_importer = False

    exe = dist.to_python_executable(
        name="python3",
        packaging_policy = policy,
        config = python_config,
    )

    return exe

def make_embedded_resources(exe):
    return exe.to_embedded_resources()

def make_install(exe):
    files = FileManifest()
    files.add_python_resource(".", exe)

    return files

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"])
register_target("resources", make_embedded_resources, depends=["exe"], default_build_script=True)
register_target("install", make_install, depends=["exe"], default=True)

resolve_targets()





(The above code is dedicated to the public domain and can be used without
attribution.)

From there, build/run from the config:

$ cd python
$ pyoxidizer build
...
$ pyoxidizer run
...
Python 3.8.6 (default, Oct  3 2020, 20:48:20)
[Clang 10.0.1 ] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>






Resource Loading Caveats

PyOxidizer’s configuration defaults are opinionated about how resources
are loaded by default. In the default configuration, the Python distribution’s
resources are indexed and loaded via oxidized_importer at run-time.
This behavior is obviously different from what a standard python executable
would do.

If you want the built executable to behave like python would and use the
standard library importers, you can disable oxidized_importer by setting
oxidized_importer to False.

Another caveat is that indexed resources are always embedded in the built
executable. This may bloat the size of the executable. This will eventually
be addressed by Standalone Resource Files.




Binary Portability

A python-like executable built with PyOxidizer may not just work
when copied to another machine. See Portability of Binaries Built with PyOxidizer
to learn more about the portability of binaries built with PyOxidizer.







          

      

      

    

  

    
      
          
            
  
oxidized_importer Python Extension

oxidized_importer is a Python extension module maintained as part of
the PyOxidizer project that allows you to:


	Install a custom, high-performance module importer (OxidizedFinder)
to service Python import statements and resource loading (potentially
from memory).


	Scan the filesystem for Python resources (source modules, bytecode
files, package resources, distribution metadata, etc) and turn them
into Python objects.


	Serialize Python resource data into an efficient binary data structure
for loading into an OxidizedFinder instance. This facilitates
producing a standalone resources blob that can be distributed with
a Python application which contains all the Python modules, bytecode,
etc required to power that application.




oxidized_importer is automatically compiled into applications built
with PyOxidizer. It can also be built as a standalone extension module and
used with regular Python installs.
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Getting Started


Requirements

oxidized_importer requires CPython 3.8 or newer. This is because it
relies on modern C and Python standard library APIs only available in that
version.

Building oxidized_importer from source requires a working Rust toolchain
for the target platform.




Installing from PyPI

oxidized_importer is
available [https://pypi.org/project/oxidized_importer/] on PyPI. This
means that installing is as simple as:

$ pip3 install oxidized_importer








Compiling from Source

To build from source, obtain a clone of PyOxidizer’s Git repository and
run the setup.py script or use pip to build the Python project in
the root of the repository. e.g.:

$ python3.8 setup.py build_ext -i
$ python3.8 setup.py install

$ pip3.8 install .
$ pip3.8 wheel .





The setup.py is pretty minimal and is a thin wrapper around cargo build
for the underlying Rust project. If you want to build using Rust’s standard
toolchain, do something like the following:

$ cd oxidized-importer
$ cargo build --release





If you don’t have a Python 3.8 python3 executable in your PATH, you
will need to tell the Rust build system which python3 executable to use to
help derive the build configuration for the Python extension:

$ PYTHON_SYS_EXECUTABLE=/path/to/python3.8 cargo build








Using

To use oxidized_importer, simply import the module:

import oxidized_importer





To register a custom importer with Python, do something like the following:

import sys

import oxidized_importer

finder = oxidized_importer.OxidizedFinder()

# You want to register the finder first so it has the highest priority.
sys.meta_path.insert(0, finder)





To get performance benefits of loading modules and resources from memory,
you’ll need to index resources with the OxidizedFinder, serialize that
data out, then load that data into a new OxidizedFinder instance. See
Freezing Applications with oxidized_importer for more detailed examples.







          

      

      

    

  

    
      
          
            
  
Python Meta Path Finders

Python allows providing custom Python types to handle the low-level
machinery behind the import statement. The way this works is a
meta path finder instance (as defined by the
importlib.abc.MetaPathFinder [https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder]
interface) is registered on
sys.meta_path [https://docs.python.org/3/library/sys.html#sys.meta_path].
When an import is serviced, Python effectively iterates the objects
on sys.meta_path and asks each one can you service this request
until one does.

These meta path finder not only service basic Python module loading,
but they can also facilitate loading resource files and package metadata.
There are a handful of optional methods available on implementations.

This documentation will often refer to a meta path finder as an importer,
because it is primarily used for importing Python modules.

Normally when you start a Python process, the Python interpreter itself
will install 3 meta path finders on sys.meta_path before your
code even has a chance of running:


	BuiltinImporter

	Handles importing of built-in extension modules, which are compiled
into the Python interpreter. These include modules like sys.



	FrozenImporter

	Handles importing of frozen bytecode modules, which are compiled
into the Python interpreter. This finder is typically only used
to initialize Python’s importing mechanism.



	PathFinder

	Handles filesystem-based loading of resources. This is what is used
to import .py and .pyc files. It also handles .zip files.
This is the meta path finder that most imports are traditionally
serviced by. It queries the filesystem at import time to find
and load resources.









          

      

      

    

  

    
      
          
            
  
OxidizedFinder Python Type

oxidized_importer.OxidizedFinder is a Python type that implements a
custom meta path finder. Oxidized is in its name because it is
implemented in Rust.

Unlike traditional meta path finders which have to dynamically
discover resources (often by scanning the filesystem), OxidizedFinder
instances maintain an index of known resources. When a resource is
requested, OxidizedFinder can retrieve that resource by effectively
performing 1 or 2 lookups in a Rust HashMap. This makes resource
resolution extremely efficient.

Instances of OxidizedFinder are optionally bound to a binary blob
holding packed resources data. This is a custom serialization format
for expressing Python modules (source and bytecode), Python extension
modules, resource files, shared libraries, etc. This data format
along with a Rust library for interacting with it are defined by the
python-packed-resources [https://crates.io/crates/python-packed-resources]
crate.

When an OxidizedFinder instance is created, the packed resources
data is parsed into a Rust data structure. On a modern machine, parsing
this resources data for the entirety of the Python standard library
takes ~1 ms.

OxidizedFinder instances can index built-in extension modules
and frozen modules, which are compiled into the Python interpreter. This
allows OxidizedFinder to subsume functionality normally provided by
the BuiltinImporter and FrozenImporter meta path finders,
allowing you to potentially replace sys.meta_path with a single
instance of OxidizedFinder.


OxidizedFinder in PyOxidizer Applications

When running from an application built with PyOxidizer (or using the
pyembed crate directly), an OxidizedFinder instance will (likely)
be automatically registered as the first element in sys.meta_path when
starting a Python interpreter.

You can verify this inside a binary built with PyOxidizer:

>>> import sys
>>> sys.meta_path
[<OxidizedFinder object at 0x7f16bb6f93d0>]





Contrast with a typical Python environment:

>>> import sys
>>> sys.meta_path
[
    <class '_frozen_importlib.BuiltinImporter'>,
    <class '_frozen_importlib.FrozenImporter'>,
    <class '_frozen_importlib_external.PathFinder'>
]





The OxidizedFinder instance will (likely) be associated with resources
data embedded in the binary.

This OxidizedFinder instance is constructed very early during Python
interpreter initialization. It is registered on sys.meta_path before
the first import requesting a .py/.pyc is performed, allowing
it to service every import except those from the very few built-in
extension modules that are compiled into the interpreter and loaded as
part of Python initialization (e.g. the sys module).




Python API

OxidizedFinder instances implement the following interfaces:


	importlib.abc.MetaPathFinder


	importlib.abc.Loader


	importlib.abc.InspectLoader


	importlib.abc.ExecutionLoader




See the importlib.abc documentation [https://docs.python.org/3/library/importlib.html#module-importlib.abc]
for more on these interfaces.

In addition to the methods on the above interfaces, the following methods
defined elsewhere in importlib are exposed:


	get_resource_reader(fullname: str) -> importlib.abc.ResourceReader


	find_distributions(context: Optional[DistributionFinder.Context]) -> [Distribution]




ResourceReader is documented alongside other importlib.abc interfaces.
find_distribution() is documented in
importlib.metadata [https://docs.python.org/3/library/importlib.metadata.html].




Non-importlib API

OxidizedFinder instances have additional functionality beyond what
is defined by importlib. This functionality allows you to construct,
inspect, and manipulate instances.


__new__(cls, ...)

New instances of OxidizedFinder can be constructed like normal
Python types:

finder = OxidizedFinder()





The constructor takes the following named arguments:


	resources_data

	Bytes-like packed resources data to parse. A reference to the passed in
value will be stored internally in the constructed instance, as the memory
needs to live for the lifetime of the OxidizedFinder instance.



	resources_file

	A path-like object defining the filesystem path to a file containing
packed resources data. If provided, the file will be opened and
memory mapped and resources data will be parsed from it.



	relative_path_origin

	A path-like object denoting the filesystem path that should be used as the
origin value for relative path resources. Filesystem-based resources are
stored as a relative path to an anchor value. This is that anchor value.
If not specified, the directory of the current executable will be used.





See the python_packed_resources [https://docs.rs/python-packed-resources/0.1.0/python_packed_resources/]
Rust crate for the specification of the binary data blob defining packed
resources data.


Important

The packed resources data format is still evolving. It is recommended
to use the same version of the oxidized_importer extension to
produce and consume this data structure to ensure compatibility.






indexed_resources(self) -> List[OxidizedResource]

This method returns a list of resources that are indexed by the
OxidizedFinder instance. It allows Python code to inspect what
the finder knows about.

See OxidizedResource for more on the returned type.




add_resource(self, resource: OxidizedResource)

This method registers an OxidizedResource instance with the finder,
enabling the finder to use it to service lookups.

When an OxidizedResource is registered, its data is copied into the
finder instance. So changes to the original OxidizedResource are not
reflected on the finder. (This is because OxidizedFinder maintains an
index and it is important for the data behind that index to not change
out from under it.)

Resources are stored in an invisible hash map where they are indexed by
the name attribute. When a resource is added, any existing resource
under the same name has its data replaced by the incoming OxidizedResource
instance.

If you have source code and want to produce bytecode, you can do something
like the following:

def register_module(finder, module_name, source):
    code = compile(source, module_name, "exec")
    bytecode = marshal.dumps(code)

    resource = OxidizedResource()
    resource.name = module_name
    resource.is_module = True
    resource.in_memory_bytecode = bytecode
    resource.in_memory_source = source

    finder.add_resource(resource)








add_resources(self, resources: List[OxidizedResource])

This method is syntactic sugar for calling add_resource() for every
item in an iterable. It is exposed because function call overhead in Python
can be non-trivial and it can be quicker to pass in an iterable of
OxidizedResource than to call add_resource() potentially hundreds
of times.




serialize_indexed_resources(self, ...) -> bytes

This method serializes all resources currently indexed by the instance
into an opaque bytes instance. The returned data can be fed into a
separate OxidizedFinder instance by passing it to
__new__(cls, ...).

Arguments:


	ignore_builtin (bool)

	Whether to ignore builtin extension modules from the serialized data.

Default is True



	ignore_frozen (bool)

	Whether to ignore frozen extension modules from the serialized data.

Default is True.





Entries for built-in and frozen modules are ignored by default because
they aren’t portable, as they are compiled into the interpreter and aren’t
guaranteed to work from one Python interpreter to another. The serialized
format does support expressing them. Use at your own risk.









          

      

      

    

  

    
      
          
            
  
OxidizedFinder Behavior and Compliance

OxidizedFinder strives to be as compliant as possible with other meta
path importers. So generally speaking, the behavior as described by the
importlib documentation [https://docs.python.org/3/library/importlib.html]
should be compatible. In other words, things should mostly just work
and any deviance from the importlib documentation constitutes a bug
worth reporting [https://github.com/indygreg/PyOxidizer/issues].

That being said, OxidizedFinder’s approach to loading resources is
drastically different from more traditional means, notably loading files
from the filesystem. PyOxidizer breaks a lot of assumptions about how things
have worked in Python and there is some behavior that may seem odd or
in violation of documented behavior in Python.

The sections below attempt to call out known areas where OxidizedFinder
deviates from typical behavior.


__file__ and __cached__ Module Attributes

Python modules typically have a __file__ attribute holding a str
defining the filesystem path the source module was imported from (usually
a path to a .py file). There is also the similar - but lesser known -
__cached__ attribute holding the filesystem path of the bytecode module
(usually the path to a .pyc file).


Important

OxidizedFinder will not set either attribute when importing modules
from memory.



These attributes are not set because it isn’t obvious what the values
should be! Typically, __file__ is used by Python as an anchor point
to derive the path to some other file. However, when loading modules
from memory, the traditional filesystem hierarchy of Python modules
does not exist. In the opinion of PyOxidizer’s maintainer, exposing
__file__ would be lying and this would cause more potential for
harm than good.

While we may make it possible to define __file__ (and __cached__)
on modules imported from memory someday, we do not yet support this.

OxidizedFinder does, however, set __file__ and __cached__
on modules imported from the filesystem. So, a workaround to restore
these missing attributes is to avoid in-memory loading.


Note

Use of __file__ is commonly encountered in code loading resource
files. See Loading Resource Files for more on this topic, including
how to port code to more modern Python APIs for loading resources.






__path__ Module Attribute

Python modules that are also packages must have a __path__ attribute
containing an iterable of str. The iterable can be empty.

If a module is imported from the filesystem, OxidizedFinder will
set __path__ to the parent directory of the module’s file, just like
the standard filesystem importer would.

If a module is imported from memory, __path__ will be set to the
path of the current executable joined with the package name. e.g. if
the current executable is /usr/bin/myapp and the module/package name
is foo.bar, __path__ will be ["/usr/bin/myapp/foo/bar"].
On Windows, paths might look like C:\dev\myapp.exe\foo\bar.

Python’s zipimport importer uses the same approach for modules
imported from zip files, so there is precedence for OxidizedFinder
doing things this way.




ResourceReader Compatibility

ResourceReader has known compatibility differences with Python’s default
filesystem-based importer. See Support for ResourceReader for details.




ResourceLoader Compatibility

The ResourceLoader interface is implemented but behavior of
get_data(path) has some variance with Python’s filesystem-based importer.

See Support for ResourceLoader for details.


Note

ResourceLoader is deprecated as of Python 3.7. Code should be ported
to ResourceReader / importlib.resources if possible.






importlib.metadata Compatibility

OxidizedFinder implements find_distributions() and therefore provides
the required hook for importlib.metadata to resolve Distribution
instances. However, the returned objects do not implement the full
Distribution interface.

Here are the known differences between OxidizedDistribution and
importlib.metadata.Distribution instances:


	locate_file() is not defined.


	@classmethod from_name() is not defined.


	@classmethod discover() is not defined.


	@staticmethod at() is not defined.


	@property files raises NotImplementedError.




There are additional _ prefixed attributes of
importlib.metadata.Distribution that are not implemented. But we do not
consider these part of the public API and don’t feel they are worth calling
out.

In addition, OxidizedFinder.find_distributions() ignores the path
attribute of the passed Context instance. Only the name attribute
is consulted. If name is None, all packages with registered
distribution files will be returned. Otherwise the returned list
contains at most 1 PyOxidizerDistribution corresponding to the
requested package name.




pkgutil Compatibility

The pkgutil [https://docs.python.org/3/library/pkgutil.html] package
in Python’s standard library reacts to special functionality on
MetaPathFinder instances.

pkgutil.iter_modules() attempts to use an iter_modules() method
to obtain results.

OxidizedFinder implements iter_modules(prefix="") and
pkgutil.iter_modules() should work. However, there are some
differences in behavior:


	iter_modules() is defined to be a generator but
OxidizedFinder.iter_modules() returns a list. list is
iterable and this difference should hopefully be a harmless
implementation detail.


	pkgutil.iter_modules() inspects sys.path_importer_cache as
part of evaluating its path argument. However, OxidizedFinder
does not populate sys.path_importer_cache, so path-based
filtering via pkgutil.iter_modules(path=...) will not work like it
does with the standard library’s importer.










          

      

      

    

  

    
      
          
            
  
oxidized_importer Python Resource Types

The oxidized_importer module defines Python types beyond
OxidizedFinder. This page documents those types and their APIs.


Important

All types are backed by Rust structs and all properties return copies
of the data. This means that if you mutate a Python variable that was
obtained from an instance’s property, that mutation won’t be reflected
in the backing Rust struct.




OxidizedResource

The OxidizedResource Python type represents a resource that is indexed
by a OxidizedFinder instance.

Each instance represents a named entity with associated metadata and data.
e.g. an instance can represent a Python module with associated source and
bytecode.

New instances can be constructed via OxidizedResource(). This will return
an instance whose name = "" and all properties will be None or
false.


Properties

The following properties/attributes exist on OxidizedResource instances:


	is_module

	A bool indicating if this resource is a Python module. Python modules
are backed by source or bytecode.



	is_builtin_extension_module

	A bool indicating if this resource is a Python extension module
built-in to the Python interpreter.



	is_frozen_module

	A bool indicating if this resource is a Python module whose bytecode
is frozen into the Python interpreter.



	is_extension_module

	A bool indicating if this resource is a Python extension module.



	is_shared_library

	A bool indicating if this resource is a shared library.



	name

	The str name of the resource.



	is_package

	A bool indicating if this resource is a Python package.



	is_namespace_package

	A bool indicating if this resource is a Python namespace package.



	in_memory_source

	bytes or None holding Python module source code that should be
imported from memory.



	in_memory_bytecode

	bytes or None holding Python module bytecode that should be
imported from memory.

This is raw Python bytecode, as produced from the marshal module.
.pyc files have a header before this data that will need to be
stripped should you want to move data from a .pyc file into this
field.



	in_memory_bytecode_opt1

	bytes or None holding Python module bytecode at optimization level 1
that should be imported from memory.

This is raw Python bytecode, as produced from the marshal module.
.pyc files have a header before this data that will need to be
stripped should you want to move data from a .pyc file into this
field.



	in_memory_bytecode_opt2

	bytes or None holding Python module bytecode at optimization level 2
that should be imported from memory.

This is raw Python bytecode, as produced from the marshal module.
.pyc files have a header before this data that will need to be
stripped should you want to move data from a .pyc file into this
field.



	in_memory_extension_module_shared_library

	bytes or None holding native machine code defining a Python extension
module shared library that should be imported from memory.



	in_memory_package_resources

	dict[str, bytes] or None holding resource files to make available to
the importlib.resources APIs via in-memory data access. The name of
this object will be a Python package name. Keys in this dict are virtual
filenames under that package. Values are raw file data.



	in_memory_distribution_resources

	dict[str, bytes] or None holding resource files to make available to
the importlib.metadata API via in-memory data access. The name of
this object will be a Python package name. Keys in this dict are virtual
filenames. Values are raw file data.



	in_memory_shared_library

	bytes or None holding a shared library that should be imported from
memory.



	shared_library_dependency_names

	list[str] or None holding the names of shared libraries that this
resource depends on. If this resource defines a loadable shared library,
this list can be used to express what other shared libraries it depends on.



	relative_path_module_source

	pathlib.Path or None holding the relative path to Python module
source that should be imported from the filesystem.



	relative_path_module_bytecode

	pathlib.Path or None holding the relative path to Python module
bytecode that should be imported from the filesystem.



	relative_path_module_bytecode_opt1

	pathlib.Path or None holding the relative path to Python module
bytecode at optimization level 1 that should be imported from the filesystem.



	relative_path_module_bytecode_opt1

	pathlib.Path or None holding the relative path to Python module
bytecode at optimization level 2 that should be imported from the filesystem.



	relative_path_extension_module_shared_library

	pathlib.Path or None holding the relative path to a Python extension
module that should be imported from the filesystem.



	relative_path_package_resources

	dict[str, pathlib.Path] or None holding resource files to make
available to the importlib.resources APIs via filesystem access. The
name of this object will be a Python package name. Keys in this dict are
filenames under that package. Values are relative paths to files from which
to read data.



	relative_path_distribution_resources

	dict[str, pathlib.Path] or None holding resource files to make
available to the importlib.metadata APIs via filesystem access. The
name of this object will be a Python package name. Keys in this dict are
filenames under that package. Values are relative paths to files from which
to read data.








OxidizedResource Resource Types

Each OxidizedResource instance describes a particular type of resource.
If a resource identifies as a type, it sets one of the following is_*
attributes to True:


	is_module

	A Python module. These typically have source or bytecode attached.

Modules can also be packages. In this case, they can hold additional
data, such as a mapping of resource files.



	is_builtin_extension_module

	A built-in extension module. These represent Python extension modules
that are compiled into the application and don’t exist as separate
shared libraries.



	is_frozen_module

	A frozen Python module. These are Python modules whose bytecode is
compiled into the application.



	is_extension_module

	A Python extension module. These are shared libraries that can be loaded
to provide additional modules to Python.



	is_shared_library

	A shared library. e.g. a .so or .dll.










PythonModuleSource

The oxidized_importer.PythonModuleSource type represents Python module
source code. e.g. a .py file.

Instances have the following properties:


	module (str)

	The fully qualified Python module name. e.g. my_package.foo.



	source (bytes)

	The source code of the Python module.

Note that source code is stored as bytes, not str. Most Python
source is stored as utf-8, so you can .encode("utf-8") or
.decode("utf-8") to convert between bytes and str.



	is_package (bool)

	This this module is a Python package.








PythonModuleBytecode

The oxidized_importer.PythonModuleBytecode type represents Python
module bytecode. e.g. what a .pyc file holds (but without the header
that a .pyc file has).

Instances have the following properties:


	module (str)

	The fully qualified Python module name.



	bytecode (bytes)

	The bytecode of the Python module.

