PyOxidizer
Release 0.21.0

Gregory Szorc

Jun 05, 2022

CONTENTS

1 Multiple Tools Under One Roof 3
.1 Apple Code Signing e 3
1.2 oxidized_importer e e e e 46
1.3 pyembed L e 84
14 PyOxidizer e e e e e e e e e e e 108
L5 PYyOXY o o e e e e e e 278
1.6 TUugEEr o e e e e e e e e e e e e 304
Index 345

PyOxidizer, Release 0.21.0

Welcome to the unified documentation of the PyOxidizer Project, a collection of libraries and tools attempting to
improve ergonomics around packaging and distributing [Python] applications.

The official home of the project is https://github.com/indygreg/PyOxidizer. Official documentation lives on Read the
Docs (unreleased/latest commit, last release).

The pyoxidizer-users mailing list is a forum for users to discuss all things PyOxidizer.

The creator and maintainer of PyOxidizer is Gregory Szorc.

CONTENTS 1

https://github.com/indygreg/PyOxidizer
https://github.com/indygreg/PyOxidizer
https://pyoxidizer.readthedocs.io/en/latest/index.html
https://pyoxidizer.readthedocs.io/en/stable/index.html
https://groups.google.com/forum/#!forum/pyoxidizer-users
https://gregoryszorc.com/

PyOxidizer, Release 0.21.0

2 CONTENTS

CHAPTER
ONE

MULTIPLE TOOLS UNDER ONE ROOF

The PyOxidizer Project is comprised of discrete pieces of software developed in the same repository. Major pieces of
user-facing software have their own documentation, each described in the following sections.

1.1 Apple Code Signing

The apple-codesign Rust crate and rcodesign CLI tool implement Apple code signing to enable developers to
sign, notarize, and staple software without having to use Apple hardware or macOS.

1.1.1 Apple Code Signing
The apple-codesign Rust crate and its corresponding rcodesign CLI tool implement code signing for Apple plat-
forms.

We believe this crate provides the most comprehensive implementation of Apple code signing outside the canonical
Apple tools. We have support for the following features:

 Signing Mach-O binaries (the executable file format on Apple operating systems).
* Signing, notarizing, and stapling directory bundles (e.g. .app directories).

* Signing, notarizing, and stapling XAR archives / .pkg installers.

 Signing, notarizing, and stapling disk images / . dmg files.

What this all means is that you can sign, notarize, and release Apple software from Linux and Windows without
needing access to proprietary Apple software!

Other features include:
* Built-in support for using smart cards (e.g. YubiKeys) for signing and key/certificate management.

* A remote signing mode that enables you to delegate just the low-level cryptographic signature generation to a
remote machine. This allows you to do things like have a CI job initiate signing but use a YubiKey on a remote
machine to create cryptographic signatures. See Remote Code Signing for more.

* Certificate Signing Request (CSR) support to enable arbitrary private keys (including those generated on smart
card devices) to be easily exchanged for Apple-issued code signing certificates.

* Support for dumping and diffing data structures related to code signatures.

* Awareness of Apple’s public PKI infrastructure, including CA certificates and custom X.509 extensions and
OIDs used by Apple.

* Documentation and code that are likely a treasure trove for others wanting to play with Apple code signing.

PyOxidizer, Release 0.21.0

The canonical home of this project is https://github.com/indygreg/PyOxidizer/tree/main/apple-codesign. While this
project is developed inside a larger monorepository, it is designed to be used as a standalone project.

Getting Started

Installing

To install the latest release version of the rcodesign executable using Cargo (Rust’s package manager):

cargo install apple-codesign

To enable smart card integration:

cargo install --features smartcard apple-codesign

To compile and run from a Git checkout of its canonical repository (developer mode):

cargo run --bin rcodesign -- --help

To install from a Git checkout of its canonical repository:

cargo install --bin rcodesign

To install from the latest commit in the canonical Git repository:

cargo install --git https://github.com/indygreg/PyOxidizer --branch main rcodesign

Obtaining a Code Signing Certificate

Follow the instructions at Managing Code Signing Certificates to obtain a code signing certificate.

Installing Apple Transporter for Notarization

Notarization requires using Apple Transporter for uploading artifacts to Apple for notarization. This (Java) tool is
distributed for macOS, Windows, and Linux.

You can install it by following Apple’s instructions.

If you do not want to perform notarization, you do not need to install Apple Transporter.

Obtaining an Apple Connect API Key

To notarize and staple, you’ll need an Apple Connect API Key to authenticate connections to Apple’s servers.
You can generate one at https://appstoreconnect.apple.com/access/api.

This requires an Apple Developer account, which requires paying money. You may need to click around in the App
Store Connect website to enable the API keys feature.

Apple Transporter looks in various locations for the API Key. Run iTMSTransporter -help upload and read the
docs for the -apiKey argument.

We recommend putting the keys in ~/.appstoreconnect/private_keys/ because that is a descriptive directory
name.

4 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/tree/main/apple-codesign
https://help.apple.com/itc/transporteruserguide/#/apdAbeb95d60
https://appstoreconnect.apple.com/access/api

PyOxidizer, Release 0.21.0

Using rcodesign

The rcodesign executable provided by this project provides a command mechanism to interact with Apple code
signing.

Signing with sign

The rcodesign sign command can be used to sign a filesystem path.

Unless you want to create an ad-hoc signature on a Mach-O binary, you’ll need to tell this command what code signing
certificate to use.

To sign a Mach-O executable:

rcodesign sign \
--pl2-file developer-id.pl2 --pl2-password-file ~/.certificate-password \
--code-signature-flags runtime \
path/to/executable

To sign an . app bundle (and all Mach-O binaries inside):

rcodesign sign \
--pl2-file developer-id.pl2 --pl2-password-file ~/.certificate-password \
path/to/My.app

To sign a DMG image:

rcodesign sign
—p12-file developer-id.p12 —p12-password-file ~/.certificate-password path/to/app.dmg

To sign a .pkg installer:

rcodesign sign \
--pl2-file developer-id-installer.pl2 --pl2-password-file ~/.certificate-password \
path/to/installer.pkg

Notarizing and Stapling

You can notarize a signed asset via rcodesign notarize.

Notarization requires an Apple Connect API Key. See Obtaining an Apple Connect API Key for instructions on how
to obtain one.

Notarization also requires Apple’s Transporter tool. See Installing Apple Transporter for Notarization for more about
Transporter. The rcodesign find-transporter command can be used to see if rcodesign can find Transporter.

You will need an API Key AuthKey_<ID>.p8 file on disk in one of the default locations used by Apple Trans-
porter. These are $ (pwd) /private_keys/, ~/private_keys/, ~/.private_keys/, and ~/.appstoreconnect/
private_keys/.

You need to provide both the Key ID and IssuerID when invoking this command. Both can be found at https:
/lappstoreconnect.apple.com/access/api.

To notarize an already signed asset:

1.1. Apple Code Signing 5

https://appstoreconnect.apple.com/access/api
https://appstoreconnect.apple.com/access/api

PyOxidizer, Release 0.21.0

rcodesign notarize \
--api-issuer 68911d4c-110c-4172-b9£f7-b7efa30f9680 \
--api-key DEADBEEF \
path/to/file/to/notarize

By default notarize just uploads the asset to Apple. To wait on its notarization result, add --wait:

rcodesign notarize \
--api-issuer 68911d4c-110c-4172-b9£f7-b7e£fa30£9680 \
--api-key DEADBEEF \
--wait \
path/to/file/to/notarize

Or to wait and automatically staple the file if notarization was successful:

rcodesign notarize \
--api-issuer 68911d4c-110c-4172-b9f7-b7efa30f9680 \
--api-key DEADBEEF \
--staple \
path/to/file/to/notarize

If notarization is interrupted or was initiated on another machine and you just want to attempt to staple an asset that
was already notarized, you can run rcodesign staple. e.g.:

rcodesign staple \
--api-issuer 68911d4c-110c-4172-b9f7-b7efa30f9680 \
--api-key DEADBEEF \
path/to/file/to/staple

Managing Code Signing Certificates
In order to add cryptographic signatures using this tool, you’ll need to use a Code Signing Certificate. (Follow the link
for what that means.)

In order to perform code signing in a way that is recognized and trusted by Apple operating systems, you will need to
obtain a code signing certificate that is signed/issued by Apple. This requires joining the Apple Developer Program,
which has an annual membership fee.

Once you are a member, there are various ways to generate and manage your certificates. But first, a primer about
flavors of Apple code signing certificates.

Apple Code Signing Certificate Flavors

Apple issues different types/flavors of code signing certificates. Each one is used to sign a different class of software.

If you are logged into your Apple Developer account, you can see Apple’s description for these at https://developer.
apple.com/account/resources/certificates/add. Here’s our concise definitions:

Apple Development
Sign applications for Apple operating systems that aren’t distributed publicly.

Apple Distribution
Sign applications for submission to the App Store or for Ad Hoc distribution.

6 Chapter 1. Multiple Tools Under One Roof

https://developer.apple.com/programs/
https://developer.apple.com/account/resources/certificates/add
https://developer.apple.com/account/resources/certificates/add

PyOxidizer, Release 0.21.0

i0S App Development
Legacy version of Apple Development just for iOS apps. (We think.)

i0S Distribution
Legacy version of Apple Distribution just for iOS apps. (We think.)

Mac Development
Legacy version of Apple Development just for macOS apps. (We think.)

Mac App Distribution
Sign macOS applications and configure a Distribution Provisioning Profile for distribution through Mac App
Store.

Mac Installer Distribution
Sign package installers (e.g. .pkg files) which will be distributed via the Mac App Store.