This is what you would get by compiling Python source code via
something like marshal.dumps(compile(source, "exe")). The bytecode
does not contain a header, like what would be found in a .pyc
file.



	optimize_level (int)

	The bytecode optimization level. Either 0, 1, or 2.



	is_package (bool)

	Whether this module is a Python package.








PythonExtensionModule

The oxidized_importer.PythonExtensionModule type represents a
Python extension module. This is a shared library defining a Python
extension implemented in native machine code that can be loaded into
a process and defines a Python module. Extension modules are typically
defined by .so, .dylib, or .pyd files.

Instances have the following properties:


	name (str)

	The name of the extension module.






Note

Properties of this type are read-only.






PythonPackageResource

The oxidized_importer.PythonPackageResource type represents a non-module
resource file. These are files that live next to Python modules that
are typically accessed via the APIs in importlib.resources.

Instances have the following properties:


	package (str)

	The name of the leaf-most Python package this resource is associated with.

With OxidizedFinder, an importlib.abc.ResourceReader associated
with this package will be used to load the resource.



	name (str)

	The name of the resource within its package. This is typically the
filename of the resource. e.g. resource.txt or child/foo.png.



	data (bytes)

	The raw binary content of the resource.








PythonPackageDistributionResource

The oxidized_importer.PythonPackageDistributionResource type represents
a non-module resource file living in a package distribution directory
(e.g. <package>-<version>.dist-info or <package>-<version>.egg-info).
These resources are typically accessed via the APIs in importlib.metadata.

Instances have the following properties:


	package (str)

	The name of the Python package this resource is associated with.



	version (str)

	Version string of Python package this resource is associated with.



	name (str)

	The name of the resource within the metadata distribution. This is
typically the filename of the resource. e.g. METADATA.



	data (bytes)

	The raw binary content of the resource.











          

      

      

    

  

    
      
          
            
  
Resource Scanning APIs

The oxidized_importer module exposes functions and Python types to
facilitate scanning for and collecting Python resources.


find_resources_in_path(path)

The oxidized_importer.find_resources_in_path() function will scan the
specified filesystem path and return an iterable of objects representing
found resources. Those objects will be 1 of the types documented in
oxidized_importer Python Resource Types.

Only directories can be scanned.

To discover all filesystem based resources that Python’s PathFinder
meta path finder would (with the exception of .zip files), try the
following:

import os
import oxidized_importer
import sys

resources = []
for path in sys.path:
    if os.path.isdir(path):
        resources.extend(oxidized_importer.find_resources_in_path(path))








OxidizedResourceCollector Python Type

The oxidized_importer.OxidizedResourceCollector type provides functionality
for turning instances of Python resource types into a collection
of OxidizedResource for loading into an OxidizedFinder instance. It
exists as a convenience, as working with individual OxidizedResource
instances can be rather cumbersome.

Instances can be constructed by passing an allowed_locations=<list[str]>
argument defining locations that resources can be loaded from. The accepted
string values are in-memory and filesystem-relative.

e.g. to create a collector that only marks resources for in-memory loading:

import oxidized_importer

collector = oxidized_importer.OxidizedResourceCollector(
    allowed_locations=["in-memory"]
)





Instances of OxidizedResourceCollector have the following properties:


	allowed_locations (list[str])

	Exposes allowed locations where resources can be loaded from.





Methods are documented in the following sections.


add_in_memory(resource)

OxidizedResourceCollector.add_in_memory(resource) adds a Python resource
type (PythonModuleSource, PythonModuleBytecode, etc) to the collector
and marks it for loading via in-memory mechanisms.




add_filesystem_relative(prefix, resource)

OxidizedResourceCollector.add_filesystem_relative(prefix, resource) adds a
Python resource type (PythonModuleSource, PythonModuleBytecode, etc) to
the collector and marks it for loading via a relative path next to some
origin path (as specified to the OxidizedFinder). That relative path
can have a prefix value prepended to it. If no prefix is desired and you
want the resource placed next to the origin, use an empty str for
prefix.




oxidize()

OxidizedResourceCollector.oxidize() takes all the resources collected so
far and turns them into data structures to facilitate later use.

The return value is a tuple of
(List[OxidizedResource], List[Tuple[pathlib.Path, bytes, bool]]).

The first element in the tuple is a list of OxidizedResource instances.

The second is a list of 3-tuples containing the relative filesystem
path for a file, the content to write to that path, and whether the file
should be marked as executable.









          

      

      

    

  

    
      
          
            
  
Loading Resource Files

Many Python application need to load resources. Resources are typically
non-Python support files, such as images, config files, etc. In some cases,
resources could be Python source or bytecode files. For example, many
plugin systems load Python modules outside the context of the normal
import mechanism and therefore treat standalone Python source/bytecode
files as non-module resources.

oxidized_importer has support for loading resource files. But
compatibility with Python’s expected behavior may vary.


Python Resource Loading Mechanisms

Before we talk about oxidized_importer’s support for resource loading,
it is important to understand how Python code in the wild can load
resources.

We’ll overview them in the chronological order they were introduced into
the Python ecosystem.

The most basic and oldest mechanism to load resources is to perform raw
filesystem I/O. Typically, Python code looks at __file__ to get the
filename of the current module. Then, it calculates the directory name and
derives paths to resource files using e.g. os.path.join(). It will
usually then  open() these paths directly.

Python packaging evolved over time. Packaging tools could express
various metadata at build time, such as supplementary resource files.
This metadata would be installed next to a package and APIs could be
used to access it. One such API was
pkg_resources [https://setuptools.readthedocs.io/en/latest/pkg_resources.html].
Using e.g. pkg_resources.resource_string("foo", "bar.txt"), you could
obtain the content of the resource bar.txt in the foo package.

pkg_resources had useful functionality. And it was the recommended
mechanism for loading resource files for several years. But it wasn’t
part of the Python standard library and needed to be explicitly installed.
So not everyone used it.

Python 3.1 added the importlib package, which is the primary home for
all core functionality related to import. Python importers were now
defined via interfaces. One of those interfaces is ResourceLoader. It
has a single method get_data(path). Given a Python module’s loader
(e.g. via the __loader__ attribute on the module), you could call
get_data(path) and load a resource. e.g.
import foo; foo.__loader__.get_data("bar.txt").

The standard library only had ResourceLoader for several years. And
ResourceLoader wasn’t exactly a convenient API to use because it was
so low-level. Many Python applications continued to use pkg_resources
or direct file-based I/O.

Python 3.7 introduced significant improvements to resource loading in
the standard library.

At a low level, module loaders could now implement a
get_resource_reader(name) method, which would return an object
implementing the
ResourceReader [https://docs.python.org/3.7/library/importlib.html#importlib.abc.ResourceReader]
interface. This interface defined methods like open_resource(name)
and contents() to open a file-like handle on a named resource and
obtain a list of all available resources.

At a high level, the
importlib.resources [https://docs.python.org/3.7/library/importlib.html#module-importlib.resources]
package provided a user-friendly API for interacting with ResourceReader
instances. You could call e.g.
importlib.resources.open_binary(package, name) to obtain a file-like
handle on a specific resource within a package.

Python 3.7’s new resource APIs finally gave the Python standard library
access to powerful APIs for loading resources without using a 3rd
party package (like pkg_resources).

At the time of writing this in April 2020, it looks like Python 3.9 will
invent yet another low-level resource loading API.

Because Python hasn’t had a robust resource loading API in the standard
library for much of its history, lots of Python code in the wild does
not make use of the APIs in the standard library. It is not uncommon
to see code in 2020 that still uses __file__ to load resources.
Furthermore, because Python 3.7 is still relatively young and code may
wish to maintain compatibility with older Python versions, the newer APIs
may be actively avoided.


Important

As of Python 3.8, ResourceReader and importlib.resources are the
most robust mechanisms for loading resources and we recommend
adopting these APIs if possible.






Support for ResourceReader

oxidized_importer implements the ResourceReader interface for
loading resource files.

However, compatibility with Python’s default filesystem-based implementation
can vary. Unfortunately, various behavior with ResourceReader is
undefined [https://bugs.python.org/issue36128], so it isn’t clear
if CPython or oxidized_importer is buggy here.

oxidized_importer maintains an index of known resource files.
This index is logically a dict of dict``s, where the outer key is
the Python package name and the inner key is the resource name. Package
names are fully qualified. e.g. ``foo or foo.bar. Resource names
are effectively relative filesystem paths. e.g. resource.txt or
subdir/resource.txt. The relative paths always use / as the
directory separator, even on Windows.

OxidizedFinder.get_resource_reader() returns instances of
OxidizedResourceReader. Each instance is bound to a specific Python
package: that’s how they are defined. When an OxidizedResourceReader
receives the name of a resource, it performs a simple lookup in the global
resources index. If the string key is found, it is used. Otherwise, it is
assumed the resource doesn’t exist.

The OxidizedResourceReader.contents() method will return a list of all
keys in the internal resources index.

OxidizedResourceReader works the same way for in-memory and
filesystem-relative resource locations because internally
both use the same index of resources to drive execution: only the location
of the resource content varies.

OxidizedResourceReader’s implementation varies from the standard library
filesystem-based implementation in the following ways:


	OxidizedResourceReader.contents() will return keys from the package’s
resources dictionary, not all the files in the same directory as the
underlying Python package (the standard library uses os.listdir()).
OxidizedResourceReader will therefore return resource names in
sub-directories as long as those sub-directories aren’t themselves Python
packages.


	Resources must be explicitly registered with OxidizedFinder as such in
order   to be exposed via the resources API. By contrast, the
filesystem-based   importer - relying on os.listdir() - will expose
all files in a directory as a resource. This includes .py files.


	OxidizedResourceReader.is_resource() will return True for resource
names containing a slash. Contrast with Python’s, which returns False
(even though you can open a resource with ResourceReader.open_resource()
for the same path). OxidizedResourceReader’s behavior is more
consistent.







Support for ResourceLoader

OxidizedFinder implements the deprecated ResourceLoader interface
and get_data(path) will return bytes instances for registered
resources or raise OSError on request of an unregistered resource.

The path passed to get_data(path) MUST be an absolute path that has the
prefix of either the currently running executable file or the directory
containing it.

If the resource path is prefixed with the current executable’s path, the
path components after the current executable path are interpreted as the
path to a resource registered for in-memory loading.

If the resource path is prefixed with the current executable’s directory,
the path components after this directory are interpreted as the path to a
resource registered for application-relative loading.

All other resource paths aren’t recognized and an OSError will be
raised. There is no fallback to loading from the filesystem, even if a
valid filesystem path pointing to an existing file is passed in.


Note

The behavior of not servicing paths that actually exist but aren’t
registered with OxidizedFinder as resources may be overly opinionated
and undesirable for some applications.

If this is a legitimate use case for your application, please create a
GitHub issue to request this feature.



Once a path is recognized as having the prefix of the current executable
or its directory, the remaining path components will be interpreted as the
resource path. This resource path logically contains a package name component
and a resource name component. OxidizedFinder will traverse all
potential package names starting from the longest/deepest up until the
top-level package looking for a known Python package. Once a known package
name is encountered, its resources will be consulted. At most 1 package
will be consulted for resources.

Here is a concrete example.

If the path is /usr/bin/myapp/foo/bar/resource.txt and the current
executable is /usr/bin/myapp, the requested resource will be
foo/bar/resource.txt. Since the path was prefixed with the executable
path, only resources registered for in-memory loading will be consulted.

Our candidate package names are foo.bar and foo, in that order.

If foo.bar is a known package and resource.txt is registered for
in-memory loading, that resource’s contents will be returned.

If foo.bar is a known package and resource.txt is not registered
in that package, OSError is raised.

If foo.bar is not a known package, we proceed to check for package
foo.

If foo is a known package and bar/resource.txt is registered
for in-memory loading, its contents will be returned.

Otherwise, we’re out of possible packages, so OSError is raised.

Similar logic holds for resources registered for filesystem-relative loading.
The difference here is the stripped path prefix and we are only looking
for resources registered for filesystem-relative loading. Otherwise, the
traversal logic is exactly the same.

If OSError is raised due to a missing resource, its errno is ENOENT
and its filename is the passed in path. Python should automatically
translate this to a FileNotFoundError exception. But callers should
catch OSError, as other OSError variants can be raised (e.g. for
file permission errors).




Support for __file__

OxidizedFinder may or may not set the __file__ attribute on loaded
modules. See __file__ and __cached__ Module Attributes for details.

Therefore, Python code relying on the presence of __file__ to derive
paths to resource files may or may not work with oxidized_importer.

Code utilizing __file__ for resource loading is highly encouraged to switch
to the importlib.resources API. If this is not possible, you can change
packaging settings to move the resource locations from in-memory to
filesystem-relative, as __file__ is set when loading modules from the
filesystem.




Support for pkg_resources

pkg_resources’s APIs for loading resources likely do not work with
oxidized_importer.




Porting Code to Modern Resources APIs

Say you have resources next to a Python module. Legacy code inside a module
might do something like the following:

def get_resource(name):
    """Return a file handle on a named resource next to this module."""
    module_dir = os.path.abspath(os.path.dirname(__file__))
    # Warning: there is a path traversal attack possible here if
    # name continues values like ../../../../../etc/password.
    resource_path = os.path.join(module_dir, name)

    return open(resource_path, 'rb')





Modern code targeting Python 3.7+ can use the ResourceReader API directly:

def get_resource(name):
    """Return a file handle on a named resource next to this module."""
    # get_resource_reader() may not exist or may return None, which this
    # code doesn't handle.
    reader = __loader__.get_resource_reader(__name__)
    return reader.open_resource(name)





The ResourceReader interface is quite low-level. If you want something
higher level or want to access resources outside the current module, it
is recommended to use the
importlib.resources [https://docs.python.org/3.7/library/importlib.html#module-importlib.resources]
APIs. e.g.:

import importlib.resources

with importlib.resources.open_binary('mypackage', 'resource-name') as fh:
    data = fh.read()





The importlib.resources functions are glorified wrappers around the
low-level interfaces on module loaders. But they do provide some useful
functionality, such as additional error checking and automatic importing
of modules, making them useful in many scenarios, especially when loading
resources outside the current package/module.




Maintaining Compatibility With Python <3.7

If you want to maintain compatibility with Python <3.7, you can’t use
ResourceReader or importlib.resources, as they are not available.
The recommended solution here is to use a shim.

The best shim to use is
importlib_resources [https://importlib-resources.readthedocs.io/en/latest/index.html].
This is a standalone Python package that is a backport of importlib.resources
to older Python versions. Essentially, you can always get the APIs from the
latest Python version. This shim knows about the various APIs available
on Loader instances and chooses the best available one. It should
just work with oxidized_importer.

If you want to implement your own shim without introducing a dependency
on importlib_resources, the following code can be used as a starting
implementation:

import importlib

try:
    import importlib.resources
    # Defeat lazy module importers.
    importlib.resources.open_binary
    HAVE_RESOURCE_READER = True
except ImportError:
    HAVE_RESOURCE_READER = False

try:
    import pkg_resources
    # Defeat lazy module importers.
    pkg_resources.resource_stream
    HAVE_PKG_RESOURCES = True
except ImportError:
    HAVE_PKG_RESOURCES = False


def get_resource(package, resource):
    """Return a file handle on a named resource in a Package."""

    # Prefer ResourceReader APIs, as they are newest.
    if HAVE_RESOURCE_READER:
        # If we're in the context of a module, we could also use
        # ``__loader__.get_resource_reader(__name__).open_resource(resource)``.
        # We use open_binary() because it is simple.
        return importlib.resources.open_binary(package, resource)

    # Fall back to pkg_resources.
    if HAVE_PKG_RESOURCES:
        return pkg_resources.resource_stream(package, resource)

    # Fall back to __file__.

    # We need to first import the package so we can find its location.
    # This could raise an exception!
    mod = importlib.import_module(package)

    # Undefined __file__ will raise NameError on variable access.
    try:
        package_path = os.path.abspath(os.path.dirname(mod.__file__))
    except NameError:
        package_path = None

    if package_path is not None:
        # Warning: there is a path traversal attack possible here if
        # resource contains values like ../../../../etc/password. Input
        # must be trusted or sanitized before blindly opening files or
        # you may have a security vulnerability!
        resource_path = os.path.join(package_path, resource)

        return open(resource_path, 'rb')

    # Could not resolve package path from __file__.
    raise Exception('do not know how to load resource: %s:%s' % (
                    package, resource))





(The above code is dedicated to the public domain and can be used without
attribution.)

This code is provided for example purposes only. It may or may not be sufficient
for your needs.







          

      

      

    

  

    
      
          
            
  
Freezing Applications with oxidized_importer

oxidized_importer can be used to create and run frozen Python
applications, where Python resources data (module source and bytecode,
etc) is frozen/packaged and distributed next to your application.

This is conceptually similar to what PyOxidizer does. The major
difference is that PyOxidizer will package and distribute a Python
distribution with your application: when only oxidized_importer is being
used, the Python distribution is provided by some other means (it is
typically already installed on the system). This makes oxidized_importer
a light-weight alternative to PyOxidizer for scenarios where PyOxidizer
isn’t suitable or viable.


High-Level Freezing Workflow

The steps for freezing an application all look the same:


	Load OxidizedResource instances into an OxidizedFinder instance
so they are indexed.


	Serialize indexed resources.


	Write the serialized resources blob somewhere along with any
files (if using filesystem-based loading).


	Somehow make that resources blob available to others (you could
add it as a resource file in your Python package for example).


	From your application, construct an OxidizedFinder instance and
load the resources blob you generated.


	Register the OxidizedFinder instance as the first element on
sys.meta_path.




The next sections show what this may look like.




Indexing and Serializing Resources

In your build process, you’ll need to index resources and serialize
them. You can construct OxidizedResource instances directly and hand
them off to an OxidizedFinder instance. But you’ll probably want to
use OxidizedResourceCollector to make this simpler.

Try something like the following:

import os
import stat
import sys

import oxidized_importer

# Create a collector to help with managing resources.
collector = oxidized_importer.OxidizedResourceCollector(
    allowed_locations=["in-memory"]
)

# Add all known Python resources by scanning sys.path.
# Note: this will pull in the Python standard library and
# any other installed packages, which may not be desirable!
for path in sys.path:
    # Only directories can be scanned by oxidized_importer.
    if os.path.isdir(path):
        for resource in oxidized_importer.find_resources_in_path(path):
            collector.add_in_memory(resource)

# Turn the collected resources into ``OxidizedResource`` and file
# install rules.
resources, file_installs = collector.oxidize()

# Now index the resources so we can serialize them.
finder = oxidized_importer.OxidizedFinder()
finder.add_resources(resources)

# Turn the indexed resources into an opaque blob.
packed_data = finder.serialize_indexed_resources()

# Write out that data somewhere.
with open("oxidized_resources", "wb") as fh:
    fh.write(packed_data)

# Then for all the file installs, materialize those files.
for (path, data, executable) in file_installs:
    path.parent.mkdir(parents=True, exist_ok=True)

    with path.open("wb") as fh:
        fh.write(data)

    if executable:
        path.chmod(path.stat().st_mode | stat.S_IEXEC)





At this point, you’ve collected all known Python resources and written
out a data structure describing them all. For resources targeting in-memory
loading, the content of those resources is embedded in the data structure.
For resources targeting filesystem-relative loading, the data structure
contains the relative path to those resources. And you’ve written out the
files in the locations where those relative paths point to.




Loading Serialized Resources in Your Application

Now, from our application code, we need to load the resources
and register the custom importer with Python:

import os
import sys

import oxidized_importer

# Load those resources into an instance of our custom importer. This
# will read the index in the passed data structure and make all
# resources immediately available for importing.
finder = oxidized_importer.OxidizedFinder(resources_file="oxidized_resources")

# If the relative path of filesystem-based resources is not relative
# to the current executable (which is likely the ``python3`` executable),
# you'll need to set ``origin`` to the directory the resources are
# relative to.
finder = oxidized_importer.OxidizedFinder(
    resources=packed_data,
    relative_path_origin=os.path.dirname(os.path.abspath(__file__)),
)

# Register the meta path finder as the first item, making it the
# first finder that is consulted.
sys.meta_path.insert(0, finder)

# At this point, you should be able to ``import`` modules defined
# in the resources data!











          

      

      

    

  

    
      
          
            
  
Common Issues


Extension Modules Support

Unlike PyOxidizer, OxidizedResourceCollector isn’t (yet) as intelligent
about how to handle extension modules (standalone machine native
shared libraries). And even PyOxidizer’s support for extension modules can
be brittle.

One notable difference between PyOxidizer and OxidizedResourceCollector
is PyOxidizer is able to determine whether importing extension modules
from memory is supported and is able to automatically redirect an extension
module to filesystem-based loading if not supported.
OxidizedResourceCollector is dumb and adds resources where you tell it
to.

OxidizedFinder supports loading extension modules from memory on Windows.
But everywhere else, this isn’t supported and will result in an
ImportError if you index an extension module for in-memory loading.

To work around this deficiency, you’ll want to mark extension modules as
loaded from the filesystem unless you are on Windows. Try something
like this:

import oxidized_importer

collector = oxidized_importer.OxidizedResourceCollector(
    allowed_locations=["in-memory", "filesystem-relative"],
)

# Redirect extension modules to the filesystem and everything else to
# memory.
for resource in oxidized_importer(find_resources_in_path("/path/to/resources")):
    if isinstance(resource, oxidized_importer.PythonExtensionModule):
        collector.add_filesystem_relative("lib", resource)
    else:
        collector.add_in_memory(resource)








Resource Scanning Descends Into site-packages

oxidized_importer.find_resources_in_path() descends into site-packages
directories. This is arguably not the desired behavior, especially when
in the context of virtualenvs, which may want to not inherit the resources
in the site-packages of the outer Python installation. This will
likely be fixed in a future release.