Developer ID Installer
Sign package installers (e.g. .pkg files) which will be distributed outside the Mac App Store. i.e. if users fetch
your installer via your website, you sign with this.

Developer ID Application
Sign applications which will be distributed outside the Mac App Store. Used for signing Mach-O binaries, . app
bundles, and . dmg files.

Essentially, if you are distributing macOS software to end-users via non-Apple channels like your website, you need
Developer ID Application and/or Developer ID Installer.

If you are distributing via Apple’s App stores, you need Apple Distribution or one of the other types having Distribution
in the name.

Tip: The rcodesign analyze-certificate command can be used to print information about Apple code signing
certificates. Look for a line with Certificate Profile in its output to see which flavor of certificate this software
thinks it is.

Generating Certificates with Xcode

Using Xcode from macOS is probably the easiest way to create and manage your certificates as Xcode has built-in Ul
to facilitate this.

Apple keeps thorough documentation about how to do this. Please follow Apple’s documentation to generate a certifi-
cate.

Obtaining a Certificate via a Certificate Signing Request

You can obtain a code signing certificate by uploading a Certificate Signing Request (CSR) to Apple. Essentially, you
generate a CSR, send it to Apple, and Apple will issue a new code signing certificate which you can download.

A CSR is produced by creating a cryptographic signature (using a private key) over a small set of metadata describing
the private key for which a certificate shall be issued.

In order to generate a CSR, you need a private key. As of April 2022, Apple appears to require the use of RSA 2048
private keys.

If you have access to macOS, the easiest way to generate a private key and CSR is to use Keychain Access using the
procedure outlined here.

If you want to generate your own CSR using rcodesign, you can! First, you’ll need a private key.

1.1. Apple Code Signing 7

https://help.apple.com/xcode/mac/current/#/dev154b28f09
https://help.apple.com/developer-account/#/devbfa00fef7

PyOxidizer, Release 0.21.0

To generate an RSA 2048 private key using OpenSSL:

openssl genrsa -out private.pem 2048

Warning: The RSA private key will be in plain text on your filesystem. This is not very secure!

Then once you have a private key, we can generate a CSR using rcodesign:

rcodesign generate-certificate-signing-request --pem-source private.pem
rcodesign generate-certificate-signing-request --pl2-file key.pl2

Smart cards require generating a new key then creating a CSR from that key.
rcodesign smartcard-generate-key --smartcard-slot 9c
rcodesign generate-certificate-signing-request --smartcard-slot 9c

This command will print the CSR to stdout. e.g.:

MIHeMIGDAgQEAMCExHzAdBgNVBAMMFkFwcGx1TENVZGUgU21nbmluZyBDU1IWWTAT
Bgcqghk jOPQIBBggghk jOPQMBBWNCAAQx1uB1PIv/HgBDzO03GLPhhna/NJU7menq
GzUc9sZF0gZ7XmpRIvQTxHPEyg5D6huBapVQZsDGIIgAX jvSOmimoAAWDAYIKoZI
zjOEAwIFAANTIADBFAiEAoZpbfrlm7HgQXByfwuoPt7/V+QM7DCIILcTKCBrkIZUC
IEIp8yA9bSg7bM9X]18bgFesTjermlSYQI/21Y834 /27

You probably want to use --csr-pem-path to write that to a file automatically:

rcodesign generate-certificate-signing-request --smartcard-slot 9c --csr-pem-path csr.pem

Exchanging a CSR for a Code Signing Certificate

Once you have a CSR file, you can attempt to exchange it for a code signing certificate.
1. Go to https://developer.apple.com/account/resources/certificates/add (you must be logged into Apple’s website)
Select the certificate flavor you want to issue.
Click Continue to advance to the next form.
Select the G2 Sub-CA (Xcode 11.4.1 or later) Profile Type (we support it).
Choose the file containing your CSR.
Click Continue.
If all goes according to plan, you should see a page saying Download Your Certificate.

Click the Download button.

© ® =N kLD

Save the certificate somewhere. (The file content is likely not sensitive and doesn’t need to be kept secret because
this content will be copied to everything you sign with it!)

At this point, you have both a private key and a public certificate: you can sign Apple software!

8 Chapter 1. Multiple Tools Under One Roof

https://developer.apple.com/account/resources/certificates/add

PyOxidizer, Release 0.21.0

Exporting a Code Signing Certificate to a File

rcodesign supports consuming code signing certificates from multiple sources, including hardware devices. But
sometimes it is desirable to have your code signing certificate exist as a file.

Use the instructions in one of the following sections to export a code signing certificate.

Danger: It is generally accepted that private keys stored in files are less secure than stored in special operating
system enclaves like keychains. This is because the operating system has protections around accessing the private
keys and these protections are often much stronger than those on a file on the filesystem.

This tool has support for using certificates / keys directly from macOS keychains. So exporting to a file is not always
necessary.

Using Keychain Access

(macOS)
1. Open the Keychain Access application.
2. Find the certificate you want to export and command click or right click on it.
3. Select the Export option.
4. Choose the Personal Information Exchange (.pl2) format and select a file destination.
5. Enter a password used to protect the contents of the certificate.
6. If prompted to enter your system password to unlock your keychain, do so.

The exported certificate is in the PKCS#12 / PFX / p12 file format. Command arguments with these labels in the same
can be used to interact with the exported certificate.

Using Xcode

(macOS)

See Apple’s Xcode documentation.

Using security

(macOS)
1. Run security find-identity to locate certificates available for export.
2. Run security export -t identities -f pkcsl2 -o keys.pl2

If you have multiple identifies (which is common), security export will export all of them. security doesn’t seem
to have a command to export just a single certificate pair. You will need to invoke some openssl command to extract
just the certificate you care about. Please contribute back a fix for this documentation once you figure it out!

1.1. Apple Code Signing 9

https://help.apple.com/xcode/mac/current/#/dev154b28f09

PyOxidizer, Release 0.21.0

Using a Self-Signed Certificate

If you want to cut some corners and play around with certificates not signed by Apple, you can run rcodesign
generate-self-signed-certificate to generate a self-signed code signing certificate.

This command will include special attributes in the certificate that indicate compatibility with Apple code signing.
However, since the certificate isn’t signed by Apple, its signatures won’t confer the same trust that Apple signed cer-
tificates would.

These certificates can be useful for debugging and testing.

Smart Card Support
This project has some support for integrating with Smart Cards. This enables you to perform cryptographic signing
using a certificate that is stored in a hardware device.

Certificates stored this way are more secure, as it typically requires that a physical device be unlocked in order to use
the private key. And access to the raw private key matter is typically not allowed.

Cargo Feature

Smart card integration requires the optional and disabled-by-default smartcard Cargo feature to be enabled.
On macOS and Windows, this feature should just work.

On Linux, you’ll need a package providing pcsclite installed or you may get a cryptic build error due to missing de-
pendencies. On Debian based distros, you want to apt install libpcsclitel libpcsclite-dev (or something
of that nature).

Limitations

We currently use yubikey.rs for smart card integration. This likely means that only YubiKeys currently work.
However, we would like to switch to a more generic interface (such as pcsc in the future to allow more flexible usage.

There is currently no support for setting the management key. If you have set a custom management key, you won’t be
able to import certificates onto your smart card. However, signing should still work.

Validating Smart Card Integration

To see if your smart card device is recognized and certificates can be found:

rcodesign smartcard-scan

Device 0: Yubico YubiKey OTP+FIDO+CCID 0
Device 0: Serial: 12345678

Device 0: Version: 5.2.7

Device 0: Certificate in slot Signature / 9c

Subject CN: gps

Issuer CN: aps

Subject is Issuer?: true

Team ID: <missing>

SHA-1 fingerprint: c847e830c01845517d7e3775805ab56313aallc8

SHA-256 fingerprint: o

WIS
\

continues on next page

10 Chapter 1. Multiple Tools Under One Roof

https://github.com/iqlusioninc/yubikey.rs
https://crates.io/crates/pcsc/2.7.0

PyOxidizer, Release 0.21.0

(continued from previous page)

Signed by Apple?: false
Guessed Certificate Profile: none
Is Apple Root CA?: false
Is Apple Intermediate CA?: false
Apple CA Extension: none

Apple Extended Key Usage Purpose Extensions:
Apple Code Signing Extensions:

Pointing Commands at a Smart Card Certificate

rcodesign command that operate against certificates expose a --smartcard-slot argument to specify which smart-
card slot to use.

Slot 9c is the standard slot for holding certificates used for signing.

To sign with your smart card certificate at slot 9¢, do something like:

rcodesign sign \
--smartcard-slot 9c \
path/to/entity/to/sign

Smartcards often require a PIN on signing operations. You should be prompted for your PIN value if the signing
operation is initially unauthenticated.

Importing Certificates Into a Smart Card

The rcodesign smartcard-import command can be used to import an existing code signing certificate into your
smart card.