          

      

      

    

  

    
      
          
            
  
Security Implications of Loading Resources

OxidizedFinder allows Python code to define its own OxidizedResource
instances to be made available for loading. This means Python code can define
its own Python module source or bytecode that could later be executed. It also
allows registration of extension modules and shared libraries, which give
a vector for allowing execution of native machine code.

This feature has security implications, as it provides a vector for arbitrary
code execution.

While it might be possible to restrict this feature to provide stronger
security protections, we have not done so yet. Our thinking here is that
it is extremely difficult to sandbox Python code. Security sandboxing at the
Python layer is effectively impossible: the only effective mechanism to
sandbox Python is to add protections at the process level. e.g. by restricting
what system calls can be performed. We feel that the capability to inject
new Python modules and even shared libraries via OxidizedFinder doesn’t
provide any new or novel vector that doesn’t already exist in Python’s standard
library and can’t already be exploited by well-crafted Python code. Therefore,
this feature isn’t a net regression in security protection.

If you have a use case that requires limiting the features of
OxidizedFinder so security isn’t sacrificed, please
file an issue <https://github.com/indygreg/PyOxidizer/issues>.





          

      

      

    

  

    
      
          
            
  
Python Packed Resources

PyOxidizer has defined a custom data format for storing resources
useful to the execution of a Python interpreter. We call this data
format Python packed resources.

The way it works is that some producer collects resources required by
a Python interpreter. These resources include Python module source
and bytecode, non-module resource/data files, extension modules, and
shared libraries. Metadata about these resources and sometimes the
raw resource data itself is serialized to a binary data structure.

At Python interpreter run time, this data structure is loaded (it
can be embedded in a binary or exist as a standalone file) and parsed.
A custom Python Meta Path Finders
(OxidizedFinder from
oxidized_importer Python Extension) then uses the parsed data structure to power
Python module importing.

This functionality is similar to using a .zip file for holding
Python modules. However, the Python packed resources data structure
is far more advanced.


Implementation

The canonical implementation of the writer and parser of this data
structure lives in the python-packed-resources Rust crate. The
canonical home of this crate is
https://github.com/indygreg/PyOxidizer/tree/main/python-packed-resources.

This crate is published to crates.io at
https://crates.io/crates/python-packed-resources.




Specification

From a high level, the data structure defines an iterable of
resources. A resource is an entity with a name, metadata, and
blob fields. Typically the most common resource is a Python
module/package. But other resource types (such as shared libraries)
are defined.

The first 8 bytes of the data structure are a magic header identifying
the content as our data structure and the version of it. The first
7 bytes are pyembed and the following 1 byte denotes a version.
Semantics of each version are denoted in sections below.


High-Level Layout

From a high-level, the serialized format consists of:


	A global header describing the overall payload.


	An index describing the blob sections present in the payload.


	An index describing each resource and its content.


	A series of blob sections holding the data referenced by the resources
index.




A resource is composed of various fields that describe it. Examples
of fields include the resource name, source code, and bytecode. The resources
index describes which fields are present and where to find them in the payload.

The actual content of fields (e.g. the raw bytes containing source code)
is stored in field-specific sections after the index. Each field has its
own section and data for all resources is stored next to each other. e.g.
you will have all the data for resource names followed by all data for
module sourcecode.

The low-level data format is described below. All integers are
little-endian.

The first 13 bytes after the magic header denote a global header.
The global header consists of:


	A u8 denoting the number of blob sections, blob_sections_count.


	A u32 denoting the length of the blob index, blob_index_length.


	A u32 denoting the total number of resources in this data,
resources_count.


	A u32 denoting the length of the resources index,
resources_index_length.




Following the global header is the blob index. The blob index describes
the various blob sections present in the payload following the resources
index.

Each entry in the blob index logically consists of a set of fields defining
metadata about each blob section. This is encoded by a start of entry
u8 marker followed by N u8 field type values and their corresponding
metadata, followed by an end of entry u8 marker. The blob index is
terminated by an end of index u8 marker. The total number of bytes in
the blob index including the end of index marker should be
blob_index_length.

Following the blob index is the resources index. Each entry in this index
defines a sparse set of metadata describing a single resource. Entries are
composed of a series of u8 identifying pieces of metadata, followed by
field-specific supplementary descriptions. For example, a value of 0x02
denotes the length of the resources’s name and is immediately followed by a
u16 holding said length. See the section below for each field
tracked by this index.

Following the resources index is blob data. Blob data is logically consisted
of different sections holding data for different fields for different resources.
But there is no internal structure or separators: all the individual
blobs are just laid out next to each other.




Blob Field Types

The Blob Index allows attributing a sparse set of metadata with every blob
section entry. The type of metadata being conveyed is defined by a u8.
Some field types have additional metadata following that field.

The various field types and their semantics follow.


	0x00

	End of index. This field indicates that there are no more blob
index entries and we’ve reached the end of the blob index.



	0x01

	Start of blob section entry. Encountering this value signals the
beginning of a new blob section. From a specification standpoint, this isn’t
strictly required. But it helps ensure parser state.



	0xff

	End of blob section entry. Encountering this value signals the end
of the current blob section definition. The next encountered u8 in the
index should be 0x01 to denote a new entry or 0x00 to denote end of
index.



	0x02

	Resource field type. This field defines which resource field this
blob section is holding data for. A u8 following this one will contain
the resource field type value (see section below).



	0x03

	Raw payload length. This field defines the raw length in bytes of
the blob section in the payload. The u64 containing that length will
immediately follow this u8.



	0x04

	Interior padding mechanism. This field defines interior padding
between elements in the blob section. Following this u8 is another u8
denoting the padding mechanism.

0x01 indicates no padding.
0x02 indicates NULL padding (a 0x00 between elements).

If not present, no padding is assumed. If the payload data logically
consists of discrete resources (e.g. Python package resource files), then
padding applies to these sub-elements as well.








Resource Field Types

The Resources Index allows attributing a sparse set of metadata
with every resource. A u8 indicates what metadata is being conveyed. Some
field types have additional metadata following this [u8] further defining
the field. The values of each defined metadata type follow.


	0x00

	End of index. Special type to denote the end of an index.



	0x01

	Start of resource entry. Signals the beginning of a new resource. From
a specification standpoint this isn’t strictly required. But it helps ensure
parser state.



	0x02

	Resource flavor. Declares the type of resource this entry represents.
A u8 defining the resource flavor immediately follows this byte. See the
section below for valid resource flavors.

This field is deprecated in version 2 in favor of the individual fields
expressing presence of a resource type. (See fields starting at 0x16.)



	0xff

	End of resource entry. The next encountered u8 in the index should
be an end of index or start of resource marker.



	0x03

	Resource name. A u16 denoting the length in bytes of the resource name
immediately follows this byte. The resource name must be valid UTF-8.



	0x04

	Package flag. If encountered, the resource is identified as a Python
package.



	0x05

	Namespace package flag. If encountered, the resource is identified as
a Python namespace package.



	0x06

	In-memory Python module source code. A u32 denoting the length in
bytes of the module’s source code immediately follows this byte.



	0x07

	In-memory Python module bytecode. A u32 denoting the length in bytes
of the module’s bytecode immediately follows this byte.



	0x08

	In-memory Python module optimized level 1 bytecode. A u32 denoting the
length in bytes of the module’s optimization level 1 bytecode immediately
follows this byte.



	0x09

	In-memory Python module optimized level 2 bytecode. Same as previous,
except for bytecode optimization level 2.



	0x0a

	In-memory Python extension module shared library. A u32 denoting the
length in bytes of the extension module’s machine code immediately follows
this byte.



	0x0b

	In-memory Python resources data. If encountered, the module/package
contains non-module resources files and the number of resources is contained in
a u32 that immediately follows. Following this u32 is an array of
(u16, u64) denoting the resource name and payload size for each resource
in this package.



	0x0c

	In-memory Python distribution resource. Defines resources accessed from
importlib.metadata APIs. If encountered, the module/package contains
distribution metadata describing the package. The number of files being
described is contained in a u32 that immediately follows this byte.
Following this u32 is an array of (u16, u64) denoting the
distribution file name and payload size for each virtual file in this
distribution.



	0x0d

	In-memory shared library. If set, this resource is a shared
library and not a Python module. The resource name field is the name of
this shared library, with file extension (as it would appear in a dynamic
binary’s loader metadata to indicate a library dependency). A u64
denoting the length in bytes of the shared library data follows. This
shared library should be loaded from memory.



	0x0e

	Shared library dependency names. This field indicates the names
of shared libraries that this entity depends on. The number of library names
is contained in a u16 that immediately follows this byte. Following this
u16 is an array of u16 denoting the length of the library name for
each shared library dependency. Each described shared library dependency
may or may not be described by other entries in this data structure.



	0x0f

	Relative filesystem path to Python module source code. A u32 holding
the length in bytes of a filesystem path encoded in the platform-native file
path encoding follows. The source code for a Python module will be read from
a file at this path.



	0x10

	Relative filesystem path to Python module bytecode. Similar to the
previous except the filesystem path holds Python module bytecode.



	0x11

	Relative filesystem path to Python module bytecode at optimization
level 1. Similar to the previous except for what is being pointed to.



	0x12

	Relative filesystem path to Python module bytecode at optimization
level 2. Similar to the previous except for what is being pointed to.



	0x13

	Relative filesystem path to Python extension module shared library.
Similar to the previous except the file holds a Python extension module
loadable as a shared library.



	0x14

	Relative filesystem path to Python package resources. The number of
resources is contained in a u32 that immediately follows. Following
this u32 is an array of (u16, u32) denoting the resource name and
filesystem path to each resource in this package.



	0x15

	Relative filesystem path to Python distribution resources.

Defines resources accessed from importlib.metadata APIs. If encountered,
the module/package contains distribution metadata describing the package.
The number of files being described is contained in a u32 that
immediately follows this byte. Following this u32 is an array of
(u16, u32) denoting the distribution file name and filesystem path to
that distribution file.



	0x16

	Is Python module flag. If set, this resource contains data for
an importable Python module or package. Resource data is associated with
Python packages and is covered by this type.



	0x17

	Is builtin extension module flag. This type represents a Python
extension module that is built in (compiled into) the interpreter itself
or is otherwise made available to the interpreter via PyImport_Inittab
such that it should be imported with the builtin importer.



	0x18

	Is frozen Python module flag. This type represents a Python module
whose bytecode is frozen and made available to the Python interpreter
via the PyImport_FrozenModules array and should be imported with the
frozen importer.



	0x19

	Is Python extension flag. This type represents a compiled Python
extension. Extensions have specific requirements around how they are to be
loaded and are differentiated from regular Python modules.



	0x1a

	Is shared library flag. This type represents a shared library
that can be loaded into a process.



	0x1b

	Is utf-8 filename data flag. This type represents an arbitrary filename.
The resource name is a UTF-8 encoded filename of the file this resource
represents. The file’s data is either embedded in memory or referred to
via a relative path reference.



	0x1c

	File data is executable flag.

If set, the arbitrary file this resource tracks should be marked as
executable.



	0x1d

	Embedded file data.

If present, the resource should be a file resource and this field holds its
raw file data in memory.

A u64 containing the length of the embedded data follows this field.



	0x1e

	UTF-8 relative path file data.

If present, the resource should be a file resource and this field defines
the relative path containing that file’s data. The relative path filename
is UTF-8 encoded.

A u32 denoting the length of the UTF-8 relative path (in bytes) follows.








Resource Flavors


Important

Enumerated resource flavors are deprecated after version 1. You should
use individual fields to express resource identity instead.



The data format allows defining different types/flavors of resources.
This flavor of a resource is identified by a u8. The declared flavors are:


	0x00

	No flavor. Should not be encountered.



	0x01

	Python module/package. This is equivalent to resource field
0x16 being set.



	0x02

	Builtin Python extension module. This is equivalent to resource
field 0x17 being set.



	0x03

	Frozen Python module. This is equivalent to resource field 0x18
being set.



	0x04

	Python extension. This is equivalent to resource field 0x19
being set.



	0x05

	Shared library. This is equivalent to resource field 0x1a being
set.








pyembed\x01 Format

The initially released/formalized packed resources data format.

Supports resource field types up to and including 0x15.




pyembed\x02 Format

Version 2 of the packed resources data format.

This version introduces field type values 0x16 to 0x1a. The
resource flavor field type (0x02) is deprecated and the individual
field types denoting resource types should be used instead.

(PyOxidizer removed run-time code looking at field type 0x02 when
this format was introduced.)




pyembed\x03 Format

Version 3 of the packed resources data format.

This version introduces field type values 0x1b to 0x1e.

These fields provide the ability for a resource to identify itself as
an arbitrary filename and for the arbitrary file data to be embedded
within the data structure or referenced via a relative path.

Unlike previous fields that use OS-native encoding of filesystem
paths ([u8] on POSIX and [u16] on Windows), the paths for
these new fields use UTF-8. This can’t represent all valid paths on
all platforms. But it is portable and works for most paths encountered
in the wild.






Design Considerations

The design of the packed resources data format was influenced by a handful
of considerations.

Performance is a significant consideration. We want everything to be as fast
as possible. Possible dimensions influencing performance include parse time,
payload size, and I/O access patterns.

The payload is designed such that the index data is at the beginning
so a reader only has to read a contiguous slice of data to fully understand
the data within. This is in opposition to jumping around the entire data
structure to extract metadata of the data within. This means that we only
need to page in a fraction of the total backing data structure in order
to initialize our custom importer. In addition, the index data is read
sequentially. Sequential I/O should always be faster than random access
I/O.

x86 is little endian, so we use little endian integers so we don’t need
to waste cycles on endian transformation.

We store all data for the same field next to each other in the data
structure. This is in opposition to say packing all of resource A’s data
then resource B’s, etc. We do this to help maximize locality for similar
data. This can help with performance because often the same field for
multiple resources is accessed together. e.g. an importer will access
a bunch of module bytecode entries at the same time. This locality helps
minimize the number of pages that must be read. Locality can also help
yield higher compression ratios.

Everything is designed to facilitate a reader leveraging 0-copy. If a
reader has the data structure in memory, we don’t want to require it
to copy memory in order to reference entries. In Rust speak, we should
be able to hold &[u8] references everywhere.

There is no checksumming of the data because we don’t want to incur
I/O overhead to read the entire blob. It could be added as an optional
feature.




Potential Future Features

This data structure is robust enough to be used by PyOxidizer to
power importing of every Python module used by a Python interpreter.
However, there are various aspects that could be improved.


Compression

A potential area for optimization is use of general compression. Various
fields should compress well - either in streaming mode or by utilizing
compression dictionaries. Compression would undermine 0-copy, of course.
But in environments where we want to optimize for size, it could be
desirable.




Platform Portability

Currently, filesystem paths are encoded as platform native. That means
[u8] on POSIX and [u16] on Windows. This isn’t portable.

Most filenames are likely ASCII or UTF-8 safe. For the common case where
we don’t need platform-native filenames to preserve subtle encoding
differences, we could express paths as a simpler string type.









          

      

      

    

  

    
      
          
            
  
PyOxidizer for Rust Developers

PyOxidizer is implemented in Rust. Binaries built with PyOxidizer are
also built with Rust using standard Rust projects.

While the existence of Rust should be abstracted away from most users
(aside from the existence of the install dependency and build output),
a target audience of PyOxidizer is Rust developers who want to embed
Python in a Rust project or Python developers who want to leverage
more Rust in their Python applications.

Follow the links below to learn how PyOxidizer uses Rust and how Rust
can be leveraged to build more advanced applications embedding Python.



	Using Cargo with PyOxidizer Source Checkouts
	pyoxidizer Crate

	python-packed-resources Crate

	python-packaging Crate

	pyembed Crate

	oxidized-importer Crate





	Rust Projects
	Layout





	Crate Configuration
	Build Artifacts for pyembed

	Cargo Features to Control Building





	Controlling Python From Rust Code
	Interacting with the pyembed Crate

	Initializing a Python Interpreter

	Using a Python Interpreter

	Finalizing the Interpreter

	A Note on the pyembed APIs





	Adding Extension Modules At Run-Time
	Statically Linked Extension Modules

	Dynamically Linked Extension Modules





	Porting a Python Application to Rust
	Overview

	Extending Rust Projects

	Implementing Python Extension Modules in Rust













          

      

      

    

  

    
      
          
            
  
Using Cargo with PyOxidizer Source Checkouts

PyOxidizer’s source repository consists of multiple Rust projects/crates.
At the root of the repository is a Cargo.toml defining a workspace
consisting of all these crates.


Important

Building various Rust crates from source can be extremely brittle and
a top-level cargo build will likely encounter multiple build
failures.



If you want to run cargo from a PyOxidizer source checkout, you will
likely want to limit the invocation to a single crate at a time to ensure
things can build.

The following sections detail how to build various crates inside a
source checkout.


pyoxidizer Crate

Building the pyoxidizer crate in isolation (e.g.
cargo build -p pyoxidizer) should just work, as it is a pretty typical
Rust crate.

Perhaps the only special property of this crate is that it defines both
a library and an executable. So you may want to limit operations to a specific
binary. e.g. cargo build --bin pyoxidizer or
cargo test --bin pyoxidizer.




python-packed-resources Crate

This is a standard Rust crate and should always build without issue. e.g.
cargo build -p python-packed-resources.




python-packaging Crate

This is a standard Rust crate and should always build without issue. e.g.
cargo build -p python-packaging or cargo test -p python-packaging.




pyembed Crate

The pyembed crate provides the bulk of the run-time functionality for
binaries embedding Python interpreters. Because the crate needs to consult
with a Python interpreter at build time and link against it and because
it needs to exchange state with PyOxidizer, its build configuration is…
special.


Important

Almost all workspace build failures are somehow related to the pyembed
crate.



The pyembed crate defines various features to control how it is built.
See Crate Configuration for details.

In its default configuration, a Python 3.8 executable needs to be found on
PATH. If said executable can’t be found, you’ll get a
No python interpreter found of version 3.* error at build time.

To work around this, add a python3.8 or python3 executable to
PATH or run cargo build with the PYTHON_SYS_EXECUTABLE environment
variable pointing to a specific Python 3 executable. e.g.


$ PYTHON_SYS_EXECUTABLE=/path/to/python3.8 cargo build -p pyembed







oxidized-importer Crate

This crate is a very small shim around the pyembed crate which builds
the pyembed crate in a specific manner so it provides just the functionality
needed for oxidized_importer Python Extension.

Because this crate is a thin shim, the caveats that apply to building
pyembed apply to it as well.







          

      

      

    

  

    
      
          
            
  
Rust Projects

PyOxidizer uses Rust projects to build binaries embedding Python.

If you just have a standalone configuration file (such as when running
pyoxidizer init-config-file), a temporary Rust project will be
created as part of building binaries. That project will be built, its
build artifacts copied, and the temporary project will be deleted.

If you use pyoxidizer init-rust-project to initialize a
PyOxidizer application, the Rust project exists side-by-side with
the PyOxidizer configuration file and can be modified like
any other Rust project.


Layout

Generated Rust projects all have a similar layout:

$ find pyapp -type f | grep -v .git
Cargo.toml
build.rs
pyoxidizer.bzl
src/main.rs





The Cargo.toml file is the configuration file for the Rust project.
Read more in
the official Cargo documentation [https://doc.rust-lang.org/cargo/reference/manifest.html].
The magic lines in this file to enable PyOxidizer are the following:

[package]
build = "build.rs"

[dependencies]
pyembed = ...





These lines declare a dependency on the pyembed package, which holds
the smarts for embedding Python in a binary.

In addition, the build = "build.rs" tells runs a script that hooks up
the output of the pyembed crate with this project.

Next let’s look at src/main.rs. If you aren’t familiar with Rust
projects, the src/main.rs file is the default location for the source
file implementing an executable. If we open that file, we see a
fn main() { line, which declares the main function for our executable.
The file is relatively straightforward. We import some symbols from the
pyembed crate. We then construct a config object, use that to construct
a Python interpreter, then we run the interpreter and pass its exit code
to exit(). Succinctly, we instantiate and run an embedded Python
interpreter. That’s our executable.

The pyoxidizer.bzl is our auto-generated
PyOxidizer configuration file.







          

      

      

    

  

    
      
          
            
  
Crate Configuration


Build Artifacts for pyembed

The pyembed crate needs to reference special artifacts as part of its
build process in order to compile a Python interpreter into a binary. The
most important of these artifacts is a library providing Python symbols.

By default, the pyembed crate’s build.rs build script will run
pyoxidizer run-build-script, which will attempt to find a PyOxidizer
config file and evaluate its default build script target. Using
environment variables set by cargo and by the build.rs script,
artifacts will be placed in the correct locations and pyembed will
be built seemingly like any normal Rust crate.

The special build artifacts are generated by resolving a configuration file
target returning a PythonEmbeddedResources instance. In the
auto-generated configuration file, the embedded target returns such a
type.




Cargo Features to Control Building

The pyembed crate and generated Rust projects share a set of
build-mode-* Cargo feature flags to control how build artifacts
are created and consumed.

The features are described in the following sections.


build-mode-default

This is the default build mode. It is enabled by default.

This build mode uses default Python linking behavior and feature detection
as implemented by the cpython and python3-sys crates. It will attempt
to find a python in PATH or from the PYTHON_SYS_EXECUTABLE
environment variable and dynamically link against it.

This is the default mode for convenience, as it enables the pyembed crate
to build in the most environments. However, the built binaries will have a
dependency against a foreign libpython and likely aren’t suitable for
distribution.




build-mode-standalone

Do not attempt to invoke pyoxidizer or find artifacts it would have
built. It is possible to build the pyembed crate in this mode if
the rust-cpython and python3-sys crates can find a Python
interpreter. But, the pyembed crate may not be usable or work in
the way you want it to.

This mode is intended to be used for performing quick testing on the
pyembed crate. It is quite possible that linking errors will occur
in this mode unless you take additional actions to point Cargo at
appropriate libraries.




build-mode-pyoxidizer-exe

A pyoxidizer executable will be run to generate build artifacts.