Let’s assume you created an Apple code signing certificate and exported it to the file developer_id.pl2. You can
import this certificate by doing the following:

$ rcodesign smartcard-import \
--smartcard-slot 9c \
--pl2-file developer_id.pl2 --pl2-password password

$ rcodesign smartcard-scan

Device 0: Yubico YubiKey OTP+FIDO+CCID 0
Device ®: Serial: 1234567

Device 0: Version: 5.2.7

Device 0: Certificate in slot Signature / 9c

Subject CN: Developer ID Application: Gregory Szorc (MK22MZP987)
Issuer CN: Developer ID Certification Authority

Subject is Issuer?: false

Team ID: MK22MZP987

SHA-1 fingerprint: 44d7155bcab£f3b9a9221b0®1b8e198040ae0®4elad

SHA-256 fingerprint: o
—8f610ded4caeadbc138e85b56726ed4d330£7464d99c£a5957568904b6a6375ec
Signed by Apple?: true
Apple Issuing Chain:

- Developer ID Certification Authority

(continues on next page)

1.1. Apple Code Signing 11

PyOxidizer, Release 0.21.0

(continued from previous page)

- Apple Root CA
- Apple Root Certificate Authority
Guessed Certificate Profile: DeveloperIdApplication

Is Apple Root CA?: false
Is Apple Intermediate CA?: false
Apple CA Extension: none

Apple Extended Key Usage Purpose Extensions:
- 1.3.6.1.5.5.7.3.3 (CodeSigning)
Apple Code Signing Extensions:
- 1.2.840.113635.100.6.1.33 (DeveloperIdDate)
- 1.2.840.113635.100.6.1.13 (DeveloperIdApplication)

Creating a Certificate with a Private Key Exclusive to the Smart Card

It is possible to generate a private key directly on the smart card and create a code signing certificate derived from this
private key.

Code signing certificates created this way are theoretically much more secure than other private key generation methods
because most smart cards never allow the private key content to be exported/viewed. Assuming operations involving
the private key are protected with the appropriate access protections (like pin or touch policies), compromise of the
machine or even the smart key itself may not result in unwanted access to the private key.

To create a code signing certificate whose private key has never left the smart card device itself, do something like the
following.

First, generate a new private key on the smart card:

rcodesign smartcard-generate-key --smartcard-slot 9c

Then create a certificate signing request (CSR):

rcodesign generate-certificate-signing-request \
--smartcard-slot 9c \
--csr-pem-path csr.pem

Then follow the instructions at Exchanging a CSR for a Code Signing Certificate to submit the CSR file to Apple and
obtain a public certificate.

Finally, import the Apple-issued public certificate into the smart card:

rcodesign smartcard-import \
--der-source developerID_application.cer \
--smartcard-slot 9c

At this point, the smart card is ready to sign using an Apple issued certificate and the private key never has - and
probably never will - leave the smart card itself.

12 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Concepts

Code signing on Apple platforms is complex and has many parts. This document aims to shed some light on things.

Cryptographic Signatures

At the heart of code signing is the use of cryptographic signatures.
The Wikipedia article on digital signatures explains the concept in far more detail than we care to go into.

Essentially, mathematics is used to prove that an entity in possession of a secret key digitally attested to the existence
of some signed entity.

More concretely, an X.509 code signing certificate can be proved to have signed some piece of software by inspecting
the cryptographic signature it produced.

Apple’s cryptographic signatures use RFC 5652 / Cryptographic Message Syntax (CMS) for representing signatures.
This standardized format is used outside the Apple ecosystem and libraries and tools like OpenSSL are capable of
interfacing with it.

Code Signing

Code signing (or just signing) is the mechanism of producing (and then attaching) a signature to some entity.

Typically signing entails producing a cryptographic signature using a code signing certificate. However, Mach-O files
(the binary file format for Apple platforms) has a concept of ad-hoc signing where the binary has data structures
describing the content of the binary but without the cryptographic signature present.

Notarization

Notarization is the term Apple gives to the process of uploading an asset to Apple for inspection.

In order to help safeguard and control their software ecosystems, Apple imposes requirements that applications and
installers be inspected by Apple before they are allowed to run on Apple operating systems - either at all or without
scary warning signs.

When you notarize software, you are essentially asking for Apple’s blessing to distribute that software. If Apple’s
systems are appeased, they will issue a notarization ticket.

Notarization Ticket

A notarization ticket is a blob of data that essentially proves that Apple notarized a piece of software.

The exact format and content of notarization tickets is not well known. But they do contain some DER-encoded ASN.1
with data structures that common appear in X.509 certificates. All that matters is that Apple’s operating systems know
how to read and validate a notarization ticket.

1.1. Apple Code Signing 13

https://en.wikipedia.org/wiki/Digital_signature

PyOxidizer, Release 0.21.0

Stapling

Stapling is the term Apple gives to the process of attaching a notarization ticket to some entity. It is literally just fetching
a notarization ticket from Apple’s servers and then making that ticket available on the entity that was notarized.

You can think of notarization and stapling as Apple-issued cryptographic signatures. It establishes a chain of trust
between some entity to you that also had to be inspected by Apple first.

Mach-O Binaries

Mach-O is the binary executable file format used on Apple operating systems.
When you run an executable like /usr/bin/zsh on macOS, you are running a Mach-O file.

Mach-O binaries are either thin or fat. A thin Mach-O contains code for a single architecture, like x86-64 or aarch64
/ arm64. A fat or universal binary contains code for multiple architectures. At run-time, the operating system will
decide which one to execute.

Bundles

Bundles are a filesystem based mechanism for encapsulating code and resources.

On macOS, you commonly encounter bundles as . app and . framework directories in /Applications and /System/
Library/Frameworks.

Bundles are essentially a well-defined set of files that the operating system knows how to interact with. For example,
macOS knows that to execute an . app bundle it should look for a Contents/Info.plist to resolve basic application
metadata, such as the name of the main binary for the bundle, which resides in Contents/Mac0S/ within the bundle.

DMGs / Disk Images

Apple Disk Images are a self-contained file format for holding filesystems. Think of DMGs as standalone hard drives
that Apple operating systems can recognize.

DMGs are often used to distribute macOS applications.

XARs / Flat Packages / .pkg Installers

Flat packages is a mechanism for installing software.

They take the form of .pkg files, which are actually XAR archives (a tar-like format for storing content for multiple
files within a single file).

14 Chapter 1. Multiple Tools Under One Roof

https://en.wikipedia.org/wiki/Mach-O
https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/Introduction/Introduction.html#//apple_ref/doc/uid/10000123i-CH1-SW1
https://en.wikipedia.org/wiki/Apple_Disk_Image

PyOxidizer, Release 0.21.0

Code Signing Certificate

A code signing certificate is used to produce cryptographic signatures over some signed entity.

A code signing certificate consists of a private/secret key (essentially a bunch of large numbers or parameters) and a
public certificate which describes it.

Code signing certificates are X.509 certificates. X.509 certificates are the same technology used to secure communi-
cation with https:// websites. However, the certificates are used for signing content instead of encrypting it.

The X.509 public certificate contains a bunch of metadata describing the certificate. This includes the name of the
person or entity it belongs to, a date range for when it is valid, and a cryptographic signature attesting to its origination.

Apple’s operating systems look for special metadata on code signing certificates to authenticate and trust them. There
are special properties on certificates indicating what Apple software distribution they are allowed to perform. For
example, a Developer ID Application certificate is required for signed Mach-O binaries, bundles, and DMG files
to be trusted and a Developer ID Installer certificate is required to sign .pkg installers in order for them to be
trusted.

In addition, different Apple code signing certificates are cryptographically signed by different Apple Certificate Au-
thorities (CAs).

Known Issues and Limitations

Apple code signing is complex. While this project strives to provide all the features and compatibility that Apple’s
official tooling provides, we won’t always get it right. This document captures some of the areas where we know we
fall short.

Bundle Handling in General

Bundle signing is complex for a few reasons:

* The types and layouts of bundles are highly varied. Application bundles. Frameworks. Kernel extensions.
macOS flavored vs iOS flavored bundles. The list goes on.

* Bundles can be nested.
* Signatures in nested bundles often need to propagate to their parent bundle.
* Bundles encapsulate other signable entities, notably Mach-O binaries.

All this complexity means bundle signing is susceptible to a lot of subtle bugs and variation from how Apple’s tooling
does it.

If you find bugs in bundle signing or have suggestions for improving its ergonomics, please file a GitHub issue!

Cannot Sign File Contents of DMGs

We support signing DMGs. But we can’t recursively inspect the files within DMGs and sign those. e.g. if a DMG
contains a Mach-O binary, we can’t sign that Mach-O by unpacking it from the DMG and writing a new DMG.

The reason we can’t do this is because DMGs contain a nested filesystem (likely HFS+) and we don’t (yet) have a
cross-platform mechanism for reading and writing HFS+ filesystems.

On macOS, we could call out to hdiutil to mount a DMG to see its contents and again to create a new DMG.
However, this isn’t implemented because we don’t perceive there to be value in it: if you have access to macOS you
should probably just use Apple’s official signing tooling!

1.1. Apple Code Signing 15

https://

PyOxidizer, Release 0.21.0

There are open source libraries for reading and writing HFS+ filesystems. We could potentially integrate those to sup-
port reading and writing the contents of DMGs. We could also potentially leverage a pure Rust HFS+ implementation
(this is a preferred solution).

DMG also supports multiple embedded filesystem types and it is possible we could leverage one that isn’t HFS+ (or
APFS) and produce working DMGs. This is an area we haven’t yet explored.

If you want to distribute DMGs signed with this tool that themselves have signed files, you’ll need to sign the files
inside the DMG before the DMG is created. Then you’ll need to create the DMG (using hdiutil or whatever tool you
have access to) then feed that DMG into this tool for signing.

https://github.com/indygreg/PyOxidizer/issues/540 is our tracking issue for DMG writing support. If you have ideas,
please comment there!

Cannot Recursively Sign Flat Packages (.pkg Installers)

Flat Packages (.pkg installers) are a complex file format.

‘We have support for signing . pkg installers by reading the files within a flat package. And we are capable of recursively
extracting and signing the .pkg installers that themselves are often embedded in .pkg installers.

What we don’t yet have support for is mutating the file content within flat packages / .pkg installers. This means we
can’t recursively sign nested .pkg installers or bundles or Mach-O binaries within.

The main blocker to implementing . pkg writing is support for reading and writing Apple’s Bill of Materials file format.
These are the Bom files within flat packages. The author of this project has an unpublished Rust crate to read and write
bom files but he encountered issues getting it to write files that validate with Apple’s implementation.