The path to this executable can be defined via the PYOXIDIZER_EXE
environment variable. Otherwise PATH will be used.

At build time, pyoxidizer run-build-script will be run. A
PyOxidizer configuration file will be discovered using the heuristics
described at Automatic File Location Strategy. OUT_DIR will
be set if running from cargo, so a pyoxidizer.bzl next to the main
Rust project being built should be found and used.

pyoxidizer run-build-script will resolve the default build script target
by default. To override which target should be resolved, specify the target
name via the PYOXIDIZER_BUILD_TARGET environment variable. e.g.:

$ PYOXIDIZER_BUILD_TARGET=build-artifacts cargo build








build-mode-prebuilt-artifacts

This mode tells the build script to reuse artifacts that were already built.
(Perhaps you called pyoxidizer build or pyoxidizer run-build-script
outside the context of a normal cargo build.)

In this mode, the build script will look for artifacts in the directory
specified by PYOXIDIZER_ARTIFACT_DIR if set, falling back to OUT_DIR.
This directory must have a cargo_metadata.txt file, which will be
printed to stdout by the build script to tell Cargo how to link a Python
library.




cpython-link-unresolved-static

Configures the link mode of the cpython crate to use a static
pythonXY library without resolving the symbol at its own build
time. The pyembed crate or a crate building it will need to emit
cargo:rustc-link-lib=static=pythonXY and any
cargo:rustc-link-search=native={} lines to specify an explicit
pythonXY library to link against.

This is the link mode used to produce self-contained binaries containing
libpython and pyembed code.




cpython-link-default

Configures the link mode of the cpython crate to use default
semantics. The crate’s build script will find a pre-built Python
library by querying the python defined by PYTHON_SYS_EXECUTABLE
or found on PATH. See the cpython crate’s documentation for
more.

This link mode should be used when linking against an existing libpython
that can be found by the cpython crate’s build script.









          

      

      

    

  

    
      
          
            
  
Controlling Python From Rust Code

PyOxidizer can be used to embed Python in a Rust application.

This page documents what that looks like from a Rust code perspective.


Interacting with the pyembed Crate

When writing Rust code to interact with a Python interpreter, your
primary area of contact will be with the pyembed crate.

The pyembed crate is a standalone crate maintained as part of the
PyOxidizer project. This crate provides the core run-time functionality
for PyOxidizer, such as the implementation of
PyOxidizer’s custom importer. It also exposes
a high-level API for initializing a Python interpreter and running code
in it.

Under the hood, the pyembed crate uses the cpython and
python3-sys crates for interacting with Python’s C APIs. pyembed
exposes the Python object from cpython, which means that
once you’ve initialized a Python interpreter with pyembed, you can
use all the functionality in cpython to interact with that
interpreter.




Initializing a Python Interpreter

Initializing an embedded Python interpreter in your Rust process is as simple
as calling
pyembed::MainPythonInterpreter::new(config: OxidizedPythonInterpreterConfig).

The hardest part about this is constructing the
pyembed::OxidizedPythonInterpreterConfig instance.


Using the Default OxidizedPythonInterpreterConfig

If the pyembed crate is configured to emit build artifacts (the default),
its build script will generate a Rust source file containing a
fn default_python_config() -> pyembed::OxidizedPythonInterpreterConfig which
emits a pyembed::OxidizedPythonInterpreterConfig using the configuration as
defined by the utilized PyOxidizer configuration file.
Assuming you are using the boilerplate Cargo.toml and build.rs script
generated with pyoxidizer init-rust-project, the path to this generated
source file will
be in the PYOXIDIZER_DEFAULT_PYTHON_CONFIG_RS environment variable.

This all means that to use the auto-generated
pyembed::OxidizedPythonInterpreterConfig instance with your Rust application,
you simply need to do something like the following:

include!(env!("PYOXIDIZER_DEFAULT_PYTHON_CONFIG_RS"));

fn create_interpreter() -> Result<pyembed::MainPythonInterpreter> {
    // Calls function from include!()'d file.
    let config: pyembed::OxidizedPythonInterpreterConfig = default_python_config();

    pyembed::MainPythonInterpreter::new(config)
}








Using a Custom OxidizedPythonInterpreterConfig

If you don’t want to use the default
pyembed::OxidizedPythonInterpreterConfig instance, that’s fine too! However,
this will be slightly more complicated.

First, if you use an explicit OxidizedPythonInterpreterConfig, the
PythonInterpreterConfig Starlark
type defined in your PyOxidizer configuration file doesn’t matter that much.
The primary purpose of this Starlark type is to derive the default
OxidizedPythonInterpreterConfig Rust struct. And if you are using your own
custom OxidizedPythonInterpreterConfig instance, you can ignore most of the
arguments when creating the PythonInterpreterConfig instance.

An exception to this is the raw_allocator argument/field. If you
are using jemalloc, you will need to enable a Cargo feature when building
the pyembed crate or else you will get a run-time error that jemalloc
is not available.

pyembed::OxidizedPythonInterpreterConfig::default() can be used to
construct a new instance, pre-populated with default values for each field.
The defaults should match what the
PythonInterpreterConfig Starlark
type would yield.

The main catch to constructing the instance manually is that the custom
meta path importer won’t be able to service Python import requests
unless you populate a few fields. In fact, if you just use the defaults,
things will blow up pretty hard at run-time:

$ myapp
Fatal Python error: initfsencoding: Unable to get the locale encoding
ModuleNotFoundError: No module named 'encodings'

Current thread 0x00007fa0e2cbe9c0 (most recent call first):
Aborted (core dumped)





What’s happening here is that Python interpreter initialization hits a fatal
error because it can’t import encodings (because it can’t locate the
Python standard library) and Python’s C code is exiting the process. Rust
doesn’t even get the chance to handle the error, which is why we’re seeing
a segfault.

The reason we can’t import encodings is twofold:


	The default filesystem importer is disabled by default.


	No Python resources are being registered with the
OxidizedPythonInterpreterConfig instance.




This error can be addressed by working around either.

To enable the default filesystem importer:

let mut config = pyembed::OxidizedPythonInterpreterConfig::default();
config.filesystem_importer = true;
config.sys_paths.push("/path/to/python/standard/library");





As long as the default filesystem importer is enabled and sys.path
can find the Python standard library, you should be able to
start a Python interpreter.


Hint

The sys_paths field will expand the special token $ORIGIN to the
directory of the running executable. So if the Python standard library is
in e.g. the lib directory next to the executable, you can do something
like config.sys_paths.push("$ORIGIN/lib").



If you want to use the custom PyOxidizer Importer
to import Python resources, you will need to update a handful of fields:

let mut config = pyembed::OxidizedPythonInterpreterConfig::default();
config.packed_resources = ...;
config.use_custom_importlib = true;





The packed_resources field defines a reference to packed resources
data (a &[u8]. This is a custom serialization format for expressing
resources to make available to a Python interpreter. See
Python Packed Resources for more. The easiest way to obtain this
data blob is by using PyOxidizer and consuming the packed-resources
build artifact/file, likely though include_bytes!.
OxidizedFinder Python Type can also be used to produce these data structures.

Finally, setting use_custom_importlib = true is necessary to enable
the custom bytecode and meta path importer to be used at run-time.






Using a Python Interpreter

Once you’ve constructed a pyembed::MainPythonInterpreter instance, you
can obtain a cpython::Python instance via .acquire_gil() and then
use it:

fn do_it(interpreter: &MainPythonInterpreter) -> {
    let py = interpreter.acquire_gil().unwrap();

    match pyembed::run_code(py, "print('hello, world')") {
        Ok(_) => print("python code executed successfully"),
        Err(e) => print("python error: {:?}", e),
    }
}





The pyembed crate exports various run_* functions for
performing high-level evaluation of various primitives (files, modules,
code strings, etc). See the pyembed crate’s documentation for more.

Since CPython’s API relies on static variables (sadly), if you really wanted
to, you could call out to CPython C APIs directly (probably via the
bindings in the python3-sys crate) and they would interact with the
interpreter started by the pyembed crate. This is all unsafe, of course,
so tread at your own peril.




Finalizing the Interpreter

pyembed::MainPythonInterpreter implements Drop and it will call
Py_FinalizeEx() when called. So to terminate the Python interpreter, simply
have the MainPythonInterpreter instance go out of scope or drop it
explicitly.




A Note on the pyembed APIs

The pyembed crate is highly tailored towards PyOxidizer’s default use
cases and the APIs are not considered extremely well polished.

While the functionality should work, the ergonomics may not be great.

It is a goal of the PyOxidizer project to support Rust programmers who want
to embed Python in Rust applications. So contributions to improve the quality
of the pyembed crate will likely be greatly appreciated!







          

      

      

    

  

    
      
          
            
  
Adding Extension Modules At Run-Time

Normally, PyOxidizer assembles all extension modules needed for a built
application and the resources data embedded in the binary describes all
extension modules.

The pyembed crate also supports providing additional extension modules,
which are defined outside of PyOxidizer configuration files. This feature
can be useful for Rust applications that want to provide extension
modules through their own means and don’t want to use standard Python
packaging tools (like setup.py) or PyOxidizer config files for
building them.


Statically Linked Extension Modules

You can inform the pyembed crate about the existence of additional
Python extension modules which are statically linked into the binary.

To do this, you will need to populate the extra_extension_modules field
of the OxidizedPythonInterpreterConfig Rust struct used to construct the
Python interpreter. Simply add an entry defining the extension module’s
import name and a pointer to its C initialization function
(often named PyInit_<name>. e.g. if you are defining the extension
module foo, the initialization function would be PyInit_foo
by convention.

Please note that Python stores extension modules in a global variable.
So instantiating multiple interpreters via the pyembed interfaces may
result in duplicate entries or unwanted extension modules being exposed to
the Python interpreter.




Dynamically Linked Extension Modules

If you have an extension module provided as a shared library (this is typically
has Python extension modules work), it will be possible to load this
extension module provided that the build configuration supports loading
dynamically linked Python extension modules. See
PythonExtensionModule Location Compatibility for more on this
topic.

There is not yet an explicit Rust API for loading additional dynamically
linked extension modules. It is theoretically possible to add an entry
to the parsed embedded resources data structure. The path of least resistance
is likely to enable the standard filesystem importer and put your shared
library extension module somewhere on Python’s sys.path.







          

      

      

    

  

    
      
          
            
  
Porting a Python Application to Rust

PyOxidizer can be used to gradually port a Python application to Rust.
What we mean by this is that Python code in an application would slowly
be rewritten in Rust.


Overview

When porting a Python application to Rust, the goal is to port Python
code - and possibly Python C extension code - to Rust. Parts of the Rust
code will presumably need to call into Python code and vice-versa.

When porting code to Rust, there are essentially two flavors of Rust
code that will be written and executed:


	Vanilla Rust code


	Python-flavored Rust code




Vanilla Rust code is standard Rust code. It is what you would write if
authoring a Rust-only project.

Python-flavored Rust code is Rust code that interacts with the Python C
API. It is regular Rust code, of course, but it is littered with references
to PyObject and function calls into the Python C API (although these
function calls may be abstracted so you don’t have to use unsafe).

These different flavors of Rust code dictate different approaches to
porting. Both flavors/approaches can be used simultaneously when porting
an application to Rust.

Vanilla Rust code will supplement the boilerplate Rust code that PyOxidizer
uses to define and build a standalone executable embedded Python. See
Extending Rust Projects for more.

Python-flavored Rust code typically involves writing Python extension
modules in Rust. In this approach, you create a Python extension modules
implemented in Rust and then make them available to the Python interpreter,
which is managed by a Rust project.




Extending Rust Projects

When building an application from a standalone pyoxidizer.bzl file,
PyOxidizer creates and builds a temporary, boilerplate Rust project behind
the scenes. This Rust project has just enough code to initialize and run an
embedded Python interpreter. That’s the extent of the Rust code.

PyOxidizer also supports persistent Rust projects. In this mode, you have
full control over the Rust project and can add custom Rust code to it as
you desire. In this mode, you can run Rust code independent of the Python
interpreter.

Supplementing the Rust code contained in your executable gives you the power
to run arbitrary Rust code however you see fit. Here are some common scenarios
this can enable:


	Implementing argument parsing in Rust instead of Python. This could allow you
to parse out the sub-command being invoked and dispatch to pure Rust code
paths if possible, falling back to running Python code only if necessary.


	Running a forking server, which doesn’t start a Python interpreter until an
event occurs.


	Starting a thread with a high-performance application component implemented in
Rust. For example, you could run a thread servicing a high-performance logging
subsystem or HTTP server implemented in Rust and have that thread interact with
a Python interpreter via a pipe or some other handle.





Getting Started

To extend a Rust project with custom Rust code, you’ll first want to
materialize the boilerplate Rust project used by PyOxidizer:

$ pyoxidizer init-rust-project myapp





See Rust Projects for details on the files materialized by this command.

If you are using version control, now would be a good time to add the created
files to version control. e.g.:

$ git add myapp
$ git commit -m 'create boilerplate PyOxidizer project'





From here, your next steps are to modify the Rust project to do something
new and different.

The auto-generated src/main.rs file contains the main() function used
as the entrypoint for the Rust executable. The default file will simply
instantiate a Python interpreter from a configuration, run that interpreter,
then exit the process.

To extend your application with custom Rust code, simply add custom code to
main(). e.g.

fn main() {
    println!("hello from Rust!")

    // Code auto-generated by ``pyoxidizer init-rust-project`` goes here.
    // ...
}





That is literally all there is to it!

To build your custom Rust project, pyoxidizer build is the most robust way
to do that. But it is also possible to use cargo build.




What Can Go Wrong


pyoxidizer Not Found or Rust Code Version Mismatch

When using cargo build, the pyoxidizer executable will be invoked behind
the scenes. This requires that executable to be on PATH and for the version
to be compatible with the Rust code you are trying to build. (The Rust APIs do
change from time to time.)

If the pyoxidizer executable is not on PATH or its version doesn’t
match the Rust code, you can forcefully tell the Rust build system which
pyoxidizer executable to use:

$ PYOXIDIZER_EXE=/path/to/pyoxidizer cargo build








thread 'main' panicked at 'jemalloc is not available in this build configuration'

If you see this error, the problem is that the Python interpreter configuration
says to use jemalloc as the memory allocator but the Rust project was built
without jemalloc support. This is likely because the default Rust project
features in Cargo.toml don’t include jemalloc by default.

You can resolve this issue by either disabling jemalloc in the Python
configuration or by enabling jemalloc in Rust.

To disable jemalloc, open your pyoxidizer.bzl file and find the
definition of raw_allocator. You can set it to raw_allocator="system"
so Python uses the system memory allocator instead of jemalloc.

To enable jemalloc, you have a few options.

First, you could build the Rust project with jemalloc support:

$ cargo build --features jemalloc





Or, you modify Cargo.toml so the jemalloc feature is enabled by
default:

.. code-block:: toml






[features]
default = [“build-mode-pyoxidizer-exe”, “jemalloc”]




jemalloc is typically a faster allocator than the system allocator. So if
you care about performance, you may want to use it.








Implementing Python Extension Modules in Rust

If you want to port a Python application to Rust, chances are that you
will need to have Rust and Python code interact with each other. A common
way to do this is to implement Python extensions in Rust so that Rust code
will be invoked as a Python interpreter is running.

There are two ways Rust-implemented Python extension modules can be
consumed by PyOxidizer:


	Define them via Python packaging tools (e.g. via a setup.py file
for your Python package).


	Define them in Rust code and register them as a built-in extension
module.





Python Built Rust Extension Modules

If you’ve defined a Rust Python extension module via a Python package
build tool (e.g. inside a setup.py), PyOxidizer should automatically
detect said extension module as part of packaging the corresponding Python
package: there is no need to take special action to tell PyOxidizer it is
a Rust extension, as this is all handled by Python packaging tools invoked
as part of processing your pyoxidizer.bzl file.

See Packaging User Guide for more.

The topic of authoring Python extension modules implemented in Rust is
arguably outside the scope of this documentation. A search engine search
for Rust Python extension should set you on the right track.




Built-in Rust Extension Modules

A Python extension module is defined as a PyInit__<name> function which
is called to initialize an extension module. Typically, Python extension
modules are compiled as standalone shared libraries, which are then loaded
into a process, after which their PyInit__<name> function is called.

But Python has an additional mechanism for defining extension modules:
built-ins. A built-in extension module is simply an extension module
whose PyInit__<name> function is already present in the process address
space. Typically, these are extensions that are part of the Python distribution
itself and are compiled directly into libpython.

When you instantiate a Python interpreter, you give it a list of the
available built-in Python extension modules. And PyOxidizer’s pyembed
crate allows you to supplement the default list with custom extensions.

To use built-in extension modules implemented in Rust, you’ll need to
implement said extension module in Rust, either as part of your application’s
Rust crate or as part of a different crate. Either way, you’ll need to
extend the boilerplate Rust project code (see Extending Rust Projects)
and tell it about additional built-in extension modules. See
Adding Extension Modules At Run-Time for instructions on how to do
this.

The tricky part here is implementing your Rust extension module.

You probably want to use the cpython [https://crates.io/crates/cpython]
or PyO3 [https://crates.io/crates/PyO3] Rust crates for interfacing with the
CPython API, as these provide an interface that is more ergonomic and doesn’t
require use of unsafe { }. Use of these crates is beyond the scope of the
PyOxidizer documentation.

If you attempt to use the cpython or PyO3 macros for defining a
Python extension module, you’ll likely run into problems because these assume
that extension modules are standalone shared libraries, which isn’t the case for
built-in extension modules!

If you attempt to use a separate Rust crate to define your extension module,
you may run into Python symbol issues at link time because the build system
for the cpython and PyO3 crates will use their own logic for locating
a Python interpreter and that interpreter may not have a configuration that
is compatible with the one embedded in your PyOxidizer binary!

At the end of the day, all you need to register a built-in extension module
with PyOxidizer is an extern "C" fn () -> *mut python3_sys::PyObject. Here
is the boilerplate for defining a Python extension module in Rust (this uses
the cpython crate).

use python3_sys as pyffi;
use cpython::{PyErr, PyModule, PyObject};

static mut MODULE_DEF: pyffi::PyModuleDef = pyffi::PyModuleDef {
    m_base: pyffi::PyModuleDef_HEAD_INIT,
    m_name: std::ptr::null(),
    m_doc: std::ptr::null(),
    m_size: std::mem::size_of::<ModuleState>() as isize,
    m_methods: 0 as *mut _,
    m_slots: 0 as *mut _,
    m_traverse: None,
    m_clear: None,
    m_free: None,
};

#[allow(non_snake_case)]
pub extern "C" fn PyInit_my_module() -> *mut pyffi::PyObject {
    let py = unsafe { cpython::Python::assume_gil_acquired() };

    unsafe {
        if MODULE_DEF.m_name.is_null() {
            MODULE_DEF.m_name = "my_module".as_ptr() as *const _;
            MODULE_DEF.m_doc = "usage docs".as_ptr() as *const _;
        }
    }

    let module = unsafe { pyffi::PyModule_Create(&mut MODULE_DEF) };

    if module.is_null() {
        return module;
    }

    let module = match unsafe { pyffi::from_owned_ptr(py, module).cast_into::<PyModule>(py) } {
        Ok(m) => m,
        Err(e) => {
            PyErr::from(e).restore(py);
            return std::ptr::null_mut();
        }
    };

    match module_init(py, &module) {
        Ok(()) => module.into_object().steal_ptr(),
        Err(e) => {
            e.restore(py);
            std::ptr::null_mut()
        }
    }
}





If you want a concrete example of what this looks like and how to do things like
define Python types and have Python functions implemented in Rust, do a search for
PyInit_oxidized_importer in the source code of the pyembed crate (which
is part of the PyOxidizer repository) and go from there.

The documentation for authoring Python extension modules and using the Python
C API is well beyond the scope of this document. A good place to start is the
official documentation [https://docs.python.org/3/extending/index.html].









          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


Where Can I Report Bugs / Send Feedback / Request Features?

At https://github.com/indygreg/PyOxidizer/issues




Why Build Another Python Application Packaging Tool?

It is true that several other tools exist to turn Python code into distributable applications!
Comparisons to Other Tools attempts to exhaustively compare PyOxidizer
to these myriad of tools. (If a tool is missing or the comparison incomplete
or unfair, please file an issue so Python application maintainers can make
better, informed decisions!)

The long version of how PyOxidizer came to be can be found in the
Distributing Standalone Python Applications [https://gregoryszorc.com/blog/2018/12/18/distributing-standalone-python-applications/]
blog post. If you really want to understand the motivations for
starting a new project rather than using or improving an existing
one, read that post.

If you just want the extra concise version, at the time PyOxidizer
was conceived, there were no Python application packaging/distribution
tool which satisfied all of the following requirements:


	Works across all platforms (many tools target e.g. Windows or macOS only).


	Does not require an already-installed Python on the executing system
(rules out e.g. zip file based distribution mechanisms).


	Has no special system requirements (e.g. SquashFS, container runtimes).


	Offers startup performance no worse than traditional python execution.


	Supports single file executables with none or minimal system dependencies.







Can Python 2.7 Be Supported?

In theory, yes. However, it is considerable more effort than Python 3. And
since Python 2.7 is being deprecated in 2020, in the project author’s
opinion it isn’t worth the effort.




Why is Python 3.8 Required?

Python 3.8 contains a new C API for controlling how embedded Python
interpreters are started. This makes the run-time code that native
binaries execute much, much simpler.

PyOxidizer versions up to 0.7 supported Python 3.7. But a decision
was made to require Python 3.8 because the run-time code to manage
the Python interpreter was vastly simpler and less prone to bugs.
Given that Python 3.8 is mostly backwards compatible with Python 3.7,
this wasn’t perceived as a significant annoyance.