So if you want to sign . pkg files that themselves containable signable entities, you need to sign files going into the . pkg
before creating the .pkg. Then you need to create the .pkg and invoke this tool to sign the .pkg. For installers that
contained nested .pkg installers, this process will be quite tedious. Invoking componentbuild and productbuild
will likely be much simpler.

https://github.com/indygreg/PyOxidizer/issues/541 is our tracking issue for flat packages writing support.

Extra Signhing or Time-Stamp Token Operations

Signatures often need to encapsulate the size of the resulting signature. This creates a chicken-and-egg problem because
how can we know the size of the resulting signature before we actually produce it!

In some cases, this tool will create a fake signature and obtain an actual time-stamp token from a server in order to
resolve the size of the data so we can better estimate the size of the real signature.

We are not sure if Apple’s tooling does this. But ours does and the extra operations can be annoying because they may
require extra unlocks of signing keys or communications with a time-stamp token server.

We can likely eliminate the extra use of the signing key for generating these stand-in signatures and we can probably
only make 1 request to the time-stamp token server to obtain the size of its signatures. But we haven’t implemented
this throughout the code base yet.

https://github.com/indygreg/PyOxidizer/issues/542 and https://github.com/indygreg/PyOxidizer/issues/543 track im-
provements here.

16 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/issues/540
https://github.com/indygreg/PyOxidizer/issues/541
https://github.com/indygreg/PyOxidizer/issues/542
https://github.com/indygreg/PyOxidizer/issues/543

PyOxidizer, Release 0.21.0

Long Tail of Random Discrepancies from Apple’s Tooling

Apple’s code signature format is really, really complex. There are tons of data structures and fields with complex values.

There is likely a long tail of minor differences in implementation that result in variations between the behavior of our
implementation and Apple’s.

In general, we consider differences in behavior in our implementation to be bugs worth filing. So please use rcodesign
diff-signatures to report behavior differences!

Known areas where discrepancies are likely include:

* The code requirements expression embedded into Mach-O binaries. We attempt to derive one based on the
signing key. The expression may not be exactly what Apple’s tools derive automatically. We consider this a bug.

» Executable segment flags and code signing flags. The exact logic for determining what flags to set when is
complex. In general, we consider differences in behavior here to be bugs.

 Size of embedded signatures. You often need to estimate the size of the produced embedded signature before
signing because the signature encapsulates its own size. Our estimation method varies from Apple’s and can re-
sult in signatures with more or less padded null bytes. This difference should be mostly harmless. Improvements
to make our signatures use less wasteful extra padding are appreciated.

How to Debug and Report Problems

Apple code signing is complex and there will be cases where this tool behaves differently from Apple’s, possibly to the
point where Apple rejects the output of this tool.

Important: If Apple software rejects the output of this tool, we consider that a bug. We encourage end-users to report
these bugs to the GitHub issue tracker.

Commands to Print Signature Info

The rcodesign print-signature-info command can be used to dump YAML describing any signable file entity.
Just point it at a Mach-O, bundle, DMG, or .pkg installer and it will tell you what it knows about the entity.

The rcodesign diff-signatures command will internally execute print-signature-info against 2 paths and
print the differences between them.

rcodesign diff-signatures is exceptionally useful at understanding differences in behavior between this tool and
Apple’s. If Apple is rejecting the output of this tool, comparing the output of the same operation with Apple’s tooling
against this tool’s is a good way to find the source of the problem.

Reporting Actionable Bugs

Please include the following in bug reports to improve chances for action:
* The released version or Git commit that this tool was built from.
* The command line used.
 The full output of the command.
* The output of rcodesign diff-signatures comparing similar operations between Apple’s tooling and ours.

* A copy of the entity you were attempting to sign.

1.1. Apple Code Signing 17

https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.21.0

* Text copy or screenshot of error from Apple tooling indicating what failed.

It is understandable that some people may not desire to file publish issue reports or submit a copy of their application
to be seen by the world. If you send a polite email to gregory.szorc @gmail.com with apple-codesign or rcodesign
in the subject line along with more private/sensitive details, support can be given over email.

Remote Code Signing

This project has support for remote signing. This is a feature where cryptographic signature operations (requiring
access to the private key) are delegated to a remote machine.

From a high level, two machines establish a secure communications bridge with each other through a central server.
The initiating machine starts signing operations like normal. But when it gets to an operation that requires producing a
cryptographic signature, it sends an end-to-end encrypted message to the bound signer peer with the message to sign.
The signer then uses its private key to create a signature, which it sends back to the initiator, who incorporates it into
the code signature.

Remote signing is essentially peer-to-peer, not client-server. The central server exists for relaying encrypted messages
between peers and not for performing signing operations itself. Each signing session is ephemeral and short-lived.
Since the signing keys are offline by default and a human must take action to join a signing session and use the signing
keys, remote signing is theoretically more secure than solutions like giving a (CI) machine unlimited access to a code
signing certificate or HSM.

Remote signing is intended for use cases where the machine initiating signing must not or can not have access to the
private key material or unlimited access to it. Popular scenarios include:

* Clenvironments where you don’t want a CI worker to have unlimited access to the signing key because CI workers
are notoriously difficult to secure. (If someone can run arbitrary jobs on your CI they can likely exfiltrate any CI
secrets with ease.)

* When hardware security devices are used and machines initiating the signing don’t have direct access to this
device. Think a remote CI machine or coworker wanting to sign with a certificate in a YubiKey or HSM whose
access is entrusted to a specific person (or group of people in the case of an HSM).

Important: This feature is considered alpha and will likely change in future versions.

Danger: The custom cryptosystem for remote signing has not yet undergone an audit. The end-to-end message
encryption and tampering resistance claims we’ve made may be undermined by weaknesses in the design of the
cryptosystem and its implementation and interaction in code.

In other words, use this feature at your own risk.

Issue 552 tracks performing an audit of this feature.

18 Chapter 1. Multiple Tools Under One Roof

mailto:gregory.szorc@gmail.com
https://github.com/indygreg/PyOxidizer/issues/552

PyOxidizer, Release 0.21.0

How It Works

A full overview of the protocol and cryptography involved is available at Remote Code Signing Protocol and you can
read more about the design and security at Remote Code Signing Design and Security Considerations.

From a high-level, signing operations involve 2 parties:

* The initiator of the signing request. This is the entity that wants something to be signed but doesn’t having the
signing certificate / key.

 The signer. This is the entity who has access to the private signing key.
The signing procedure is essentially:

1. Initiator opens a persistent websocket to a central server and publishes details about that session and how to
connect to it.

2. Signer follows the instructions from initiator and joins the signing session by opening a websocket to the same
server as the initiator. Cryptography is employed to derive encryption keys so all subsequently exchanged mes-
sages are end-to-end encrypted, preventing the server or any privileged network actors from eavesdropping on
signing operations or forging a signing request.

3. Initiator sends a request to signer asking them to sign a message.
4. Signer inspects the request and issues a cryptographic signature, which it sends back to initiator.

5. Steps 3-4 are repeated as long as necessary.

Using

The initiator begins a remote signing session via rcodesign sign --remote-signer. (Some additional arguments
are required - see below.)

This command will print out an rcodesign command that the signer must subsequently run to join the signing session.
e.g.

$ rcodesign sign --remote-signer --remote-shared-secret-env SHARED_SECRET
connecting to wss://ws.codesign.gregoryszorc.com/

session successfully created on server

Run the following command to join this signing session:

rcodesign remote-sign gmlzaGFyZWRzZWNyZXQwg. . .

(waiting for remote signer to join)

At this point, that long opaque string - which we call a session join string - needs to be copied or entered on the signer.
e.g.:

$ rcodesign remote-sign --pl2-file developer_id.pl2 --remote-shared-secret-env SHARED_
—SECRET \
gmlzaGFyZWRzZWNyZXQwg. . .

If everything goes according to plan, the 2 processes will communicate with each other and initiator will delegate all
of its signing operations to signer, who will issue cryptographic signatures which it sends back to the initiator.

1.1. Apple Code Signing 19

PyOxidizer, Release 0.21.0

Session Agreement

Remote signing currently requires that the initiator and signer exchange and agree about something before signing
operations. This ahead-of-time exchange improves the security of signing operations by helping to prevent signers
from creating unwanted signatures.

The sections below detail the different types of agreement and how they are used.

Public Key Agreement

Important: This is the most secure and preferred method to use.

In this operating mode, the signer possesses a private key that can decrypt messages. When the initiator begins a
signing operation, it encrypts a message that only the signer’s private key can decrypt. This encrypted message is
encapsulated in the session join string exchanged between the initiator and signer.

This mode can be activated by passing one of the following arguments defining the public key:

--remote-public-key
Accepts base64 encoded public key data.

Specifically, the value is the DER encoded SubjectPublicKeyInfo (SPKI) data structure defined by RFC 5280.

--remote-public-key-pem-file
The path to a file containing the PEM encoded public key data.

The file can begin with ----- BEGIN PUBLIC KEY----- or ----- BEGIN CERTIFICATE----- . The former
defines just the SPKI data structure. The latter an X.509 certificate (which has the SPKI data inside of it).

Both the public key and certificate data can be obtained by running the rcodesign analyze-certificate command
against a (code signing) certificate.

The signer needs to use the corresponding private key specified by the initiator in order to join the signing session. By
default, rcodesign remote-sign attempts to use the in-use code signing certificate for decryption.

So, an end-to-end workflow might look like the following:
1. Run rcodesign analyze-certificate and locate the ----- BEGIN PUBLIC KEY----- block.

2. Save this to a file, signing_public_key.pem. You can check this file into source control - the contents aren’t
secret.