No python interpreter found of version 3.* Error When Building

This is due to a dependent crate insisting that a Python executable
exist on PATH. Set the PYTHON_SYS_EXECUTABLE environment
variable to the path of a Python 3.7 executable and try again. e.g.:

# UNIX
$ export PYTHON_SYS_EXECUTABLE=/usr/bin/python3.7
# Windows
$ SET PYTHON_SYS_EXECUTABLE=c:\python37\python.exe






Note

The pyoxidizer tool should take care of setting PYTHON_SYS_EXECUTABLE
and prevent this error. If you see this error and you are building with
pyoxidizer, it is a bug that should be reported.






Why Rust?

This is really 2 separate questions:


	Why choose Rust for the run-time/embedding components?


	Why choose Rust for the build-time components?




PyOxidizer binaries require a driver application to interface with
the Python C API and that driver application needs to compile to native
code in order to provide a native executable without requiring a run-time
on the machine it executes on. In the author’s opinion, the only appropriate
languages for this were C, Rust, and maybe C++.

Of those 3, the project’s author prefers to write new projects in Rust
because it is a superior systems programming language that has built on
lessons learned from decades working with its predecessors. The author
prefers technologies that can detect and eliminate entire classes of bugs
(like buffer overflow and use-after-free) at compile time. On a less-opinionated
front, Rust’s built-in build system support means that we don’t have to
spend considerable effort solving hard problems like cross-compiling.
Implementing the embedding component in Rust also creates interesting
opportunities to embed Python in Rust programs. This is largely an
unexplored area in the Python ecosystem and the author hopes that PyOxidizer
plays a part in more people embedding Python in Rust.

For the non-runtime packaging side of PyOxidizer, pretty much any
programming language would be appropriate. The project’s author initially
did prototyping in Python 3 but switched to Rust for synergy with the the
run-time driver and because Rust had working solutions for several systems-level
problems, such as parsing ELF, DWARF, etc executables, cross-compiling,
integrating custom memory allocators, etc. A minor factor was the author’s
desire to learn more about Rust by starting a real Rust project.




Why is the Rust Code… Not Great?

This is the project author’s first real Rust project. Suggestions to improve
the Rust code would be very much appreciated!

Keep in mind that the pyoxidizer crate is a build-time only
crate and arguably doesn’t need to live up to quality standards as
crates containing run-time code. Things like aggressive .unwrap()
usage are arguably tolerable.

The run-time code that produced binaries run (pyembed) is held to
a higher standard and is largely panic! free.




What is the Magic Sauce That Makes PyOxidizer Special?

There are 2 technical achievements that make PyOxidizer special.

First, PyOxidizer consumes Python distributions that were specially
built with the aim of being used for standalone/distributable applications.
These custom-built Python distributions are compiled in such a way that
the resulting binaries have very few external dependencies and run on
nearly every target system. Other tools that produce standalone Python
binaries often rely on an existing Python distribution, which often
doesn’t have these characteristics.

Second is the ability to import .py/.pyc files from memory. Most
other self-contained Python applications rely on Python’s zipimporter
or do work at run-time to extract the standard library to a filesystem
(typically a temporary directory or a FUSE filesystem like SquashFS). What
PyOxidizer does is expose the .py/.pyc modules data to the
Python interpreter via a Python extension module built-in to the binary.

During Python interpreter initialization, a custom Rust-implemented
Python importer is registered and takes over all imports. Requests for
modules are serviced from the parsed data structure defining known
modules.

Follow the Documentation link for the
pyembed [https://crates.io/crates/pyembed] crate for an overview of how
the in-memory import machinery works.




Can Applications Import Python Modules from the Filesystem?

Yes!

While PyOxidizer supports importing Python resources from
in-memory, it also supports filesystem-based import like
traditional Python applications.

This can be achieved by adding Python resources to a non
in-memory resource location (see Managing How Resources are Added) or
by enabling Python’s standard filesystem-based importer by
enabling filesystem_importer=True (see
PythonInterpreterConfig).




error while loading shared libraries: libcrypt.so.1: cannot open shared object file: No such file or directory When Building

If you see this error when building, it is because your Linux system does not
conform to the
Linux Standard Base Specification [https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-AMD64/LSB-Core-AMD64/libcrypt.html],
does not provide a libcrypt.so.1 file, and the Python distribution that
PyOxidizer attempts to run to compile Python source modules to bytecode can’t
execute.

Fedora 30+ are known to have this issue. A workaround is to install the
libxcrypt-compat on the machine running pyoxidizer. See
https://github.com/indygreg/PyOxidizer/issues/89 for more info.







          

      

      

    

  

    
      
          
            
  
Project Status

PyOxidizer is functional and works for many use cases. However, there
are still a number of rough edges, missing features, and known limitations.
Please file issues at https://github.com/indygreg/PyOxidizer/issues!


What’s Working

The basic functionality of creating binaries that embed a self-contained
Python works on Linux, Windows, and macOS. The general approach should
work for other operating systems.

Starlark configuration files allow extensive customization of packaging and
run time behavior. Many projects can be successfully packaged with
PyOxidizer today.




Major Missing Features


An Official Build Environment

Compiling binaries that work on nearly every target system is hard.
On Linux, things like glibc symbol versions from the build machine
can leak into the built binary, effectively requiring a new Linux
distribution to run a binary.

In order to make the binary build process robust, we will need to
provide an execution environment in which to build portable binaries.
On Linux, this likely
entails making something like a Docker image available. On Windows and
macOS, we might have to provide a tarball. In all cases, we want this
environment to be integrated into pyoxidizer build so end users
don’t have to worry about jumping through hoops to build portable
binaries.




Native Extension Modules

Using compiled extension modules (e.g. C extensions) is partially
supported.

Building C extensions to be embedded in the produced binary works
for Windows, Linux, and macOS.

Support for extension modules that link additional macOS frameworks
not used by Python itself is not yet implemented (but should be easy to
do).

Support for cross-compiling extension modules (including to MUSL) does
not work. (It may appear to work and break at linking or run-time.)

We also do not yet provide a build environment for C extensions. So
unexpected behavior could occur if e.g. a different compiler toolchain
is used to build the C extensions from the one that produced the
Python distribution.

See also C and Other Native Extension Modules.




Incomplete pyoxidizer Commands

pyoxidizer add and pyoxidizer analyze aren’t fully implemented.

There is no pyoxidizer upgrade command.

Work on all of these is planned.




More Robust Packaging Support

Currently, we produce an executable via Cargo. Often a self-contained
executable is not suitable. We may have to run some Python modules from
the filesystem because of limitations in those modules. In addition, some
may wish to install custom files alongside the executable.

We want to add a myriad of features around packaging functionality to
facilitate these things. This includes:


	Support for __file__.


	A build mode that produces an instrumented binary, runs it a few times
to dump loaded modules into files, then builds it again with a pruned
set of resources.







Making Distribution Easy

We don’t yet have a good story for the distributing part of the application
distribution problem. We’re good at producing executables. But we’d like to
go the extra mile and make it easier for people to produce installers, .dmg
files, tarballs, etc.

This includes providing build environments for e.g. non-MUSL based Linux
executables.

It also includes support for auditing for license compatibility (e.g. screening
for GPL components in proprietary applications) and assembling required license
texts to satisfy notification requirements in those licenses.




Partial Terminfo and Readline Support

PyOxidizer has partial support for detecting terminfo databases. See
Terminfo Database for more.

There’s a good chance PyOxidizer’s ability to locate terminfo databases
in the long tail of Python distributions is lacking. And PyOxidizer doesn’t
currently make it easy to distribute a terminfo database alongside the
application.

At this time, proper terminal interaction in PyOxidizer applications may be
hit-or-miss.

Please file issues at https://github.com/indygreg/PyOxidizer/issues reporting
known problems with terminal interaction or to request new features for
terminal interaction, terminfo database support, etc.




Standalone Resource Files

Currently, indexed resources are always embedded in built binaries. This
means that if you are producing multiple binaries, there will be redundant
copies of resources in each binary.

Eventually, PyOxidizer will support emitting standalone resources files and
enabling binaries to reference those files. This will enable multiple binaries
to share the same resource collection.

This functionality exists in the run-time Rust code today. But it isn’t turnkey
and isn’t exposed to Starlark.






Lesser Missing Features


Python Version Support

Python 3.8 and 3.9 are currently supported. Older versions of PyOxidizer
(through version 0.7) supported Python 3.7. See Why is Python 3.8 Required?
for why we require these Python versions.




Reordering Resource Files

There is not yet support for reordering .py and .pyc files
in the binary. This feature would facilitate linear read access,
which could lead to faster execution.




Compressed Resource Files

Binary resources are currently stored as raw data. They could be
stored compressed to keep binary size in check (at the cost of run-time
memory usage and CPU overhead).




Nightly Rust Required on Windows

Windows currently requires a Nightly Rust to build (you can set the
environment variable RUSTC_BOOTSTRAP=1 to work around this) because
the static-nobundle library type is required.
https://github.com/rust-lang/rust/issues/37403 tracks making this feature
stable. It might be possible to work around this by adding an
__imp_ prefixed symbol in the right place or by producing a empty
import library to satisfy requirements of the static linkage kind.
See
https://github.com/rust-lang/rust/issues/26591#issuecomment-123513631 for
more.




Cross Compiling

Cross compiling is not yet supported. We hope to and believe we can
support this someday. We would like to eventually get to a state where you
can e.g. produce Windows and macOS executables from Linux. It’s possible.




Configuration Files

Naming and semantics in the configuration files can be significantly
improved. There’s also various missing packaging functionality.






Eventual Features

The immediate goal of PyOxidizer is to solve packaging and distribution
problems for Python applications. But we want PyOxidizer to be more than
just a packaging tool: we want to add additional features to PyOxidizer
to bring extra value to the tool and to demonstrate and/or experiment with
alternate ways of solving various problems that Python applications
frequently encounter.


Lazy Module Loading

When a Python module is imported, its code is evaluated. When applications
consist of dozens or even hundreds of modules, the overhead of executing all
this code at import time can be substantial and add up to dozens of
milliseconds of overhead - all before your application runs a meaningful line
of code.

We would like PyOxidizer to provide lazy module importing so Python’s
import machinery can defer evaluating a module’s code until it is actually
needed. With features in modern versions of Python 3, this feature could likely
be enabled by default. And since many PyOxidizer applications are
frozen and have total knowledge of all importable modules at build time,
PyOxidizer could return a lazy module object after performing a simple
Rust HashMap lookup. This would be extremely fast.




Alternate Module Serialization Techniques

Related to lazy module loading, there is also the potential to explore
alternate module serialization techniques. Currently, the way PyOxidizer
and .pyc files work is that a Python code object is serialized with the
marshal module. At module load time, the code object is deserialized
and then executed. This deserialization plus code execution has overhead.

It is possible to devise alternate serialization and load techniques that
don’t rely on marshal and possibly bypass having to run as much code
at module load time. For example, one could devise a format for serializing
various PyObject types and then adjusting pointers inside the structs
at run time. This is kind of a crazy idea. But it could work.




Module Order Tracing

Currently, resource data is serialized on disk in alphabetical order according
to the resource name. e.g. the bar module is serialized before the foo
module.

We would like to explore a mechanism to record the order in which modules are
loaded as part of application execution and then reorder the serialized modules
such that they are stored in load order. This will facilitate linear reads at
application run time and possibly provide some performance wins (especially on
devices with slow I/O).




Module Import Performance Tracing

PyOxidizer has near total visibility into what Python’s module importer
is doing. It could be very useful to provide forensic output of what modules
import what, how long it takes to import various modules, etc.

CPython does have some support for module importing tracing. We think we can
go a few steps farther. And we can implement it more easily in Rust than
what CPython can do in C. For example, with Rust, one can use the
inferno crate [https://github.com/jonhoo/inferno] to emit flame graphs
directly from Rust, without having to use external tools.




Built-in Profiler

There’s potential to integrate a built-in profiler into PyOxidizer
applications. The excellent py-spy [https://github.com/benfred/py-spy]
sampling profiler (or the core components of it) could potentially be
integrated directly into PyOxidizer such that produced applications
could self-profile with minimal overhead.

It should also be possible for PyOxidizer to expose mechanisms for
Rust to receive callbacks when Python’s
profiling and tracing [https://docs.python.org/3.7/c-api/init.html#profiling-and-tracing]
hooks fire. This could allow building a powerful debugger or tracer
in Rust.




Command Server

A known problem with Python is its startup overhead. The maintainer of
PyOxidizer has raised this issue on Python’s mailing list
a [https://mail.python.org/pipermail/python-dev/2014-May/134528.html]
few [https://mail.python.org/pipermail/python-dev/2018-May/153296.html]
times [https://mail.python.org/pipermail/python-dev/2018-October/155466.html].

PyOxidizer helps with this problem by eliminating explicit filesystem I/O
and allowing modules to be imported faster. But there’s only so much that can
be done and startup overhead can still be a problem.

One strategy to combat this problem is the use of persistent command
server daemons. Essentially, on the first invocation of a program you
spawn a background process running Python. That process listens for
command requests on a pipe, socket, etc. You send the current command’s
arguments, environment variables, other state, etc to the background process.
It uses its Python interpreter to execute the command and send results back
to the main process. On the 2nd invocation of your program, the Python
process/interpreter is already running and meaningful Python code can be
executed immediately, without waiting for the Python interpreter and your
application code to initialize.

This approach is used by the Mercurial version control tool, for example,
where it can shave dozens of milliseconds off of hg command service
times.

PyOxidizer could potentially support command servers as a built-in
feature for any Python application.




PyO3

PyO3 [https://github.com/pyo3/pyo3] are alternate Rust bindings to
Python from rust-cpython [https://github.com/dgrunwald/rust-cpython],
which is what pyembed currently uses.

The PyO3 bindings seem to be ergonomically better than rust-cpython.
PyOxidizer may switch to PyO3 someday.









          

      

      

    

  

    
      
          
            
  
Comparisons to Other Tools

What makes PyOxidizer different from other Python packaging and distribution
tools? Read on to find out!

If you are curious why PyOxidizer’s creator felt the need to create a
new tool, see
Why Build Another Python Application Packaging Tool? in the FAQ.


Important

It is important for Python application maintainers to make informed
decisions about their use of packaging tools. If you feel the comparisons
in this document are incomplete or unfair, please
file an issue [https://github.com/indygreg/PyOxidizer/issues] so
this page can be improved. Even better, submit a pull request!




PyInstaller

PyInstaller [https://www.pyinstaller.org/] is a tool to convert regular
python scripts to standalone executables. The standard packaging produces
a tiny executable and a custom directory structure to host dynamic libraries
and Python code (zipped compiled bytecode).

PyInstaller can produce a self-contained executable file containing your
application, however, at run-time, PyInstaller will extract binary
files and a custom ZlibArchive [https://pyinstaller.readthedocs.io/en/latest/advanced-topics.html#zlibarchive]
to a temporary directory then import modules from the filesystem.

PyOxidizer often skips this step and loads modules directly from
memory using zero-copy. This makes PyOxidizer executables significantly
faster to start when this feature is employed.

When PyOxidizer is running in single-file mode, it needs to build all
binary dependencies from source to facilitate static linking. Although this
behavior is optional and PyOxidizer can also work with pre-built binary
Python packages.

A current difference between the tools is that PyInstaller generally has
better support for binary dependencies. PyInstaller knows how to find
runtime dependencies and allows a lot of not-easy-to-build packages like PyQT
to work out of the box. With PyOxidizer, you could need to add sufficient
complexity to its configuration files to get things to work.




py2exe

py2exe [http://www.py2exe.org/] is a tool for converting Python scripts
into Windows programs, able to run without requiring an installation.

The goals of py2exe and PyOxidizer are conceptually very similar.

One major difference between the two is that py2exe works on just Windows
whereas PyOxidizer works on multiple platforms.

py2exe and PyOxidizer both employ a clever trick on Windows that
allows loading DLLs from memory. This enables DLLs to be embedded in an
executable so you can ship a single .exe and not have to worry about
bundling DLLs as separate files. (PyOxidizer is using the same
in-memory DLL loading library as py2exe.)

The approach to packaging that py2exe and PyOxidizer take is
substantially different. py2exe embeds itself into setup.py as a
distutils extension. PyOxidizer wants to exist at a higher level
and interact with the output of setup.py rather than get involved in the
convoluted mess of distutils internals. This enables PyOxidizer to
provide value beyond what setup.py/distutils can provide.

py2exe is a mature Python packaging/distribution tool for Windows. It
offers a lot of similar functionality to PyOxidizer.




py2app

py2app [https://py2app.readthedocs.io/en/latest/] is a setuptools
command which will allow you to make standalone application bundles
and plugins from Python scripts.

py2app only works on macOS. This makes it like a macOS version of
py2exe. Most comparisons to py2exe are
analogous for py2app.




cx_Freeze

cx_Freeze [https://cx-freeze.readthedocs.io/en/latest/] is a set of
scripts and modules for freezing Python scripts into executables.

The goals of cx_Freeze and PyOxidizer are conceptually very
similar.

Like other tools in the produce executables space, cx_Freeze packages
Python traditionally. On Windows, this entails shipping a pythonXY.dll.
cx_Freeze will also package dependent libraries found by binaries you
are shipping. This introduces portability problems, especially on Linux.

PyOxidizer uses custom Python distributions that are built in such
a way that they are highly portable across machines. PyOxidizer can
also produce single file executables.




Shiv

Shiv [https://shiv.readthedocs.io/en/latest/] is a packager for zip file
based Python applications. The Python interpreter has built-in support for
running self-contained Python applications that are distributed as zip files.

Shiv requires the target system to have a Python executable and for the target
to support shebangs in executable files. This is acceptable for controlled
environments where Python is installed and Python shebangs work. It isn’t
acceptable for environments where you can’t guarantee an appropriate Python
executable is installed/available.

By distributing its own Python interpreter with the application,
PyOxidizer has stronger guarantees about the run-time environment. For
example, your application can aggressively target the latest Python version.
Another benefit of distributing your own Python interpreter is you can run a
Python interpreter with various optimizations, such as profile-guided
optimization (PGO) and link-time optimization (LTO). You can also easily
configure custom memory allocators or tweak memory allocators for optimal
performance.




PEX

PEX [https://github.com/pantsbuild/pex] is a packager for zip file based
Python applications. For purposes of comparison, PEX and Shiv have the
same properties. See Shiv for this comparison.




XAR

XAR [https://github.com/facebookincubator/xar/] requires the use of SquashFS.
SquashFS requires Linux.

PyOxidizer is a target native executable and doesn’t require any special
filesystems or other properties to run.




Docker / Running a Container

It is increasingly popular to distribute applications as self-contained
container environments. e.g. Docker images. This distribution mechanism
is effective for Linux users.

PyOxidizer will almost certainly produce a smaller distribution than
container-based applications. This is because many container-based applications
contain a lot of extra content that isn’t needed by the executables within.

PyOxidizer also doesn’t require a container execution environment. Not
every user has the capability to run certain container formats. However,
nearly every user can run an executable.

At run time, PyOxidizer executes a native binary and doesn’t have to go
through any additional execution layers. Contrast this with Docker, which
uses HTTP requests to create containers, set up temporary filesystems and
networks for the container, etc. Spawning a process in a new Docker
container can take hundreds of milliseconds or more. This overhead can be
prohibitive for low latency applications like CLI tools. This overhead
does not exist for PyOxidizer executables.




Nuitka

Nuitka [http://nuitka.net/pages/overview.html] can compile Python programs
to single executables. And the emphasis is on compile: Nuitka actually
converts Python to C and compiles that. Nuitka is effectively an alternate
Python interpreter.

Nuitka is a cool project and purports to produce significant speed-ups
compared to CPython!

Since Nuitka is effectively a new Python interpreter, there are risks to
running Python in this environment. Some code has dependencies on CPython
behaviors. There may be subtle bugs or lacking features from Nuitka.
However, Nuitka supposedly supports every Python construct, so many
applications should just work.

Given the performance benefits of Nuitka, it is a compelling alternative
to PyOxidizer.




PyRun

PyRun [https://www.egenix.com/products/python/PyRun] can produce single
file executables. The author isn’t sure how it works. PyRun doesn’t
appear to support modern Python versions. And it appears to require shared
libraries (like bzip2) on the target system. PyOxidizer supports
the latest Python and doesn’t require shared libraries that aren’t in
nearly every environment.




pynsist

pynsist [https://pynsist.readthedocs.io/en/latest/index.html] is a
tool for building Windows installers for Python applications. pynsist
is very similar in spirit to PyOxidizer.

A major difference between the projects is that pynsist focuses on
solving the application distribution problem on Windows where PyOxidizer
aims to solve larger problems around Python application distribution, such
as performance optimization (via loading Python modules from memory
instead of the filesystem).

PyOxidizer has yet to invest significantly into making producing
distributable artifacts (such as Windows installers) simple, so pynsist
still has an advantage over PyOxidizer here.




Bazel

Bazel has Python rules [https://docs.bazel.build/versions/master/be/python.html]
for building Python binaries and libraries. From a high level, it works
similarly to how PyOxidizer’s Starlark config files allow you to perform
much of the same actions.

The executables produced by py_binary are significantly different
from what PyOxidizer does, however.

An executable produced by py_binary is a glorified self-executing
zip file. At run time, it extracts Python resources to a temporary
directory and then runs a Python interpreter against them. The approach
is similar in nature to what Shiv and PEX do.

PyOxidizer, by contrast, produces a specialized binary containing the
Python interpreter and allows you to embed Python resources inside that
binary, enabling Python modules to be imported without the overhead of
writing a temporary directory and extracting a zip file.







          

      

      

    

  

    
      
          
            
  
Contributing to PyOxidizer

This page documents how to contribute to PyOxidizer.


As a User

PyOxidizer is currently a relative young project and could substantially
benefit from reports from its users.

Try to package applications with PyOxidizer. If things break or are
hard to learn, file an issue [https://github.com/indygreg/PyOxidizer/issues]
on GitHub.