3. On the initiator, run rcodesign sign --remote-signer --remote-public-key-pem-file
signing_public_key.pem /path/to/input /path/to/output.

4. On the signer, run rcodesign remote-sign --smartcard-slot 9c " “<session join string>.
We believe this method to be the most secure for establishing sessions because:

 The state required to bootstrap the secure session is encrypted and can only be decrypted by the private key it is
encrypted for. If you are practicing proper key management, there is exactly 1 copy of the private key and access
to the private key is limited. This means you need access to the private key in order to compromise the security
of the signing session.

* The session ID is encrypted and can’t be discovered if the session join string is observed. This eliminates a denial
of service vector.

20 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Shared Secret Agreement

Important: This method is less secure than the preferred public key agreement method.

In this operating mode, initiator and signer agree on some shared secret value. A password, passphrase, or some
random value, such as a type 4 UUID.

This mode is activated by passing one of the following arguments defining the shared secret:

--remote-shared-secret-env
Defines the environment variable holding the value of a shared secret.

--remote-shared-secret
Accepts the raw shared secret string.

This method is not very secure since the secret value is captured in plain text in process arguments!
An end-to-end workflow might look like the following:
1. A secure, random password is generated using a password manager.
2. The secret value is stored in a password manager, registered as a CI secret, etc.

3. The initiator runs rcodesign sign --remote-signer --remote-shared-secret-env
REMOTE_SIGNING_SECRET /path/to/input /path/to/output.

4. The signer runs rcodesign remote-sign --remote-shared-secret-env REMOTE_SIGNING_SECRET
--smartcard-slot 9c.

Important security considerations:
* Anybody who obtains the shared password could coerce the signer into signing unwanted content.

* Weak password will undermine guarantees of secure message exchange and could make it easier to decrypt or
forge communications.

Because the password exists in multiple locations, must be known by both parties, and the process for generating it are
not well defined, the overall security of this solution is not as strong as the preferred public key agreement method.
However, this method is easier to use and may be preferred by some users.

Using with GitHub Actions

It is pretty simple to initiate remote code signing from GitHub Actions! In fact, this scenario is one of the primary use
cases for the design of the feature.

Note: Issue #553 tracks publishing a canonical GitHub Action that formalizes the steps in this documentation. Assis-
tance in building that would be greatly appreciated!

Here are the general steps.

1.1. Apple Code Signing 21

https://github.com/indygreg/PyOxidizer/issues/553

PyOxidizer, Release 0.21.0

Configuring a Workflow / Actions

First, export the public key data of the signing certificate to a file checked into source control. Use
rcodesign analyze-certificate and copy the ----- BEGIN PUBLIC KEY---- block to a file in your reposi-
tory. e.g. https://github.com/indygreg/PyOxidizer/blob/main/ci/developer-id-application.pem defines the Developer
ID Application public key data for the maintainer of this project.

Note: The public key data is included in the code signatures embedded in signed artifacts so there is generally not a
concern with making the public key data widely available in the repository.

Next, create a GitHub workflow or action that invokes rcodesign sign. https://github.com/indygreg/PyOxidizer/
blob/main/.github/workflows/sign-apple-exe.yml is an example of such a workflow. This particular workflow is using
on.workflow_dispatch so the workflow is only triggered manually. See the workflow_dispatch documentation and
Manually running a workflow docs for more.

Important: A manually triggered workflow is strongly recommended because a signer must take manual action to
perform remote signing and an automated trigger will likely hang unless a person is around to attend to it.

Important: For security reasons, you should set timeout-minutes on either the job or step initiating remote signing
to limit how long a signer will wait.

The important steps in a remote signing action/workflow are:

1. Securely obtain rcodesign. We recommend downloading a release artifact from https://github.com/indygreg/
PyOxidizer/releases and pinning/verifying the SHA-256 digest on download.

2. Download the artifact you want signed. The Download workflow artifact action can be useful for downloading
artifacts from other workflows in the current repository (since the official download-artifact action limits
you to artifacts in the current workflow).

3. Invoke rcodesign sign --remote-signer --remote-public-key-pem-file path/to/public_key.
pem.

4. Do something with the signed result (like upload it as an artifact).

Running the Workflow / Action

Now that you have a GitHub workflow or action in place, here’s how you use it.

If you followed the recommendations from above, the workflow is manually triggered via on.workflow_dispatch.
You can trigger the workflow via the GitHub web UI or via API. For API, the path of least resistance is likely the gh
GitHub CLI tool. e.g.:

gh workflow run sign-apple-exe.yml \
--ref ci-main \
-f workflow=rcodesign.yml \
-f run_id=2214520041 \
-f artifact=exe-rcodesign-macos-universal \
-f exe_name=rcodesign

If your workflow is highly parameterized (like this one), you may want to script its invocation to make it more turnkey.

22 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/blob/main/ci/developer-id-application.pem
https://github.com/indygreg/PyOxidizer/blob/main/.github/workflows/sign-apple-exe.yml
https://github.com/indygreg/PyOxidizer/blob/main/.github/workflows/sign-apple-exe.yml
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#workflow_dispatch
https://docs.github.com/en/actions/managing-workflow-runs/manually-running-a-workflow
https://github.com/indygreg/PyOxidizer/releases
https://github.com/indygreg/PyOxidizer/releases
https://github.com/marketplace/actions/download-workflow-artifact
https://cli.github.com/

PyOxidizer, Release 0.21.0

When rcodesign sign --remote-signer runs in GitHub Actions, it will print instructions on how to join the
signing session. You will need to follow these instructions in a timely manner to complete the code signing operation.

Here is what you are looking for in the job output:

1.1. Apple Code Signing 23

PyOxidizer, Release 0.21.0

Run actions

Download rcodesign Linux cutable
Download artifact to sign

Perform remote code signing

= Run chmod +x b codesign
connecting to w Ws . codesign. gregory
on succ y created on s

Run the following command to join this

rcodesign remote-sign gmpw
yDW1Fhc6ZRaNZtckRAABpF IARFIhRjGWbEFp6Ei]
HtD2gEOkDo-R31y BclQaR
*_bCoBLZ2gedh3a

RWTccgDmKTxgHar5R31dp-KnJOPRZpce9ZullpijBTL
Or if this output is too long, pas

BEGIN 5 N JOIN STRING
gmpwd W glkBAD]ledBcEeAcIB8kkr7CS5R+3
1¥RmgvGR . Cyjuy IMw51/Pmaln2
dIwltbpGolSPpHUGC+SVrlxi 15dnEN+yDV1FhchZRaNZt ckR44BpFIARF]
hRjGWbBFp6il i aq dgrERj9F&bmaR N 1
loulEASMCm2o 3 f7FHUa2IbePlaw] jwFKE7BrnccCvDN
1Jrzy45s wggEl C5qa5Ib3

VL
gPl++soH+cl 2H+Ug9 Y 2 bMbMgKR
QUWTMdkw JaE42 Dt 2u+BWTccgDm 3 KnJOPRZpcedZull

sHz+gDvjcPz5SLkUw lqorpRbEGE

BEwigFYPiUBcbviaV B HfrAWLC/ IfuwaEm+EmIa+jAV
clhtgvadH?
JOIN STRING

Inte an interactive editor using:

rcodesign remote-sign --editor

Or into a new file whose path you define with:

rcodesign remote-sign

24 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Then, simply follow instructions on the machine with the signing key to commence signing!

Important: When you view the logs of a running GitHub Actions job, only the output from after the point you started
viewing them is visible. This means that if you are foo late you may not see the printed instructions for joining the
signing session!

There are definitely some mitigations we can take for this. For the moment, you need to be quick to open the job output
in your browser. Or you can do things like add a sleep before running rcodesign sign.

If all goes according to plan, you should see progress being printed both in the signing process and from the near real
time output from GitHub Actions.

Here is the output from the GitHub Actions (Linux) machine:

1.1. Apple Code Signing 25

PyOxidizer, Release 0

(waiting for remote signer to join)

signer joined session; deriving shared encryption key

requesting signing certificate info from signer

remote signer will sign with certificate: Developer ID Application: Gregory Szorc (MK22MZH
registering signing key

automatically registered Apple CA certificate: Developer ID Certification Authority
automatically registered Apple CA certificate: Apple Root CA

using time-stamp protocol server http://timestamp.apple.com/ts@l

automatically setting team ID from signing certificate: MK22ZMZP387

registering extra X.589 certificate

registering extra X.589 certificate

signing dist/input/rcodesign to dist/output/rcodesign

signing dist/input/rcodesign as a Mach-0 binary

inferring default signing settings from Mach-0 binary

preserving existing binary identifier in Mach-0

using team ID from settings

preserving code signature flags in existing Mach-0 signature

setting binary identifier to rcodesign

parsing Mach-0

writing distfoutput/rcodesign

signing Mach-0 binary at index @

attempting to derive code requirements from signing certificate

code requirements: @: (identifier "rcodesign®) and ((anchor apple generic) and ((certific]
leaf[subject.QU] = "MK22MZPI87"))));

binary targets macls »= 11.8.8 with SDK 12.1.@

code directory wversion: 132896

creating cryptographic signature with certificate Developer ID Application: Gregory Szorc

Using time-stamp serwver http://timestamp.apple.com/ts8l

sending signing request to remote signer

received signature from remote signer

total signature size: 186965 bytes

signing Mach-0 binary at index 1

attempting to derive code requirements from signing certificate

code requirements: @: (identifier "rcodesign-8d3eb894c5473a86") and ((anchor apple generid
(certificate leaf[subject.OU] = "MK22MZPI87"))));

binary targets mac0s »= 11.8.8 with SDK 12.1.@

adding code signature flags from signing settings: ADHOC | LINKER_SIGMED

removing ad-hoc code signature flag

removing linker signed flag from code signature (we're not a linker)

code directory wversion: 132896

creating cryptographic signature with certificate Developer ID Application: Gregory Szorc