You can also join the
pyoxidizer-users [https://groups.google.com/forum/#!forum/pyoxidizer-users]
mailing list to report your experience, get in touch with other
users, etc.




As a Developer

If you would like to contribute to the code behind PyOxidizer, you can
do so using a standard GitHub workflow through the canonical project
home at https://github.com/indygreg/PyOxidizer.

Please note that PyOxidizer’s maintainer can be quite busy from time to
time. So please be patient. He will be patient with you.

The documentation around how to hack on the PyOxidizer codebase is a bit
lacking. Sorry for that!

The most important command for contributors to know how to run is
cargo run --bin pyoxidizer. This will compile the pyoxidizer executable
program and run it. Use it like cargo run --bin pyoxidizer -- init
~/tmp/myapp to run pyoxidizer init ~/tmp/myapp for example.

The Cargo.toml in the root of the repository defines a Cargo workspace
containing many crates. If you attempt to cargo build or cargo test,
you will likely get errors, as different crates have different, conflicting
build requirements. The oxidized-importer crate is particularly troublesome.

Try building/testing everything with
cargo build --workspace --exclude oxidized-importer or
cargo test --workspace --exclude oxidized-importer. Or just target the crate
you want by adding the -p argument. e.g. cargo build -p pyembed or
cargo test -p pyoxidizer.




Financial Contributions

If you would like to thank the PyOxidizer maintainer via a financial
contribution, you can do so
on his Patreon [https://www.patreon.com/indygreg] or
via PayPal [https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=gregory%2eszorc%40gmail%2ecom&lc=US&item_name=PyOxidizer&currency_code=USD&bn=PP%2dDonationsBF%3abtn_donate_LG%2egif%3aNonHosted].

Financial contributions of any amount are appreciated. Please do not
feel obligated to donate money: only donate if you are financially
able and feel the maintainer deserves the reward for a job well done.







          

      

      

    

  

    
      
          
            
  
Project History

Work on PyOxidizer started in November 2018 by Gregory Szorc.


Blog Posts


	Announcing the 0.9 Release of PyOxidizer [https://gregoryszorc.com/blog/2020/10/18/announcing-the-0.9-release-of-pyoxidizer/] (2020-10-18)


	Announcing the 0.8 Release of PyOxidizer [https://gregoryszorc.com/blog/2020/10/12/announcing-the-0.8-release-of-pyoxidizer/] (2020-10-12)


	Using Rust to Power Python Importing with oxidized_importer [https://gregoryszorc.com/blog/2020/05/10/using-rust-to-power-python-importing-with-oxidized_importer/] (2020-05-10)


	PyOxidizer 0.7 [https://gregoryszorc.com/blog/2020/04/09/pyoxidizer-0.7/] (2020-04-09)


	C Extension Support in PyOxidizer [https://gregoryszorc.com/blog/2019/06/30/c-extension-support-in-pyoxidizer/] (2019-06-30)


	Building Standalone Python Applications with PyOxidizer [https://gregoryszorc.com/blog/2019/06/24/building-standalone-python-applications-with-pyoxidizer] (2019-06-24)


	PyOxidizer Support for Windows [https://gregoryszorc.com/blog/2019/01/06/pyoxidizer-support-for-windows] (2019-01-06)


	Faster In-Memory Python Module Importing [https://gregoryszorc.com/blog/2018/12/28/faster-in-memory-python-module-importing] (2018-12-28)


	Distributing Standalone Python Applications [https://gregoryszorc.com/blog/2018/12/18/distributing-standalone-python-applications] (2018-12-18)







Version History


0.10.3

Released November 10, 2020.


Bug Fixes


	The run_as_main() function on embedded Python interpreters now always
calls Py_RunMain(). This fixes a regression in previous 0.10 releases
that prevented a REPL from running when no explicit run_* attribute was
set on the Python interpreter configuration.









0.10.2

Released November 10, 2020.


Bug Fixes


	Fixes a version mismatch between the pyoxidizer and pyembed crates
that could cause builds to fail.









0.10.1

Released November 9, 2020.


Danger

The 0.10.1 release has a serious bug where the version of the pyembed
crate needed to build binaries may not be correct, preventing the build from
working. Please use a newer release.




Bug Fixes


	Fix a Starlark execution error due to a double borrow of a Starlark
value. (#315)









0.10.0

Released November 8, 2020.


Danger

The 0.10.0 release has a serious Starlark bug preventing PyOxidizer from
working correctly in many scenarios. Please use a newer release.




Backwards Compatibility Notes


	A lot of unused Rust functions for running Python code have been
removed from the pyembed crate. The deleted code has not been used
since the PyConfig data structure was adopted for running code during
interpreter initialization. The deleted code was reimplementing
functionality in CPython and much of it was of questionable quality.


	The built-in Python distributions have been updated to use version
6 of the standalone distribution format. PyOxidizer only recognizes
version 6 distributions.


	The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains
a tcl_library field to control the value of the TCL_LIBRARY environment
variable.


	The pyembed::OxidizedPythonInterpreterConfig Rust struct no longer has
a run_mode field.


	The PythoninterpreterConfig Starlark type no longer has a run_mode
attribute. To define what code to run at interpreter startup, populate a
run_* attribute or leave all None with .parse_argv = True (the
default for profile = "python") to start a REPL.


	Minimum Rust version changed from 1.40 to 1.41 to facilitate using a new
crate which requires 1.41.


	The default Cargo features of the pyembed crate now use the default
Python interpreter detection and linking configuration as determined by the
cpython crate. This enables the cargo build or cargo test to
just work without having to explicitly specify features.


	The python-distributions-extract command now receives the path to an
existing distribution archive via the --archive-path argument instead
of an unnamed argument.







Bug Fixes


	Fixed a broken documentation example for glob(). (#300)


	Fixed a bug where generated Rust code for Option<PathBuf> interpreter
configuration fields was not being generated correctly.


	Fixed serialization of string config options to Rust code that was preventing
the following attributes of the PythonInterpreterConfig Starlark type
from working: filesystem_encoding, filesystem_errors, python_path_env,
run_command, run_module, stdio_encoding, stdio_errors,
warn_options, and x_options. (#309)







New Features


	The PythonExecutable Starlark type now exposes a
windows_subsystem attribute to control the value of Rust’s
#![windows_subsystem = "..."] attribute. Setting this to windows
prevents Windows executables from opening a console window when run. (#216)


	The PythonExecutable Starlark type now exposes a tcl_files_path
attribute to define a directory to install tcl/tk support files into.
Setting this attribute enables the use of the tkinter Python module
with compatible Python distributions. (#25)


	The python-distribution-extract CLI command now accepts a
--download-default flag to download the default distribution for the
current platform.







Other Relevant Changes


	The Starlark types with special build or run behavior are now
explicitly documented.


	The list of glibc and GCC versions used by popular Linux distributions
has been updated.


	The built-in Linux and macOS Python distributions are now compiled with
LLVM/Clang 11 (as opposed to 10).


	The built-in Python distributions now use pip 20.2.4 and setuptools 50.3.2.


	The Starlark primitives for defining build system targets have been extracted
into a new starlark-dialect-build-targets crate.


	The code for resolving how to reference PyOxidizer’s Git repository has
been rewritten. The resolution is now performed at build time in the
pyoxidizer crate’s build.rs. There now exist environment variables that
can be specified at crate build time that influence how PyOxidizer constructs
these references.









0.9.0

Released October 18, 2020.


Backwards Compatibility Notes


	The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains
an argv field that can be used to control the population of
sys.argv.


	The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains
a set_missing_path_configuration field that can be used to
control the automatic run-time population of missing path configuration
fields.


	The configure_locale interpreter configuration setting is enabled
by default. (#294)


	The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains
an exe field holding the path of the currently running executable.


	At run-time, the program_name and home fields of the embedded
Python interpreter’s path configuration are now always set to the
currently running executable and its directory, respectively, unless
explicit values have been provided.


	The packed resource data version has changed from 2 to 3 in order to
support storing arbitrary file data. Support for reading and writing
version 2 has been removed. Packed resources blobs will need to be
regenerated in order to be compatible with new versions of PyOxidizer.


	The pyembed::OxidizedPythonInterpreterConfig Rust struct had its
packed_resources field changed from Option<&'a [u8]> to
Vec<&'a [u8]> so multiple resource inputs can be specified.


	The PythonDistribution Starlark type no longer has
extension_modules(), package_resources() and source_modules()
methods. Use PythonDistribution.python_resources() instead.







New Features


	A print(*args) function is now exposed to Starlark. This function is
documented as a Starlark built-in but isn’t provided by the Rust Starlark
implementation by default. So we’ve implemented it ourselves. (#292)


	The new pyoxidizer find-resources command can be used to invoke
PyOxidizer’s code for scanning files for resources. This command can be
used to debug and triage bugs related to PyOxidizer’s custom code for
finding and handling resources.


	Executables built on Windows now embed an application manifest that enables
long paths support. (#197)


	The Starlark PythonPackagingPolicy type now exposes an allow_files
attribute controlling whether files can be added as resources.


	The Starlark PythonPackagingPolicy type now exposes
file_scanner_classify_files and file_scanner_emit_files attributes
controlling whether file scanning attempts to classify files and whether
generic file instances are emitted, respectively.


	The Starlark PythonPackagingPolicy type now exposes
include_classified_resources and include_file_resources attributes
to control whether certain classes of resources have their add_include
attribute set by default.


	The Starlark PythonPackagingPolicy type now has a
set_resources_handling_mode() method to quickly apply a mode for
resource handling.


	The Starlark PythonDistribution type now has a python_resources()
method for obtaining all Python resources associated with the distribution.


	Starlark File instances can now be added to resource collections via
PythonExecutable.add_python_resource() and
PythonExecutable.add_python_resources().







Bug Fixes


	Fix some documentation references to outdated Starlark configuration
syntax (#291).


	Emit only the PythonExtensionModule built with our patched distutils
instead of emitting 2 PythonExtensionModule for the same named module.
This should result in compiled Python extension modules being usable as
built-in extensions instead of being recognized as only shared libraries.


	Fix typo preventing the Starlark method PythonExecutable.read_virtualenv()
from being defined. (#297)


	The default value of the Starlark PythonInterpreterConfig.configure_locale
field is True instead of None (effectively False since the
default .profile value is isolated). This results in Python’s
encodings being more reasonable by default, which helps ensure
non-ASCII arguments are interpreted properly. (#294)


	Properly serialize module_search_paths to Rust code. Before, attempting
to set PythonInterpreterConfig.module_search_paths in Starlark would
result in malformed Rust code being generated. (#298)







Other Relevant Changes


	The pyembed Rust crate now calls PyConfig_SetBytesArgv or
PyConfig_SetArgv() to initialize argv instead of
PySys_SetObject(). The encoding of string values should also
behave more similarly to what python does.


	The pyembed tests exercising Python interpreters now run in
separate processes. Before, Rust would instantiate multiple interpreters
in the same process. However, CPython uses global variables and APIs
(like setlocale()) that also make use of globals and process
reuse resulted in tests not having pristine execution environments.
All tests now run in isolated processes and should be much more
resilient.


	When PyOxidizer invokes a subprocess and logs its output, stderr
is now redirected to stdout and logged as a unified stream. Previously,
stdout was logged and stderr went to the parent process stderr.


	There now exists documentation
on how to create an executable that behaves like python.


	The documentation on binary portability has been overhauled to go in
much greater detail.


	The list of standard library test packages is now obtained from the
Python distribution metadata instead of a hardcoded list in PyOxidizer’s
source code.









0.8.0

Released October 12, 2020.


Backwards Compatibility Notes


	The default Python distributions have been upgraded to CPython
3.8.6 (from 3.7.7) and support for Python 3.7 has been removed.


	On Windows, the default_python_distribution() Starlark function
now defaults to returning a standalone_dynamic distribution
variant, meaning that it picks a distribution that can load standalone
.pyd Python extension modules by default.


	The standalone Python distributions are now validated to be at
least version 5 of the distribution format. If you are using the
default Python distributions, this change should not affect you.


	Support for packaging the official Windows embeddable Python
distributions has been removed. This support was experimental.
The official Windows embeddable distributions are missing critical
support files that make them difficult to integrate with PyOxidizer.


	The pyembed crate now defines a new OxidizedPythonInterpreterConfig
type to configure Python interpreters. The legacy PythonConfig type
has been removed.


	Various run_* functions on pyembed::MainPythonInterpreter have
been moved to standalone functions in the pyembed crate. The
run_as_main() function (which is called by the default Rust
program that is generated) will always call Py_RunMain() and
finalize the interpreter. See the extensive crate docs for move.


	Python resources data in the pyembed crate is no longer
annotated with the 'static lifetime. Instances of PythonConfig
and OxidizedPythonInterpreterConfig must now be annotated with
a lifetime for the resources data they hold such that Rust lifetimes
can be enforced.


	The type of the custom Python importer has been renamed from
PyOxidizerFinder to OxidizedFinder.


	The name of the module providing our custom importer has been renamed
from _pyoxidizer_importer to oxidized_importer.


	Minimum Rust version changed from 1.36 to 1.40 to allow for upgrading
various dependencies to modern versions.


	Windows static extension building is possibly broken due to changes to
distutils. However, since we changed the default configuration to
not use this build mode, we’ve deemed this potential regression acceptable
for the 0.8 release. If it exists, it will hopefully be fixed in the 0.9
release.


	The pip_install(), read_package_root(), read_virtualenv() and
setup_py_install() methods of the PythonDistribution Starlark type
have been moved to the PythonExecutable type. Existing Starlark config
files will need to change references accordingly (often by replacing dist.
with exe.).


	The PythonDistribution.extension_modules() Starlark function no
longer accepts arguments filter and preferred_variants. The
function now returns every extension in the distribution. The reasons
for this change were to make code simpler and the justification for
removing it was rather weak. Please file an issue if this feature loss
affects you.


	The PythonInterpreterConfig Starlark type now interally has most of
its fields defined to None by default instead of their default values.


	The following Starlark methods have been renamed:
PythonExecutable.add_module_source() ->
PythonExecutable.add_python_module_source();
PythonExecutable.add_module_bytecode() ->
PythonExecutable.add_python_module_bytecode();
PythonExecutable.add_package_resource() ->
PythonExecutable.add_python_package_resource();
PythonExecutable.add_package_distribution_resource() ->
PythonExecutable.add_python_package_distribution_resource();
PythonExecutable.add_extension_module() ->
PythonExecutable.add_python_extension_module().


	The location-specific Starlark methods for adding Python resources
have been removed. The functionality can be duplicated by modifying
the add_location and add_location_fallback attributes on
Python resource types. The following methods were removed:
PythonExecutable.add_in_memory_module_source();
PythonExecutable.add_filesystem_relative_module_source(),
PythonExecutable.add_in_memory_module_bytecode();
PythonExecutable.add_filesystem_relative_module_bytecode();
PythonExecutable.add_in_memory_package_resource();
PythonExecutable.add_filesystem_relative_package_resource();
PythonExecutable.add_in_memory_package_distribution_resource()
PythonExecutable.add_filesystem_relative_package_distribution_resource();
PythonExecutable.add_in_memory_extension_module();
PythonExecutable.add_filesystem_relative_extension_module();
PythonExecutable.add_in_memory_python_resource();
PythonExecutable.add_filesystem_relative_python_resource();
PythonExecutable.add_in_memory_python_resources();
PythonExecutable.add_filesystem_relative_python_resources().


	The Starlark PythonDistribution.to_python_executable() method
no longer accepts the arguments extension_module_filter,
preferred_extension_module_variants, include_sources,
include_resources, and include_test. All of this functionality
has been replaced by the optional packaging_policy, which accepts
a PythonPackagingPolicy instance. The new type represents all
settings influencing executable building and control over resources
added to the executable.


	The Starlark type PythonBytecodeModule has been removed. Previously,
this type was internally a request to convert Python module source into
bytecode. The introduction of PythonPackagingPolicy and underlying
abilities to derive bytecode from a Python source module instance when
adding that resource type rendered this Starlark type redundant. There
may still be the need for a Starlark type to represent actual Python
module bytecode (not derived from source code at build/packaging time).
However, this functionality did not exist before so the loss of this
type is not a loss in functionality.


	The Starlark methods PythonExecutable.add_python_resource() and
PythonExecutable.add_python_resources() no longer accept the
arguments add_source_module, add_bytecode_module, and
optimize_level. Instead, set various add_* attributes on
resource instances being passed into the methods to influence what
happens when they are added.


	The Starlark methods PythonExecutable.add_python_module_source(),
PythonExecutable.add_python_module_bytecode(),
PythonExecutable.add_python_package_resource(),
PythonExecutable.add_python_package_distribution_resource(), and
PythonExecutable.add_python_extension_module() have been removed.
The remaining PythonExecutable.add_python_resource() and
PythonExecutable.add_python_resources() methods are capable of
handling all resource types and should be used. Previous functionality
available via argument passing on these methods can be accomplished
by setting add_* attributes on individual Python resource objects.


	The Starlark type PythonSourceModule has been renamed to
PythonModuleSource.


	Serialized Python resources no longer rely on the flavor field
to influence how they are loaded at run-time. Instead, the new
is_* fields expressing individual type affinity are used. The
flavor attributes from the OxidizedResource Python type
has been removed since it does nothing.


	The packed resources data format version has been changed from 1 to 2.
The parser has dropped support for reading version 1 files. Packed resources
blobs will need to be written and read by the same version of the Rust
crate to be compatible.


	The autogenerated Rust file containing the Python interpreter configuration
now emits a pyembed::OxidizedPythonInterpreterConfig instance instead
of pyembed::PythonConfig. The new type is more powerful and what is
actually used to initialize an embedded Python interpreter.


	The concept of a resources policy in Starlark has now largely been
replaced by attributes denoting valid locations for resources.


	
	oxidized_importer.OxidizedResourceCollector.__init__() now

	accepts an allowed_locations argument instead of policy.







	The PythonInterpreterConfig() constructor has been removed. Instances
of this Starlark type are now created via
PythonDistribution.make_python_interpreter_config(). In addition,
instances are mutated by setting attributes rather than passing
perhaps dozens of arguments to a constructor function.


	The default build configuration for Windows no longer forces
extension modules to be loaded from memory and materializes some
extension modules as standalone files. This was done because some
some extension modules weren’t working when loaded from memory and the
configuration caused lots of problems in the wild. The new default should
be much more user friendly. To use the old settings, construct a custom
PythonPackagingPolicy and set
allow_in_memory_shared_library_loading = True and
resources_location_fallback = None.







New Features


	Python distributions upgraded to CPython 3.8.6.


	CPython 3.9 distributions are now supported by passing
python_version="3.9" to the default_python_distribution() Starlark
function. CPython 3.8 is the default distribution version.


	Embedded Python interpreters are now managed via the
new apis [https://docs.python.org/3/c-api/init_config.htm] defined
by PEP-587. This gives us much more control over the configuration
of interpreters.


	A FileManifest Starlark instance will now have its default
pyoxidizer run executable set to the last added Python executable.
Previously, it would only have a run target if there was a single executable
file in the FileManifest. If there were multiple executables or
executable files (such as Python extension modules) a run target would
not be available and pyoxidizer run would do nothing.


	Default Python distributions upgraded to version 5 of the
standalone distribution format. This new format advertises much more
metadata about the distribution, enabling PyOxidizer to take fewer
guesses about how the distribution works and will help enable
more features over time.


	The pyembed crate now exposes a new OxidizedPythonInterpreterConfig
type (and associated types) allowing configuration of every field
supported by Python’s interpreter configuration API.


	Resources data loaded by the pyembed crate can now have a
non-'static lifetime. This means that resources data can be
more dynamically obtained (e.g. by reading a file). PyOxidizer does
not yet support such mechanisms, however.


	OxidizedFinder instances can now be
constructed from Python code.
This means that a Python application can instantiate and install its
own oxidized module importer.


	The resources indexed by OxidizedFinder instances are now
representable to Python code as OxidizedResource instances. These
types can be created, queried, and mutated by Python code. See
OxidizedResource for the API.


	OxidizedFinder instances can now have custom OxidizedResource
instances registered against them. This means Python code can collect
its own Python modules and register them with the importer. See
add_resource(self, resource: OxidizedResource) for more.


	OxidizedFinder instances can now serialize indexed resources out
to a bytes. The serialized data can be loaded into a separate
OxidizedFinder instance, perhaps in a different process. This
facility enables the creation and reuse of packed resources data
structures without having to use pyoxidizer to collect Python
resources data.


	The types returned by OxidizedFinder.find_distributions() now
implement entry_points, allowing entry points to be discovered.


	The types returned by OxidizedFinder.find_distributions() now
implement requires, allowing package requirements to be discovered.


	OxidizedFinder is now able to load Python modules when only source
code is provided. Previously, it required that bytecode be available.


	OxidizedFinder now implements iter_modules(). This enables
pkgutil.iter_modules() to return modules serviced by OxidizedFinder.


	The PythonModuleSource Starlark type now exposes module source code
via the source attribute.


	The PythonExecutable Starlark type now has a
make_python_module_source() method to allow construction of
PythonModuleSource instances.


	The PythonModuleSource Starlark type now has attributes
add_include, add_location, add_location_fallback,
add_source, add_bytecode_optimization_level_zero,
add_bytecode_optimization_level_one, and
add_bytecode_optimization_level_two to influence what happens
when instances are added to to binaries.


	The Starlark methods for adding Python resources now accept an
optional location argument for controlling the load location
of the resource. This functionality replaces the prior functionality
provided by location-specific APIs such as
PythonExecutable.add_in_memory_python_resource(). The following
methods gained this argument:
PythonExecutable.add_python_module_source();
PythonExecutable.add_python_module_bytecode();
PythonExecutable.add_python_package_resource();
PythonExecutable.add_python_package_distribution_resource();
PythonExecutable.add_python_extension_module();
PythonExecutable.add_python_resource();
PythonExecutable.add_python_resources().


	Starlark now has a PythonPackagingPolicy type to represent the
collection of settings influencing how Python resources are packaged
into binaries.


	The PythonDistribution Starlark type has gained a
make_packaging_policy() method for obtaining the default
PythonPackagingPolicy for that distribution.


	The PythonPackagingPolicy.register_resource_callback() method can
be used to register a Starlark function that will be called whenever
resources are created. The callback allows a single function to inspect
and manipulate resources as they are created.


	Starlark types representing Python resources now expose an is_stdlib
attribute denoting whether they came from the Python distribution.


	The new PythonExecutable.pip_download() method will run pip download
to obtain Python wheels for the requested package(s). Those wheels will
then be parsed for Python resources, which can be added to the executable.


	The Starlark function default_python_distribution() now accepts a
python_version argument to control the X.Y version of Python to
use.


	The PythonPackagingPolicy Starlark type now exposes a flag to
control whether shared libraries can be loaded from memory.


	The PythonDistribution Starlark type now has a
make_python_interpreter_config() method to obtain instances of
PythonInterpreterConfig that are appropriate for that distribution.


	PythonInterpreterConfig Starlark types now expose attributes to query
and mutate state. Nearly every setting exposed by Python’s initialization
API can be set.







Bug Fixes


	Fixed potential process crash due to illegal memory access when loading
Python bytecode modules from the filesystem.


	Detection of Python bytecode files based on registered suffixes and
cache tags is now more robust. Before, it was possible for modules to
get picked up having the cache tag (e.g. cpython-38) in the module
name.


	In the custom Python importer, read_text() of distributions returned
from find_distributions() now returns None on unknown file instead
of raising IOError. This matches the behavior of importlib.metadata.


	The pyembed Rust project build script now reruns when the source
Starlark file changes.


	Some Python resource types were improperly installed in the wrong
relative directory. The buggy behavior has been fixed.


	Python extension modules and their shared library dependencies loaded from the
filesystem should no longer have the library file suffix stripped when
materialized on the filesystem.


	On Windows, the sqlite module can now be imported. Before, the system
for serializing resources thought that sqlite was a shared library
and not a Python module.


	The build script of the pyoxidizer crate now uses the git2 crate to
try to resolve the Git commit instead of relying on the git command.
This should result in fewer cases where the commit was being identified
as unknown.


	$ORIGIN is properly expanded in sys.path. (This was a regression
during the development of version 0.8 and is not a regression from the
0.7 release.)







Other Relevant Changes


	The registration of the custom Python importer during interpreter
initialization no longer relies on running custom frozen bytecode
for the importlib._bootstrap_external Python module. This
simplifies packaging and interpreter configuration a bit.


	Packaging documentation now gives more examples on how to use available
Starlark packaging methods.


	The modified distutils files used when building statically linked
extensions have been upgraded to those based on Python 3.8.3.


	The default pyoxidizer.bzl now has comments for the packaging_policy
argument to PythonDistribution.to_python_executable().


	The default pyoxidizer.bzl now uses add_python_resources() instead
of add_in_memory_python_resources().


	The Rust Starlark crate was upgraded from version 0.2 to 0.3. There were
numerous changes as part of this upgrade. While we think behavior should
be mostly backwards compatible, there may be some slight changes in
behavior. Please file issues if any odd behavior or regressions are
observed.


	The configuration documentation was reorganized. The unified document
for the complete API document (which was the largest single document)
has been split into multiple documents.


	The serialized data structure for representing Python resources metadata
and its data now allows resources to identify as multiple types. For
example, a single resource can contain both Python module source/bytecode
and a shared library.


	pyoxidizer --version now prints verbose information about where PyOxidizer
was installed, what Git commit was used, and how the pyembed crate will
be referenced. This should make it easier to help debug installation issues.


	The autogenerated/default Starlark configuration file now uses the install
target as the default build/run target. This allows extra files required
by generated binaries to be available and for built binaries to be usable.









0.7.0

Released April 9, 2020.


Backwards Compatibility Notes


	Packages imported from memory using PyOxidizer now set __path__ with
a value formed by joining the current executable’s path with the package
name. This mimics the behavior of zipimport.


	Resolved Python resource names have changed behavior. See the note in the
bug fixes section below.


	The PythonDistribution.to_python_executable() Starlark method has added
a packaging_policy named argument as its 2nd argument / 1st named
argument. If you were affected by this, you should add argument names to all
arguments passed to this method.


	The default Rust project for built executables now builds executables such
that dynamic symbols are exported from the executable. This change is
necessary in order to support executables loading Python extension modules,
which are shared libraries which need access to Python symbols defined
in executables.


	The PythonResourceData Starlark type has been renamed to
PythonPackageResource.


	The PythonDistribution.resources_data() Starlark method has been
renamed to PythonDistribution.package_resources().


	The PythonExecutable.to_embedded_data() Starlark method has been
renamed to PythonExecutable.to_embedded_resources().


	The PythonEmbeddedData Starlark type has been renamed to
PythonEmbeddedResources.


	The format of Python resource data embedded in binaries has been completely
rewritten. The separate modules and resource data structures have been merged
into a single data structure. Embedded resources data can now express more
primitives such as package distribution metadata and different bytecode
optimization levels.


	The pyembed crate now has a dev dependency on the pyoxidizer crate in
order to run tests.







Bug Fixes


	PyOxidizer’s importer now always sets __path__ on imported packages
in accordance with Python’s stated behavior (#51).


	The mechanism for resolving Python resource files from the filesystem has
been rewritten. Before, it was possible for files like
package/resources/foo.txt to be normalized to a (package, resource_name)
tuple of (package, resources.foo.txt), which was weird and not compatible
with Python’s resource loading mechanism. Resources in sub-directories should
no longer encounter munging of directory separators to .. In the above
example, the resource path will now be expressed as
(package, resources/foo.txt).


	Certain packaging actions are only performed once during building instead of
twice. The user-visible impact of this change is that some duplicate log
messages no longer appear.


	Added a missing ) for add_python_resources() in auto-generated
pyoxidizer.bzl files.







New Features


	Python resource scanning now recognizes *.dist-info and *.egg-info
directories as package distribution metadata. Files within these directories
are exposed to Starlark as PythonPackageDistributionResource
instances. These resources can be added to the embedded resources payload
and made available for loading from memory or the filesystem, just like
any other resource. The custom Python importer implements get_distributions()
and returns objects that expose package distribution files. However,
functionality of the returned distribution objects is not yet complete.
See importlib.metadata Compatibility for details.


	The custom Python importer now implements get_data(path), allowing loading
of resources from filesystem paths (#139).


	The PythonDistribution.to_python_executable() Starlark method now accepts
a packaging_policy argument to control a policy and default behavior for
resources on the produced executable. Using this argument, it is possible
to control how resources should be materialized. For example, you can specify
that resources should be loaded from memory if supported and from the filesystem
if not. The argument can also be used to materialize the Python standard library
on the filesystem, like how Python distributions typically work.


	Python resources can now be installed next to built binaries using the new
Starlark functions PythonExecutable.add_filesystem_relative_module_source(),
PythonExecutable.add_filesystem_relative_module_bytecode(),
PythonExecutable.add_filesystem_relative_package_resource(),
PythonExecutable.add_filesystem_relative_extension_module(),
PythonExecutable.add_filesystem_relative_python_resource(),
PythonExecutable.add_filesystem_relative_package_distribution_resource(),
and PythonExecutable.add_filesystem_relative_python_resources(). Unlike
adding Python resources to FileManifest instances, Python resources added
this way have their metadata serialized into the built executable. This allows
the special Python module importer present in built binaries to service the
import request without going through Python’s default filesystem-based
importer. Because metadata for the file-based Python resources is frozen into
the application, Python has to do far less work at run-time to load resources,
making operations faster. Resources loaded from the filesystem in this manner
have attributes like __file__, __cached__, and __path__ set,
emulating behavior of the default Python importer. The custom import now also
implements the importlib.abc.ExecutionLoader interface.


	Windows binaries can now import extension modules defined as shared libraries
(e.g. .pyd files) from memory. PyOxidizer will detect .pyd files during
packaging and embed them into the binary as resources. When the module
is imported, the extension module/shared library is loaded from memory
and initialized. This feature enables PyOxidizer to package pre-built
extension modules (e.g. from Windows binary wheels published on PyPI)
while still maintaining the property of a (mostly) self-contained
executable.


	Multiple bytecode optimization levels can now be embedded in binaries.
Previously, it was only possible to embed bytecode for a given module
at a single optimization level.


	The default_python_distribution() Starlark function now accepts values
standalone_static and standalone_dynamic to specify a standalone
distribution that is either statically or dynamically linked.


	Support for parsing version 4 of the PYTHON.json distribution descriptor
present in standalone Python distribution archives.


	Default Python distributions upgraded to CPython 3.7.7.







Other Relevant Changes


	The directory for downloaded Python distributions in the build directory
now uses a truncated SHA-256 hash instead of the full hash to help avoid
path length limit issues (#224).


	The documentation for the pyembed crate has been moved out of the
Sphinx documentation and into the Rust crate itself. Rendered docs can be
seen by following the Documentation link at https://crates.io/crates/pyembed
or by running cargo doc from a source checkout.









0.6.0

Released February 12, 2020.


Backwards Compatibility Notes


	The default_python_distribution() Starlark function now accepts a flavor
argument denoting the distribution flavor.


	The pyembed crate no longer includes the auto-generated default configuration
file. Instead, it is consumed by the application that instantiates a Python
interpreter.


	Rust projects for the main executable now utilize and require a Cargo build script
so metadata can be passed from pyembed to the project that is consuming it.


	The pyembed crate is no longer added to created Rust projects. Instead,
the generated Cargo.toml will reference a version of the pyembed crate
identical to the PyOxidizer version currently running. Or if pyoxidizer
is running from a Git checkout of the canonical PyOxidizer Git repository,
a local filesystem path will be used.


	The fields of EmbeddedPythonConfig and pyembed::PythonConfig have been
renamed and reordered to align with Python 3.8’s config API naming. This was done
for the Starlark type in version 0.5. We have made similar changes to 0.6 so
naming is consistent across the various types.







Bug Fixes


	Module names without a . are now properly recognized when scanning the
filesystem for Python resources and a package allow list is used (#223).
Previously, if filtering scanned resources through an explicit list of allowed
packages, the top-level module/package without a dot in its full name would not
be passed through the filter.







New Features


	The PythonDistribution() Starlark function now accepts a flavor argument
to denote the distribution type. This allows construction of alternate distribution
types.


	The default_python_distribution() Starlark function now accepts a
flavor argument which can be set to windows_embeddable to return a
distribution based on the zip file distributions published by the official
CPython project.


	The pyembed crate and generated Rust projects now have various
build-mode-* feature flags to control how build artifacts are built. See
Rust Projects for more.


	The pyembed crate can now be built standalone, without being bound to
a specific PyOxidizer configuration.


	The register_target() Starlark function now accepts an optional
default_build_script argument to define the default target when
evaluating in Rust build script mode.


	The pyembed crate now builds against published cpython and
python3-sys crates instead of a a specific Git commit.


	Embedded Python interpreters can now be configured to run a file specified
by a filename. See the run_file argument of
PythonInterpreterConfig.







Other Relevant Changes


	Rust internals have been overhauled to use traits to represent various types,
namely Python distributions. The goal is to allow different Python
distribution flavors to implement different logic for building binaries.


	The pyembed crate’s build.rs has been tweaked so it can support
calling out to pyoxidizer. It also no longer has a build dependency
on pyoxidizer.









0.5.1

Released January 26, 2020.


Bug Fixes


	Fixed bad Starlark example for building black in docs.


	Remove resources attached to packages that don’t exist. (This was a
regression in 0.5.)


	Warn on failure to annotate a package. (This was a regression in 0.5.)


	Building embedded Python resources now emits warnings when __file__
is seen. (This was a regression in 0.5.)


	Missing parent packages are now automatically added when constructing
embedded resources. (This was a regression in 0.5.)









0.5.0

Released January 26, 2020.


General Notes

This release of PyOxidizer is significant rewrite of the previous version.
The impetus for the rewrite is to transition from TOML to Starlark
configuration files. The new configuration file format should allow
vastly greater flexibility for building applications and will unlock a
world of new possibilities.

The transition to Starlark configuration files represented a shift from
static configuration to something more dynamic. This required refactoring
a ton of code.

As part of refactoring code, we took the opportunity to shore up lots
of the code base. PyOxidizer was the project author’s first real Rust
project and a lot of bad practices (such as use of .unwrap()/panics)
were prevalent. The code mostly now has proper error handling. Another
new addition to the code is unit tests. While coverage still isn’t
great, we now have tests performing meaningful packaging activities.
So regressions should hopefully be less common going forward.

Because of the scale of the rewritten code in this release, it is expected
that there are tons of bugs of regressions. This will likely be a transitional
release with a more robust release to follow.




Backwards Compatibility Notes


	Support for building distributions/installers has been temporarily dropped.


	Support for installing license files has been temporarily dropped.


	Python interpreter configuration setting names have been changed to reflect
names from Python 3.8’s interpreter initialization API.


	.egg-info directories are now ignored when scanning for Python resources
on the filesystem (matching the behavior for .dist-info directories).


	The pyoxidizer init sub-command has been renamed to init-rust-project.


	The pyoxidizer app-path sub-command has been removed.


	Support for building distributions has been removed.


	The minimum Rust version to build has been increased from 1.31 to
1.36. This is mainly due to requirements from the starlark
crate. We could potentially reduce the minimum version requirements
again with minimal changes to 3rd party crates.


	PyOxidizer configuration files are now
Starlark [https://github.com/bazelbuild/starlark] instead of TOML
files. The default file name is pyoxidizer.bzl instead of
pyoxidizer.toml. All existing configuration files will need to be
ported to the new format.







Bug Fixes


	The repl run mode now properly exits with a non-zero exit code
if an error occurs.


	Compiled C extensions now properly honor the ext_package argument
passed to setup(), resulting in extensions which properly have
the package name in their extension name (#26).







New Features


	A glob() function has been added to config files to allow
referencing existing files on the filesystem.


	The in-memory MetaPathFinder now implements find_module().


	A pyoxidizer init-config-file command has been implemented to create
just a pyoxidizer.bzl configuration file.


	A pyoxidizer python-distribution-info command has been implemented
to print information about a Python distribution archive.


	The EmbeddedPythonConfig() config function now accepts a
legacy_windows_stdio argument to control the value of
Py_LegacyWindowsStdioFlag (#190).


	The EmbeddedPythonConfig() config function now accepts a
legacy_windows_fs_encoding argument to control the value of
Py_LegacyWindowsFSEncodingFlag.


	The EmbeddedPythonConfig() config function now accepts an isolated
argument to control the value of Py_IsolatedFlag.


	The EmbeddedPythonConfig() config function now accepts a use_hash_seed
argument to control the value of Py_HashRandomizationFlag.


	The EmbeddedPythonConfig() config function now accepts an inspect
argument to control the value of Py_InspectFlag.


	The EmbeddedPythonConfig() config function now accepts an interactive
argument to control the value of Py_InteractiveFlag.


	The EmbeddedPythonConfig() config function now accepts a quiet
argument to control the value of Py_QuietFlag.


	The EmbeddedPythonConfig() config function now accepts a verbose
argument to control the value of Py_VerboseFlag.


	The EmbeddedPythonConfig() config function now accepts a parser_debug
argument to control the value of Py_DebugFlag.


	The EmbeddedPythonConfig() config function now accepts a bytes_warning
argument to control the value of Py_BytesWarningFlag.


	The Stdlib() packaging rule now now accepts an optional excludes
list of modules to ignore. This is useful for removing unnecessary
Python packages such as distutils, pip, and ensurepip.


	The PipRequirementsFile() and PipInstallSimple() packaging rules
now accept an optional extra_env dict of extra environment variables
to set when invoking pip install.


	The PipRequirementsFile() packaging rule now accepts an optional
extra_args list of extra command line arguments to pass to
pip install.







Other Relevant Changes


	PyOxidizer no longer requires a forked version of the rust-cpython
project (the python3-sys and cpython crates. All changes required
by PyOxidizer are now present in the official project.









0.4.0

Released October 27, 2019.


Backwards Compatibility Notes


	The setup-py-install packaging rule now has its package_path
evaluated relative to the PyOxidizer config file path rather than the
current working directory.







Bug Fixes


	Windows now explicitly requires dynamic linking against msvcrt.
Previously, this wasn’t explicit. And sometimes linking the final
executable would result in unresolved symbol errors because the Windows
Python distributions used external linkage of CRT symbols and for some
reason Cargo wasn’t dynamically linking the CRT.


	Read-only files in Python distributions are now made writable to avoid
future permissions errors (#123).


	In-memory InspectLoader.get_source() implementation no longer errors
due to passing a memoryview to a function that can’t handle it (#134).


	In-memory ResourceReader now properly handles multiple resources (#128).







New Features


	Added an app-path command that prints the path to a packaged
application. This command can be useful for tools calling PyOxidizer,
as it will emit the path containing the packaged files without forcing
the caller to parse command output.


	The setup-py-install packaging rule now has an excludes option
that allows ignoring specific packages or modules.


	.py files installed into app-relative locations now have corresponding
.pyc bytecode files written.


	The setup-py-install packaging rule now has an extra_global_arguments
option to allow passing additional command line arguments to the setup.py
invocation.


	Packaging rules that invoke pip or setup.py will now set a
PYOXIDIZER=1 environment variable so Python code knows at packaging
time whether it is running in the context of PyOxidizer.


	The setup-py-install packaging rule now has an extra_env option to
allow passing additional environment variables to setup.py invocations.


	[[embedded_python_config]] now supports a sys_frozen flag to control
setting sys.frozen = True.


	[[embedded_python_config]] now supports a sys_meipass flag to control
setting sys._MEIPASS = <exe directory>.


	Default Python distribution upgraded to 3.7.5 (from 3.7.4). Various
dependency packages also upgraded to latest versions.







All Other Relevant Changes


	Built extension modules marked as app-relative are now embedded in the
final binary rather than being ignored.









0.3.0

Released on August 16, 2019.


Backwards Compatibility Notes


	The pyembed::PythonConfig struct now has an additional
extra_extension_modules field.


	The default musl Python distribution now uses LibreSSL instead of
OpenSSL. This should hopefully be an invisible change.


	Default Python distributions now use CPython 3.7.4 instead of 3.7.3.


	Applications are now built into directories named
apps/<app_name>/<target>/<build_type> rather than
apps/<app_name>/<build_type>. This enables builds for multiple targets
to coexist in an application’s output directory.


	The program_name field from the [[embedded_python_config]] config
section has been removed. At run-time, the current executable’s path is
always used when calling Py_SetProgramName().


	The format of embedded Python module data has changed. The pyembed crate
and pyoxidizer versions must match exactly or else the pyembed crate
will likely crash at run-time when parsing module data.







Bug Fixes


	The libedit extension variant for the readline extension should now
link on Linux. Before, attempting to link a binary using this extension
variant would result in missing symbol errors.


	The setup-py-install [[packaging_rule]] now performs actions to
appease setuptools, thus allowing installation of packages using
setuptools to (hopefully) work without issue (#70).


	The virtualenv [[packaging_rule]] now properly finds the
site-packages directory on Windows (#83).


	The filter-include [[packaging_rule]] no longer requires both
files and glob_files be defined (#88).


	import ctypes now works on Windows (#61).


	The in-memory module importer now implements get_resource_reader() instead
of get_resource_loader(). (The CPython documentation steered us in the
wrong direction - https://bugs.python.org/issue37459.)


	The in-memory module importer now correctly populates __package__ in
more cases than it did previously. Before, whether a module was a package
was derived from the presence of a foo.bar module. Now, a module will be
identified as a package if the file providing it is named __init__. This
more closely matches the behavior of Python’s filesystem based importer. (#53)







New Features


	The default Python distributions have been updated. Archives are generally
about half the size from before. Tcl/tk is included in the Linux and macOS
distributions (but PyOxidizer doesn’t yet package the Tcl files).


	Extra extension modules can now be registered with PythonConfig instances.
This can be useful for having the application embedding Python provide its
own extension modules without having to go through Python build mechanisms
to integrate those extension modules into the Python executable parts.


	Built applications now have the ability to detect and use terminfo
databases on the execution machine. This allows applications to interact
with terminals properly. (e.g. the backspace key will now work in interactive
pdb sessions). By default, applications on non-Windows platforms will
look for terminfo databases at well-known locations and attempt to load
them.


	Default Python distributions now use CPython 3.7.4 instead of 3.7.3.


	A warning is now emitted when a Python source file contains __file__. This
should help trace down modules using __file__.


	Added 32-bit Windows distribution.


	New pyoxidizer distribution command for producing distributable artifacts
of applications. Currently supports building tar archives and .msi and
.exe installers using the WiX Toolset.


	Libraries required by C extensions are now passed into the linker as
library dependencies. This should allow C extensions linked against
libraries to be embedded into produced executables.


	pyoxidizer --verbose will now pass verbose to invoked pip and
setup.py scripts. This can help debug what Python packaging tools are
doing.







All Other Relevant Changes


	The list of modules being added by the Python standard library is
no longer printed during rule execution unless --verbose is used.
The output was excessive and usually not very informative.









0.2.0

Released on June 30, 2019.


Backwards Compatibility Notes


	Applications are now built into an apps/<appname>/(debug|release)
directory instead of apps/<appname>. This allows debug and release
builds to exist side-by-side.







Bug Fixes


	Extracted .egg directories in Python package directories should now have
their resources detected properly and not as Python packages with the name
*.egg.


	site-packages directories are now recognized as Python resource package
roots and no longer have their contents packaged under a site-packages
Python package.