Using time-stamp serwver http://timestamp.apple.com/ts8l

sending signing request to remote signer
received signature from remote signer
total signature size: 174199 bytes
terminating signing session on relay

relay server confirmed session termination

disconnecting from relay server

Upload

Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

And from the signing Windows machine using a YubiKey for signing:

connected to reader: Yubico YubiKey OTP+FIDO+CCID ©

using certificate in smartcard slot 9c

attempt 1/3

failed sign command with code 6982

device refused operation due to authentication error

Please enter device PIN: [hidden]

pin verification successful

attempt 2/3

connecting to wss://ws.codesign.gregoryszorc.com/

joining session...

successfully joined signing session 69bab288-128d-uUfé6e-aldl-af6a984U916F
verifying encrypted communications with peer

walting for server to send us a message...

waiting for server to send us a message...

creating signature for remote message: MYIB1DAYBgkqhkliGOwBBCQMxCwYJKoZIhvcNA(
DYXJ1lbj2al7ujVhmFuwvyv/oTODAcBgkghkiGOwOBCQUXDxcNMjIWNDIOMTgOOTEUWjCCASKGCSGS
iBlbmNvZGluZz8iVVRGLTgiPzUKPCFETONUWVEBFIHESsaXNOIFBVQkxJQyAiLS8vQXEwbGUvLEORURY
S5jb28vRFREcy2Qcm9wZXJ0elUxpc3QtMSUwLmROZCI+C jxwbGLlzdCB2ZXJzaW9uPSIxL jA1Pgo8Zi
TUKCQKBZGFOYTUKCQK3IWTVQVLlyeWVWRHhqREdAtWUV3IMKZSWlcOL1U9CgkJIPCOKYXRhPgoJPCOhe
AKCMSBWLOYJIYIZIAWUDBAIBBCDt jHOVivISUPGMMaZgTDYXJ1lbj9al7ujvhmFwvy /o TOA==
initial signing attempt may fail if the certificate requires a pin to unlock
attempt 1/3

failed sign command with code 6982

device refused operation due to authentication error

Please enter device PIN: [hidden]

pin verification successful

attempt 2/3

sending signature to peer

relay acknowledged signature message received

Remote Code Signing Protocol

Overview

The remote signing protocol facilitates the cryptographic signing of messages involving 2 discrete network peers.
The peer that wants something signed is the initiator.
The peer with access to the signing key that produces cryptographic signatures is the signer.

Peers establish persistent websocket connections to a central server to enable them to speak with each through firewalls
and NATs.

Peers register an ephemeral session with the server, which is essentially a binding between 2 connected websocket
clients.

Peers derive session-specific encryption keys using mutually agreed upon ahead of time data. They then relay end-to-
end encrypted messages through the central server and perform cryptographic signing operations.

1.1. Apple Code Signing 27

PyOxidizer, Release 0.21.0

Wire Protocol

The protocol entails the exchange of JSON encoded objects via websockets.
The JSON objects sent from clients to the server have the following keys:

request_id
(string) (required) A unique identifier for this request.

api
(string) (required) The name of the API / method to invoke on the server.

payload
(object) (optional) Parameters passed to this API invocation.

The JSON objects sent from servers to clients have the following keys:

request_id
(string) (optional) Echo of request_id from the message that generated this one. The value could be unknown
to the receiver if this message was generated from the other peer in the session.

type
(string) (required) The message type.

ttl
(number) (optional) Integer number of seconds remaining before the session expires and will be automatically
deleted by the server.

payload
(object) (optional) Payload further describing this message.

All other fields in the top-level object are reserved for future use.
Messages sent from the client to server ALWAYS result in the server responding to that API request.

It is also possible for servers to send messages to clients asynchronously of any client-initiated message.

Initial Connection Protocol

When a client connects to the server, it SHOULD issue a hello API message and wait for the server’s response.
If the response contains a message of the day string, it MUST be displayed to the end-user.

Clients SHOULD also make a best effort attempt to validate the server’s advertised capabilities and make a determina-
tion about compatibility and error or print warnings if incompatibility is detected.

Session Negotiation

The initiator and signer pair with each other by forming a session.

From the server’s perspective, a session is an opaque identifier string with associated state, such as the unique websocket
connection IDs of the initiator and signer clients.

Sessions are ephemeral and expire automatically after a duration specified by the initiating client. (The server can
impose a maximum duration to prevent service abuse.)

Sessions are generally created by the initiator.

The initiator creates a unique session ID, SessionId. SessionId MUST be randomly chosen. It SHOULD have
sufficient entropy to prevent server-side collisions. The use of type 4 UUIDs for session IDs is recommended.

28 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Once a server-side session is created, the initiator then shares a session join string with the signer via an out-of-band
mechanism. See Session Join Strings for more.

At this point, mechanisms diverge based on the session joining mechanism employed. But generally speaking, the
signer sends a join-session to the server to register itself as the other peer in the session. At this point, both peers derive
encryption keys and communicate with each other by issuing send-message messages. See Signing Protocol for more.

Session Join Strings

The initiator and signer need to leverage an out-of-band mechanism for communicating metadata with each other in
order to join a server-established session. There are various potential solutions for this and we’ve purposefully designed
the mechanism to be extensible.

Generically, the mechanism to join a session is expressed through a session join string, or SJS.
The SJS is ultimately a CBOR encoded array of length 2. The array’s elements are:
* (string) The scheme being used.
e (varied) The payload for that scheme.
But to end-users it is an opaque string.
The SJS can be encoded as:
* Base64 using the RFC 3548 URL safe character set with optional = padding.
* PEM using SESSION JOIN STRING as the armoring tag.
In general, the session join string is shared out-of-band with the other peer, who uses it to join the session.

In general, session join strings are designed such that a 3rd party becoming aware of the SJS will not jeopardize the
security of the current or future signing operations. However, denial of service could occur if the SJS exposes the
session ID and a 3rd party joins the session before the infended peer.

The following sections denote the defined session join string schemes. Sections names are the scheme value.

publickey®

The publickey®0 session joining mechanism relies on public key cryptography to authenticate the 2nd peer in a session
by leveraging knowledge of the 2nd peer’s public encryption key.

The initiating peer, A, MUST know the public key of the joining peer, B.
A generates a random value at least 32 bytes long, ChallengeSecret.

A generates a new RFC 7748 Curve 25519 private key. Its private / public components are AAgreementPrivate and
AAgreementPublic, respectively.

A generates a new random 16 byte value, SharedAESKey.

A loads the public key of B, BPublic. It usually does so by extracting the X.509 SubjectPublicKeyInfo (SPKI) (RFC
5280 Section 4.1.2.7) from an X.509 certificate or DER/PEM fragment of just the SPKI.

A prepares a plaintext message to be sent to B, AJoinPlaintext. This message is a CBOR array with the following
elements:

serverUrl
(Index 0) (optional string) URL of the server to connect to.

sessionld
(Index 1) (string) The session identifier created on the server.

1.1. Apple Code Signing 29

PyOxidizer, Release 0.21.0

challenge
(Index 2) (bytes) The content of ChallengeSecret.

agreementPublic
(Index 3) (bytes) SubjectPublicKeyInfo for AAgreementPublic.

A encrypts AJoinPlaintext using AES-128 in GCM with SharedAESKey, yielding AJoinCiphertext. A 12 byte
nonce is used where the bytes are all 0x42. The 16 byte authentication tag is appended to the raw ciphertext and
constitutes the final bytes of AJoinCiphertext.

A encrypts SharedAESKey using asymmetric encryption targeting BPublic, yielding SharedAESCiphertext.
For RSA, OAEP padding with SHA-256 digests MUST be used.
The payload of the session join string is a CBOR array with the following elements:

aes_ciphertext
(Index 0) (bytes) The SharedAESCiphertext generated above.

bPublic
(Index 1) (bytes) The SPKI describing which public key was used to encrypt SharedAESCiphertext.

message_ciphertext
(Index 2) (bytes) The AJoinCiphertext generated above.

So, the final session join string is ["publickey®", [SharedAESCiphertext, BSPKI, AJoinCiphertext]].
The session join string is summarily CBOR and base64 encoded and made available to B.
B receives and decodes the SJS.

B locates the decryption key from the provided SPKI structure. (B may want to impose restrictions here to prevent
clients from fishing for specific keys.)

B decrypts SharedAESCiphertext using BPrivate, yielding back SharedAESKey.

Using SharedAESKey, B verifies and decrypts AJoinCiphertext, yielding AJoinPlaintext.

On success, B generates a new RFC 7748 Curve 25519 private key, BAgreementPrivate and BAgreementPublic.
B connects to the server and sends a join-session message with context set to BAgreementPublic.

At this point, A and B both perform key agreement using their ephemeral ED25519 private key and the public key of
the other peer, each mutually deriving SessionSharedKey.

At this point, the procedure described in AEAD Key Derivation is used to derive new symmetric encryption keys.
ChallengeSecret is used as the additional value to derive IdentifierA and IdentifierB.

Security Considerations

The session join string consists of 2 discrete encrypted payloads and is generally safe against offline attacks. Unless
ciphers are broken, the private key is required to obtain for anything beyond side-channels (like total payload size).

SessionId is encrypted, so compromise of the SJS can’t easily lead to a DoS by an unwanted peer joining the session.

The server doesn’t see anything: the encrypted AES key and AES encrypted peer metadata are both encapsulated in
the SJS. We could potentially move some of these to the server to reduce the length of the SJS.

30 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Open Questions for Security Audit

e We don’t sign / HMAC the asymmetrically encrypted AES key. Nor do we include an IV or other prepended
message. This seems to go against best practices. Does it matter? Does the additional layer of AEAD feeding
into the key agreement compensate for this?

¢ Is the use of a constant nonce for the SharedAES -> AJoinCiphertext acceptable? The AES key is randomly
generated and is used exactly once, so do the nonces even matter?

* Is AES-128 in GCM mode a sufficient key/cipher for encrypting the main message?

* We currently generate 2 distinct private keys: 1 for key agreement and 1 for AES encryption. They are generated
independently. Does this make sense or should perhaps HKDF be used against a common key?

* Right now there is no explicit trust anchoring between the asymmetric encryption targeting B and the derived
shared secret key. Should B produce a cryptographic signature using BPrivate so A doesn’t assume that
ability to decrypt authenticates B? Or is ability to decrypt along with the assumption that only B possesses
agreementPublic sufficient?

sharedsecret®

The sharedsecret0 session joining mechanism uses SPAKE?2 to derive a shared encryption key using an ahead-of-
time mutually agreed upon shared secret, SharedSecret.

The peer creating the session, henceforth A, generates unique/random SessionId and Identifier val-
ues. These values are used to construct the SPAKE2 identifier strings: A:{SessionId}:{Identifier} and
B:{SessionId}:{Identifier}.

A begins SPAKE2 role A initialization using SharedSecret and role A’s identifier string. This produces SpakeAInit.
A calls create-session to register the new session with the server. Its context field is empty.
The session join string value is a CBOR array with the following elements:

sessionld
(Index 0) (string) The session identifier string.

identifier
(Index 1) (bytes) The random Identifier value produced earlier.

spakeAInit
(Index 2) (bytes) The SPAKE2 Role A initialization message.

The final CBOR session join string is ["sharedsecret®", [SessionId, Identifier, SpakeAInit]].
The session join string is summarily CBOR and base64 encoded and made available to B.

B receives and decodes the SJS.

B performs SPAKE2 Role B initialization, producing SpakeBInit.

B sends a join-session message to the server with context set to the base64 encoding of SpakeBInit. SpakeBInit
is relayed to A via the server.

At this point, both A and B are able to finalize SPAKE2 using SpakeBInit and SpakeAInit, respectively. They should
mutually derive a shared encryption key, SessionSharedKey.

At this point, the procedure described in AEAD Key Derivation is used to derive new symmetric encryption keys.
Identifier is used as the additional value used to derive IdentifierA and IdentifierB.

1.1. Apple Code Signing 31

PyOxidizer, Release 0.21.0

Security Considerations

The session join string containing the plaintext SessionId, Identifier, and SpakeAInit generally does not need
to be highly secure or made secret.

SharedSecret cannot be derived from knowledge of the session join string.

The server does not directly observe the value for Identifier, only SpakeBInit. So it would need knowledge of the
session join string and SharedSecret to decrypt messages.

A 3rd party in a privileged network position (including the server) with knowledge of SharedSecret, SessionId,
and Identifier would be able to decrypt and forge messages, as it would be able to derive RoleAKey and RoleBKey.
So it is important to use transport-level encryption, a trusted server, and keep SharedSecret a secret value.

Open Questions for Security Audit

* Is SPAKE2 the best mechanism for deriving session encryption keys from a shared secret?

* Should SpakeAInit be in the session join string or stored on the server and hidden from plaintext view? What
are the tradeoffs with each approach?

* As proposed, the SPAKE?2 identifier contains SessionId and yet another random value. That random value is
not sent to the server but is possibly world readable in the session join string. Is this second source of entropy
necessary? Does attempting to prevent the server from having access to it buy us any security value? Or is just
the client-chosen SessionlId string good enough?

» The SPAKE?2 specification seems to insist on the use of key confirmation messages. Since we’re using HKDF
into AEAD, which has built-in authentication, do we need to perform the SPAKE2 key confirmation since any
failures in SPAKE2 land would lead to AEAD failures anyway?

* How sensitive is SPAKE2 to the entropy of SharedSecret? While we want to encourage a relatively strong
SharedSecret, we can’t guarantee this. Should we be doing e.g. PBKDF2 on SharedSecret before feeding
it into SPAKE2 or will SPAKE2 do sufficient key stretching on its own?

AEAD Key Derivation

The schemes above commonly detail the steps to enable 2 peers to mutually derive a session-ephemeral shared encryp-
tion key, SessionSharedKey.

Rather than use SessionSharedKey directly for subsequent message exchange, we instead derive additional keys from
it for use with Authenticated Encryption and Additional Data (AEAD) encryption / message exchange.

An identifier value is associated with peers assuming roles A (the session initiator) and B (the session joiner). The value
is a bytes concatenation of:

* The role name. e.g. A/ 0x41 or B/ 0x42.

* A colon (: / 0x3a)

¢ The SessionId identifier, UTF-8 encoded.

e A colon (: / 0x3a)

* An additional value communicated in the session join string. e.g. ChallengeSecret.
These values are known as IdentifierA and IdentifierB.
HKDF is used to derive new keys.

Step 1 / HKDF-Extract uses an empty salt and SessionSharedKey to produce a pseudorandom key, PRK.

32 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Step 2 / HKDF-Expand is performed twice to derive 2 new keys. The first invocation uses IdentifierA for info and
32 for L, producing RoleAKey. The second invocation uses IdentifierB for info and 32 for L, producing RoleBKey.

RoleAKey and RoleBKey are used to empower AEAD encryption / message exchange. ChaCha20+Poly1305 is used.
Nonces are 12 bytes where the first 4 bytes are a little-endian u32 counter whose initial used value is ® and the subsequent
8 bytes are always 0. Additionally authenticated data (AAD) is generally not used.

RoleAKey is used by A to encrypt messages and by B to verify/decrypt messages from A. RoleBKey is used by B to
encrypt messages and by A to verify/decrypt messages from B.

Open Questions for Security Audit

* Is ChaCha20+Poly1305 a reasonable cipher choice? Or should we be using block ciphers (e.g. AES)?

» Using a simple, easily guessable counter for nonces seems wrong. Using a random value seems more appropriate.
But both parties need to know what the nonce we be. Do we use a random value for the nonce but encode the
nonce in plaintext next to the exchanged ciphertext messages? Or do we need something else entirely?

* We could potentially use additionally authenticated data (AAD) to encapsulate more details of the request, such
as the request ID. Does that buy us security benefits?

Signing Protocol

Once 2 peers have established a session and derived encryption keys to facilitate end-to-end encrypted communication,
they communicate with each other using peer to peer messages by invoking the send-message API.

This process generally involves a handshake:
1. Both peers simultaneously send ping messages.

2. Upon receipt, each peer sends a pong in response. This dance confirms peer presence and that the derived
encryption keys work.

3. The initiator sends a request-signing-certificate to request information about the signer’s public certificate. This
is necessary in order to allow the signer to do things like estimate the sizes of signatures and to derive additional
details needed for signing.

4. The signer sends a signing-certificate in response.
At this point, both peers are ready to commence signing.
5. The initiator sends a sign-request.
6. The signer receives the request, assesses it, creates a cryptographic signature, and sends a signature in reply.
7. Steps 5-6 are repeated as necessary.
Finally,

8. Either peer sends a goodbye to finalize the session.

1.1. Apple Code Signing 33

PyOxidizer, Release 0.21.0

Client Issued Messages

The following sections denote the types of messages issued from clients to servers.

Section names denote the value of the api key in the messages.

hello

Greets the server and obtains information about the server.
This message type has no payload.

Servers respond to this message with a error.

create-session

Requests the creation of a new session on the server.
Sent by the initiator as part of session negotiation.
Fields:

session_id
(string) (required) Unique identifier to use for this session.

ttl
(number) (required) Requested session duration, in seconds.

context
(string) (optional) Additional context to be passed to the peer when it joins the session.

Servers SHOULD automatically expire the server-side session state after its TTL duration expires. Servers MAY close
connections to connected clients when their session expires. Servers MAY impose a shorter TTL if the requested TTL
is too long.

Servers respond to this message with a session-created.

join-session

Attempts to join an existing session.
Sent by the signer as part of session negotiation.
Fields:

session_id
(string) (required) Identifier of session to join.

context
(string) (optional) Additional context to pass through to the other peer.

Servers respond to this message with a session-joined.

34 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

send-message

Sends an (encrypted) message to the other peer in this session.
Fields:

session_id
(string) (required) Identifier of session to use for peer lookup.

message
(string) (required) Base64 encoded ciphertext of an AEAD encrypted message to send to the peer.

Server implementations MUST ensure that the client issuing this request are bound to the session they are attempting
to send a message to.

Servers react to this message by sending a peer-message to the other peer in the specified session.

Servers respond to this message with a message-sent.

goodbye

Indicates the client is finished and will be disconnecting.
Fields:

session_id
(string) (required) Identifier of session to use for peer lookup.

reason
(string) (option) Reason the client is disconnecting.

Server implementations MUST ensure that the client issuing this request is bound to the session they are attempting to
close.

Servers react to this message by sending a session-closed to the other peer in the specified session.

Servers respond to this message with a session-closed.

Server Sent Messages

The following sections denote the types of messages sent from the server to clients.

Section names denote the value of the type field in the message.

error

Conveys information about a server-side error.

Could be sent in reply to any API request or sent asynchronously if some error occurred (such as the peer disconnecting
unexpectedly).

Fields:

code
(string) (required) Value that uniquely identifies this error type.

message
(string) (required) Human readable error message.