New Features


	Support for building and embedding C extensions on Windows, Linux, and macOS
in many circumstances. See Native Extension Modules for support status.


	pyoxidizer init now accepts a --pip-install option to pre-configure
generated pyoxidizer.toml files with packages to install via pip.
Combined with the --python-code option, it is now possible to create
pyoxidizer.toml files for a ready-to-use Python application!


	pyoxidizer now accepts a --verbose flag to make operations more
verbose. Various low-level output is no longer printed by default and
requires --verbose to see.







All Other Relevant Changes


	Packaging now automatically creates empty modules for missing parent
packages. This prevents a module from being packaged without its parent.
This could occur with namespace packages, for example.


	pip-install-simple rule now passes --no-binary :all: to pip.


	Cargo packages updated to latest versions.









0.1.3

Released on June 29, 2019.


Bug Fixes


	Fix Python refcounting bug involving call to PyImport_AddModule() when
mode = module evaluation mode is used. The bug would likely lead to
a segfault when destroying the Python interpreter. (#31)


	Various functionality will no longer fail when running pyoxidizer from
a Git repository that isn’t the canonical PyOxidizer repository. (#34)







New Features


	pyoxidizer init now accepts a --python-code option to control which
Python code is evaluated in the produced executable. This can be used to
create applications that do not run a Python REPL by default.


	pip-install-simple packaging rule now supports excludes for excluding
resources from packaging. (#21)


	pip-install-simple packaging rule now supports extra_args for adding
parameters to the pip install command. (#42)







All Relevant Changes


	Minimum Rust version decreased to 1.31 (the first Rust 2018 release). (#24)


	Added CI powered by Azure Pipelines. (#45)


	Comments in auto-generated pyoxidizer.toml have been tweaked to
improve understanding. (#29)









0.1.2

Released on June 25, 2019.


Bug Fixes


	Honor HTTP_PROXY and HTTPS_PROXY environment variables when
downloading Python distributions. (#15)


	Handle BOM when compiling Python source files to bytecode. (#13)







All Relevant Changes


	pyoxidizer now verifies the minimum Rust version meets requirements
before building.









0.1.1

Released on June 24, 2019.


Bug Fixes


	pyoxidizer binaries built from crates should now properly
refer to an appropriate commit/tag in PyOxidizer’s canonical Git
repository in auto-generated Cargo.toml files. (#11)









0.1

Released on June 24, 2019. This is the initial formal release of PyOxidizer.
The first pyoxidizer crate was published to crates.io.


New Features


	Support for building standalone, single file executables embedding Python
for 64-bit Windows, macOS, and Linux.


	Support for importing Python modules from memory using zero-copy.


	Basic Python packaging support.


	Support for jemalloc as Python’s memory allocator.


	pyoxidizer CLI command with basic support for managing project
lifecycle.














          

      

      

    

  

    
      
          
            
  
Technical Notes


CPython Initialization

Most code lives in pylifecycle.c.

Call tree with Python 3.7:

``Py_Initialize()``
  ``Py_InitializeEx()``
    ``_Py_InitializeFromConfig(_PyCoreConfig config)``
      ``_Py_InitializeCore(PyInterpreterState, _PyCoreConfig)``
        Sets up allocators.
        ``_Py_InitializeCore_impl(PyInterpreterState, _PyCoreConfig)``
          Does most of the initialization.
          Runtime, new interpreter state, thread state, GIL, built-in types,
          Initializes sys module and sets up sys.modules.
          Initializes builtins module.
          ``_PyImport_Init()``
            Copies ``interp->builtins`` to ``interp->builtins_copy``.
          ``_PyImportHooks_Init()``
            Sets up ``sys.meta_path``, ``sys.path_importer_cache``,
            ``sys.path_hooks`` to empty data structures.
          ``initimport()``
            ``PyImport_ImportFrozenModule("_frozen_importlib")``
            ``PyImport_AddModule("_frozen_importlib")``
            ``interp->importlib = importlib``
            ``interp->import_func = interp->builtins.__import__``
            ``PyInit__imp()``
              Initializes ``_imp`` module, which is implemented in C.
            ``sys.modules["_imp"} = imp``
            ``importlib._install(sys, _imp)``
            ``_PyImportZip_Init()``

      ``_Py_InitializeMainInterpreter(interp, _PyMainInterpreterConfig)``
        ``_PySys_EndInit()``
          ``sys.path = XXX``
          ``sys.executable = XXX``
          ``sys.prefix = XXX``
          ``sys.base_prefix = XXX``
          ``sys.exec_prefix = XXX``
          ``sys.base_exec_prefix = XXX``
          ``sys.argv = XXX``
          ``sys.warnoptions = XXX``
          ``sys._xoptions = XXX``
          ``sys.flags = XXX``
          ``sys.dont_write_bytecode = XXX``
        ``initexternalimport()``
          ``interp->importlib._install_external_importers()``
        ``initfsencoding()``
          ``_PyCodec_Lookup(Py_FilesystemDefaultEncoding)``
            ``_PyCodecRegistry_Init()``
              ``interp->codec_search_path = []``
              ``interp->codec_search_cache = {}``
              ``interp->codec_error_registry = {}``
              # This is the first non-frozen import during startup.
              ``PyImport_ImportModuleNoBlock("encodings")``
            ``interp->codec_search_cache[codec_name]``
            ``for p in interp->codec_search_path: p[codec_name]``
        ``initsigs()``
        ``add_main_module()``
          ``PyImport_AddModule("__main__")``
        ``init_sys_streams()``
          ``PyImport_ImportModule("encodings.utf_8")``
          ``PyImport_ImportModule("encodings.latin_1")``
          ``PyImport_ImportModule("io")``
          Consults ``PYTHONIOENCODING`` and gets encoding and error mode.
          Sets up ``sys.__stdin__``, ``sys.__stdout__``, ``sys.__stderr__``.
        Sets warning options.
        Sets ``_PyRuntime.initialized``, which is what ``Py_IsInitialized()``
        returns.
        ``initsite()``
          ``PyImport_ImportModule("site")``








CPython Importing Mechanism

Lib/importlib defines importing mechanisms and is 100% Python.

Programs/_freeze_importlib.c is a program that takes a path to an input
.py file and path to output .h file. It initializes a Python interpreter
and compiles the .py file to marshalled bytecode. It writes out a .h
file with an inline const unsigned char _Py_M__importlib array containing
bytecode.

Lib/importlib/_bootstrap_external.py compiled to
Python/importlib_external.h with _Py_M__importlib_external[].

Lib/importlib/_bootstrap.py compiled to
Python/importlib.h with _Py_M__importlib[].

Python/frozen.c has _PyImport_FrozenModules[] effectively mapping
_frozen_importlib to importlib._bootstrap and
_frozen_importlib_external to importlib._bootstrap_external.

initimport() calls PyImport_ImportFrozenModule("_frozen_importlib"),
effectively import importlib._bootstrap. Module import doesn’t appear
to have meaningful side-effects.

importlib._bootstrap.__import__ is installed as interp->import_func.

C implemented _imp module is initialized.

importlib._bootstrap._install(sys, _imp is called. Calls
_setup(sys, _imp) and adds BuiltinImporter and FrozenImporter
to sys.meta_path.

_setup() defines globals _imp and sys. Populates __name__,
__loader__, __package__, __spec__, __path__, __file__,
__cached__ on all sys.modules entries. Also loads builtins
_thread, _warnings, and _weakref.

Later during interpreter initialization, initexternal() effectively calls
importlib._bootstrap._install_external_importers(). This runs
import _frozen_importlib_external, which is effectively
import importlib._bootstrap_external. This module handle is aliased to
importlib._bootstrap._bootstrap_external.

importlib._bootstrap_external import doesn’t appear to have significant
side-effects.

importlib._bootstrap_external._install() is called with a reference to
importlib._bootstrap. _setup() is called.

importlib._bootstrap._setup() imports builtins _io, _warnings,
_builtins, marshal. Either posix or nt imported depending
on OS. Various module-level attributes set defining run-time environment.
This includes _winreg. SOURCE_SUFFIXES and EXTENSION_SUFFIXES
are updated accordingly.

importlib._bootstrap._get_supported_file_loaders() returns various
loaders. ExtensionFileLoader configured from _imp.extension_suffixes().
SourceFileLoader configured from SOURCE_SUFFIXES.
SourcelessFileLoader configured from BYTECODE_SUFFIXES.

FileFinder.path_hook() called with all loaders and result added to
sys.path_hooks. PathFinder added to sys.meta_path.




sys.modules After Interpreter Init








	Module

	Type

	Source





	__main__

	
	add_main_module()



	_abc

	builtin

	abc



	_codecs

	builtin

	initfsencoding()



	_frozen_importlib

	frozen

	initimport()



	_frozen_importlib_external

	frozen

	initexternal()



	_imp

	builtin

	initimport()



	_io

	builtin

	importlib._bootstrap._setup()



	_signal

	builtin

	initsigs()



	_thread

	builtin

	importlib._bootstrap._setup()



	_warnings

	builtin

	importlib._bootstrap._setup()



	_weakref

	builtin

	importlib._bootstrap._setup()



	_winreg

	builtin

	importlib._bootstrap._setup()



	abc

	py

	


	builtins

	builtin

	_Py_InitializeCore_impl()



	codecs

	py

	encodings via initfsencoding()



	encodings

	py

	initfsencoding()



	encodings.aliases

	py

	encodings



	encodings.latin_1

	py

	init_sys_streams()



	encodings.utf_8

	py

	init_sys_streams() + initfsencoding()



	io

	py

	init_sys_streams()



	marshal

	builtin

	importlib._bootstrap._setup()



	nt

	builtin

	importlib._bootstrap._setup()



	posix

	builtin

	importlib._bootstrap._setup()



	readline

	builtin

	


	sys

	builtin

	_Py_InitializeCore_impl()



	zipimport

	builtin

	initimport()









Modules Imported by site.py

_collections_abc
_sitebuiltins
_stat
atexit
genericpath
os
os.path
posixpath
rlcompleter
site
stat




Random Notes

Frozen importer iterates an array looking for module names. On each item, it
calls _PyUnicode_EqualToASCIIString(), which verifies the search name is
ASCII. Performing an O(n) scan for every frozen module if there are a large
number of frozen modules could contribute performance overhead. A better frozen
importer would use a map/hash/dict for lookups. This //may// require CPython
API breakages, as the PyImport_FrozenModules data structure is documented
as part of the public API and its value could be updated dynamically at
run-time.

importlib._bootstrap cannot call import because the global import
hook isn’t registered until after initimport().

importlib._bootstrap_external is the best place to monkeypatch because
of the limited run-time functionality available during importlib._bootstrap.

It’s a bit wonky that Py_Initialize() will import modules from the
standard library and it doesn’t appear possible to disable this. If
site.py is disabled, non-extension builtins are limited to
codecs, encodings, abc, and whatever encodings.* modules
are needed by initfsencoding() and init_sys_streams().

An attempt was made to freeze the set of standard library modules loaded
during initialization. However, the built-in extension importer doesn’t
set all of the module attributes that are expected of the modules system.
The from . import aliases in encodings/__init__.py is confused
without these attributes. And relative imports seemed to have issues as
well. One would think it would be possible to run an embedded interpreter
with all standard library modules frozen, but this doesn’t work.




Desired Changes from Python to Aid PyOxidizer

As part of implementing PyOxidizer, we’ve encountered numerous shortcomings
in Python that have made implementation more difficult. This section attempts
to capture those along with our desired outcomes.


General Lack of Clear Specifications

PyOxidizer has had to implement a lot of low-level functionality, notably
around interpreter initialization and module/resource importing. We have
also had to reinvent aspects of packaging so it can be performed in Rust.

Various Python functionality is not defined in specifications. Rather, it
is defined by PEPs plus implementations in code. And when there are PEPs,
often there isn’t a single PEP outlining the clear current state of the
world: many PEPs are stated like builds on top of PEP XYZ. Often the
only canonical source of how something works is the implementation in
code. And when there are questions for clarification, it isn’t clear whether
code or a PEP is wrong because oftentimes there isn’t a single PEP that
is the canonical source of truth.

It would be highly preferred for Python to publish clear specifications
for how various mechanisms work. A PEP would be a diff to a specification
(possibly creating a new specification) and a discussion around it. That
way there would be a clear specification that can be consulted as the
source of truth for how things should behave.




__file__ Ambiguity

It isn’t clear whether __file__ is actually required and what all
is derived from existence of __file__. It also isn’t clear what
__file__ should be set to if it wouldn’t be a concrete filesystem
path. Can __file__ be virtual? Can it refer to a binary/archive
containing the module?

Semantics of __file__ need more clarification.




importlib.metadata Documentation Deficiencies

See https://bugs.python.org/issue38594.




importlib Resources Directory Ambiguity

See https://bugs.python.org/issue36128,
https://gitlab.com/python-devs/importlib_resources/issues/58,
and https://gitlab.com/python-devs/importlib_resources/-/issues/90.




Standardizing a Python Distribution Format

PyOxidizer consumes Python distributions and repackages them. e.g. it
takes an archive containing a Python executable, standard library,
support libraries, etc and transforms them into new binaries or
distributable artifacts.

There is no standard for representing a Python distribution. This is
something that PyOxidizer has had to invent itself via the
python-build-standalone project and its PYTHON.json files.

Should Python have a standardized way of describing Python distribution
archives and should CPython distribute said distributions, it would make
PyOxidizer largely agnostic of the distributor flavor being consumed
and allow PyOxidizer (and other Python packaging tools) to more easily
target other distribution flavors. e.g. you could swap out CPython for
PyPy and tooling largely wouldn’t care.




Ability to Install Meta Path Importers Before Py_Initialize()

Py_Initialize() will import some standard library modules during
its execution. It does so using the default meta path importers available
to the distribution. This means that standard library modules must come
from the filesystem (PathImporter), frozen modules, built-in extension
modules, or zip files (via PathImporter).

This restriction prevents importing the entirety of the standard library
from the binary containing Python, in effect preventing the use of
self-contained executables. PyOxidizer works around this by patching
the importlib._bootstrap and importlib._bootstrap_external source
code, compiling that to bytecode, and making said bytecode available as
a frozen module. The patched code (which runs as part of Py_Initialize())
installs a sys.meta_path importer which imports modules from memory.
This solution is extremely hacky, but is necessary to achieve single file
executables with all imports serviced from memory.

In order for this to work, PyOxidizer needs a copy of these importlib
modules so it can patch them and compile them to bytecode. This is
problematic in some cases because e.g. the Windows embeddable Python
distributions ship only the bytecode of these modules in a pythonXY.zip
file. So PyOxidizer needs to find the source code from another location
when consuming these distributions.

But patching the importlib bootstrap modules is hacky itself. It would
be better if PyOxidizer didn’t need to do this at all. This could be
achieved by splitting up the interpreter initialization APIs to give embedding
applications the opportunity to muck with sys.meta_path before any
import is performed. It could also be achieved by introducing an
initialization config option to somehow inject code at the right point
during startup to register the sys.meta_path importer. This
could be done by importing a named module (presumably serviced by the
frozen or built-in importer) and having that module run code to modify
sys.meta_path as a side-effect of module evaluation at import time.
A variation would be to define a callable in said module to call after the
module is importer. Whatever the solution, there needs to be a way to
somehow inject a sys.meta_path importer before any import not
serviced by the frozen or built-in importers is performed.




Lacking Support for Statically Linked Builds

Python really wants you to be using shared libraries for libpython
and extension modules seem to strongly insist on this.

On Windows, there is no official Visual Studio project configuration
for static builds. Actually achieving one requires a lot of hacks to
the build system (see python-build-standalone project).

There is ~0 support for building statically linked extension modules
in packaging tools, from the build step itself all the way up to
distribution. (PyOxidizer’s approach is to hack distutils to
record and save the object files that were compiled and then PyOxidizer
manually links these object files into the final binary.)

To achieve a statically linked executable containing libpython and
extension modules, you effectively need to build everything from source.
And if you want to distribute that executable, you often need to build
with special toolchains to ensure binary portability.

There is tons of room for Python to better support static linking.
A possible good place to start would be for packaging tools to support
building extension modules which don’t rely on a dynamic libpython.
If artifacts containing the raw object files designed for static
linking were made available on PyPI, PyOxidizer could download
pre-built binaries and link them directly into an executable or custom
libpython. This would avoid having to recompile said extension
modules at repackaging time. The compatibility guarantees would likely
look a lot like existing binary wheels.

On a related front, it would be nice if musl libc based binary wheels were
standardized. There are some concerns about the performance and compatibility
of musl libc when it comes to Python. But musl libc is a valid deploy
target nonetheless and it would be nice if Python officially supported
it. (FWIW the performance concerns seem to stem from memory allocator
performance and PyOxidizer supports using jemalloc as the allocator,
bypassing this problem.)




Windows Embeddable Distributions Missing Functionality

The Windows embeddable zip file distributions of CPython are missing
certain functionality.

The distributions do not contain source code for Python modules in the
standard library. This means PyOxidizer can’t easily bundle sources from
these distributions.

The ensurepip module is not present in the distribution. So there is
no way to install pip using the distribution itself.

The venv module is also not present in the distribution. So there’s
no way to create virtualenvs using the distribution itself.

The Python C development headers are not part of the distribution, so
even if you install packaging tools, you can’t build C extensions.




Extension Module / Shared Library Filename Ambiguity

On some platforms, Python extension modules and shared libraries have
the same filename extension. e.g. on Linux, both are named foo.so.

PyOxidizer’s packaging functionality needs to classify files as
specific resource types (source modules, bytecode modules, resource
files, extension modules, shared libraries, etc). Because certain file
patterns (like .so) are ambiguous, PyOxidizer cannot perform this
classification trivially.

It would be much preferred if there were unique file extensions that
distinguished Python extension modules from regular shared libraries.

On Windows, this is already the case with the .pyd extension.
However, POSIX architectures aren’t so fortunate.




Ambiguous File Classification

This is somewhat related to the previous section but is more generic.

Python’s default path-based importer dynamically looks for presence
of various files on the filesystem and loads the first type variant
(extension module, bytecode, source, etc) discovered.

PyOxidizer’s importer indexes resources during packaging and its
import-time resource resolution is static: the type of resource is
baked into the definition of the resource.

These approaches are somewhat at odds with each other. The path-based
importer is dynamic in nature: it defers answering questions until
a specific resource is requested. PyOxidizer’s importer is static /
pre-compiled: it must classify a resource based on its filename/path
so it can bake that knowledge into an immutable data structure. It
does not have knowledge of what names will be requested at run-time.

Bridging this divide has revealed various ambiguities and corner cases
in the filenames of Python resources.

The Python extension module or shared library ambiguity is described
above.

There is also an ambiguity with extra files that aren’t part of
a known Python package. If you attempt to classify every file in
a sys.path directory, it is tempting to classify a file as a
Python module (.py, .pyc, or extension module), package
resource (importlib.resources), or package metadata (e.g.
.dist-info files accessed via importlib.metadata). However,
there exists the possibility that a file is not obviously classified
as one of these.

For example, a file foo/libfoo.so without the presence of a
foo/__init__.py file is ambiguous. We could say this is an
extension module (foo.libfoo) due to the extension module
shared library ambiguity. We could also consider this a package
resource foo:libfoo.so or "":foo/libfoo.so. Although the
latter case of using an empty string for the package name doesn’t
make much sense. And we arguably shouldn’t consider it a resource
of foo because no obvious foo Python package exists!

This is relevant in the real world because various Python packages
rely on installing arbitrary files in sys.path directories.
For example, numpy installs files like
numpy.libs/libz-eb09ad1d.so.1.2.3, where the numpy.libs
directory only contains file extensions *.so[.*]. Note that
this example is particularly confusing because the directory names
in sys.path directories are typically split on . and
correspond to Python [sub-]packages.

Because there is no unambiguous way to classify all files in
a sys.path directory and because Python packaging tools allow
the presence of files not contained within a known Python package
(identified by the presence of an __init__ file/module), this
externalizes the requirement to introduce an other classification
of files. And because a specific file can’t easily be classified
as a specific type, this effectively prevents the use of resource
loading techniques not involving explicit filesystem I/O without
significant smarts. I.e. because PyOxidizer cannot easily
unambiguously identify file X as a specific type, it is forced to
materialize that file at a similar location on the run-time system.
However, if runtimes like PyOxidizer were able to identify the
type of a file by its file extension and/or presence of other files,
it would know exactly how to load/treat the file at run-time without
having to resort to heuristics.

This ambiguity effectively means that PyOxidizer needs to:


	Determine if a file is a shared library or not (because shared
libraries are treated specially and we can’t unambiguously identify
a shared library from its file extension).


	Examine symbols within shared libraries to see if a Python extension
module is present (via presence of PyInit_* symbols).


	Preserve extra files not present in a Python package. (In the case
of numpy, there are no obvious links to the shared libraries in the
numpy.libs directory: this relative path is encoded within the
extension module shared library via e.g. DT_NEEDED.)




The most robust mitigation to this ambiguity is for all files
associated with an installable Python package/distribution to be
annotated with their type and for Python package installers to refuse
to process files that aren’t identified. This could be achieved by
having a .dist-info/ file annotating the role of each file.




Push Harder for Wheels

Wheels are superior for Python packaging distribution because they
are more static and follow a finite set of rules for how they
should be installed. In theory, one could write code to install a
wheel in any programming language. Non-wheel distributions, however,
are a different matter entirely. A .tar.gz source distribution
often relies on running a setup.py file, which requires a Python
interpreter.

In the ideal world, PyOxidizer doesn’t care about how a package is
built: just the files that comprise the installed package. So wheels
are a more desirable distribution format. In fact, PyOxidizer has
Rust code for extracting wheels and repackaging their contents: no
Python necessary. This means PyOxidizer can do things like download
wheels targeting non-native architectures and it just works.

As good as wheels are, they are universal in Python land. There are
tons of packages that don’t have wheel distributions and continue to
offer the older .tar.gz distribution format.

We would like to see a concerted effort to push harder for the
presence of wheels. For example, PyPI could encourage/nag package
maintainers to upload wheels.
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