1.1. Apple Code Signing 35

PyOxidizer, Release 0.21.0

greeting

Conveys information about the server.
Sent in reply to a hello request.
Fields:

apis
(array of strings) (required) Names of APIs that the server supports.

motd
(string) (optional) Message of the day conveying messaging that the server operator wishes clients to know about.

session-created

Conveys the successful creation of a session.

Sent in reply to a create-session request.

session-joined

Conveys the successful joining into a session.

Sent in reply to a join-session request.

Sent asynchronously by servers in response to a join-session issued by the joining peer.
Fields:

context
(string) (optional) Data from the peer required to finish initializing the session.

If this message was sent in reply to a join-session, the value will be from the initiating peer.

If this message was sent to the pre-existing peer in reaction to a join-session, the value will be from the joining
peer.

message-sent

Conveys the successful sending of a message to the session peer.

Sent in reply to a send-message request.

peer-message

Delivers an (encrypted) message from the peer in this session.
Sent asynchronously by servers in response to a send-message issued by the other peer in a session.
Fields:

message
(string) (required) Base64 encoded AEAD message.

36 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

session-closed

Conveys that the session has been finalized and can no longer be used.
Sent in reply to a goodbye request as well as asynchronously to the peer in its session.
Fields:

reason
(string) (optional) Provides further context on why the session was closed.

Peer to Peer Messages

Peers within a session communicate with each other by sending and receiving send-message and peer-message, respec-
tively.

The message field denotes a base64 encoded AEAD encrypted message. The message consists of the ciphertext with
the authentication tag appended. The plaintext of these messages is the JSON encoding of an object having the following
keys:

type
(string) (required) The message type. This is unique message namespace from server-sent messages.

payload
(object) (optional) Payload for this message.

The following sections denote the types of peer-to-peer messages. The section names denote the value for the type
field.

ping

Check on the status of the peer.

Receivers should send a pong in response.

pong

Respond to a status check from a peer.

Sent in response to a ping message.

request-signing-certificate

Requests the peer to send it information about its signing certificate.
Receivers should send a signing-certificate in response.

Should only be sent by the initiator.

1.1. Apple Code Signing 37

PyOxidizer, Release 0.21.0

signing-certificate

Describes the signing certificate(s) that is being used by the signer.
Sent in response to a request-signing-certificate.
Fields:

certificates
(array of object) (required) Contains a list of signing certificates that will potentially be used.

Each entry is an object described below.

Today, there is likely a single certificate in this array. We’ve left the door open for supporting the use of multiple
signing certificates in the future.

Each entry in the certificatess array is an object with the following fields:

certificate
(string) (required) Base64 encoded DER of the public X.509 certificate.

chain
(array of strings) (optional) Base64 encoded DER of additional public X.509 certificates in the signing chain for
this certificate.

sign-request

Requests the cryptographic signing of a message.
Fields:

message
(string) (required) Base64 encoded message to be signed.

signature

Conveys the cryptographic signature over a message.
Sent in response to a sign-request.
Fields:

message
(string) (required) Base64 encoded message that was signed.

signature
(string) (required) Base64 encoded signature data.

algorithm_oid
(string) (required) Base64 encoded DER encoding of OID denoting the signature algorithm.

38 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Remote Code Signing Design and Security Considerations

Design Goals and Constraints

The design of remote signing is influenced with the following primary goals in mind:

* The initiating machine MUST NOT have direct access to the private signing key. Ever. The private key (or ability
to create signatures with it) is only ever in possession of the signer.

* The private key cannot be used without the signer’s knowledge (and optional consent to each use).
 The initiating machine must be able to run remotely / non-interactively.
We also imposed the following constraints when considering designs:

* The initiating machine is partially trusted. We assume that if you trust the initiating machine to invoke a signing
operation then you trust that machine to e.g. not lie about the signing requests it subsequently presents to the
signer.

* We should place minimal trust in any 3rd party servers or machines. Assume all 3rd parties are malicious and
will attempt to coerce signers into signing arbitrary content.

* 3rd party servers should have access to as little information about signing activity as possible. e.g. 3rd party
servers should not be able to observe the messages that are signed, the produced signatures, or the certificates used
to sign. They may observe details that leak through side channels, such as the number of messages exchanged
and the sizes of encrypted ciphertexts.

* We assume the existence of an out-of-band side-channel for 2 peers to exchange information at signing time.
This means we require some synchronous activity by the signer in order to fulfill signing requests. (The signer
isn’t just running an always-running server that responds to signing requests.)

Threat Models

The following threat models dictate some design choices:
* A malicious brokering server or man-in-the-middle could coerce the signer into signing unwanted content.

* A malicious 3rd party could disrupt signing operations by sending garbage messages to the brokering server,
either in general or directed at established sessions. i.e. DoS against the server.

* A malicious brokering server or man-in-the-middle could fulfill signature requests using the wrong certificate.

If signing sessions were conducted without any prior knowledge of the peer, neither peer would be able to trust or
authenticate the other. You could securely exchange end-to-end encrypted messages with a peer. But the initiator
wouldn’t be able to answer the question is this signed by who I want it to be signed by. And more importantly, the
signer wouldn’t be able to answer do [trust the initiator to send me content that I want to sign.

You can’t establish a trust relationship without a trust anchor. So in order to establish trust we require that peers
share pre-existing knowledge of the other before signing operations. The exact mechanism can vary. But some
pre-existing knowledge needs to be conveyed to the other peer in order to serve as a trust anchor.

Since all designs rule out the possibility of the private key being directly accessed or used by the initiator, the next best
attack vector is tricking the signer into signing untrusted/malicious content.

The easiest way to conduct this attack is for a malicious server or man-in-the-middle to intercept communications
and/or issue a malicious signing request. There are a few mitigations for this.

First, signers must have presence in order to create signatures. When signers go offline, they can’t produce signatures.
So attacks against signers must occur when the signer is online.

1.1. Apple Code Signing 39

PyOxidizer, Release 0.21.0

Second, we employ end-to-end encryption of peer-to-peer messages using ephemeral encryption keys unique to the
session and logically derived from a pre-existing trust anchor. A malicious 3rd party would need access to data never
transmitted in plaintext through the server in order to decrypt messages or issue fake/malicious messages.

Security Analysis in the Bigger Picture

When considering the overall security of remote code signing, we have to consider the broader ecosystem in which it
exists.

Without remote code signing, the following are all commonly true:
* Signing keys are copied to multiple machines to make it easier to access them.
» Signing keys are made available as secrets on CI workers.

¢ Access to perform operations on the signing key is always on. e.g. anybody who can talk to the HSM can create
a signature.

* Security conscious people (those who want to minimize risk for private keys) need to impose a more complicated
release pipeline - one that typically entails copying assets to a separate machine, signing them, then copying
elsewhere. These steps are often tedious and effectively constitute a barrier to good security hygiene.

There are general principles of private key management:
* You should have as few copies of the private key as possible. Ideally 1.
» Keys should be as short lived as possible or access to them should be limited in time duration.

Traditional solutions to code signing violate these principles because there’s not an easy-to-use / viable alternative. So
in the absence of remote code signing, commonly practiced code signing key management is generally not great.

We believe that our design of remote code signing is intrinsically more secure than what is commonly practiced because:

» The signer in possession of the private key must be present. There is no unlimited access to the private key
outside an active signing session.

* You can have exactly 1 copy of the private key without compromising on usability. The urge to make copies to
streamline CI/CD is largely mitigated via an easy-to-use remote signing UI.

In addition, the design and implementation of the relay server further bolsters security by:
* Purging sessions after a maximum time to live (measured in minutes).
* Refusing to allow N>2 peers from sending messages to a session.

» Requiring active presence for message exchange. The server doesn’t store a copy of relayed signing messages so
there isn’t a potential for someone to deposit a malicious message for later retrieval.

And these security properties are delivered without even factoring in end-to-end message encryption! The end-to-end
encryption is effectively protections against a malicious server or man-in-the-middle. These are arguably necessary
protections - especially when using a server hosted by an (untrusted) 3rd party. But for scenarios where you run
your own server and you trust the network, end-to-end encryption isn’t buying you much beyond what signer presence
requirements and server design already deliver.

40 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Default Remote Code Signing Server

By default, this project uses the remote code signing server at wss://ws.codesign.gregoryszorc.com/.

This service is operated by the maintainer of this project and is provided for free for use by the community. However,
there is no formal or legal agreement around the availability of its service or its operation.

The service is hosted on AWS and uses API Gateway + Lambda + DynamoDB and should be highly reliable, as these
services rarely experience outages.

The Remote Code Signing Protocol and implementation of the server have been purposefully designed to be respectful
of privacy of its users.

Meaningful messages between clients are end-to-end encrypted and the server is unable to determine the contents of
those messages. The server only has access to protocol-level details, such as which APIs are being invoked and the
sizes of the payloads.

The server does have access to client IPs and any additional metadata in HTTP requests and websocket frames. However,
IPs or other identifying information is not read by our custom code powering the websocket server or retained in any
logs to the best of our knowledge. (We believe user data to be toxic and don’t want anything to do with it.)

Some metrics to monitor the health of the service and help prevent abuse are recorded. These include the counts of
different API invocations and the sizes of message payloads.

The code powering the server and the Terraform for deploying it on AWS are open source and available to audit. See
Running Your Own Server for details. Of course, there’s no way to prove that ws.codesign.gregoryszorc.com is
running the same configuration as the provided open source code. You just have to trust that the maintainer of this
project values the privacy of his users.

Running Your Own Server

If you are unable or unwilling to use the default remote signing server operated by the maintainer of this project, it is
possible to deploy your own server instance.

The source code for the server and a Terraform module for deploying it into AWS are available in this repository in
the terraform-modules/remote-code-signing directory. The canonical location is https://github.com/indygreg/
PyOxidizer/tree/main/terraform-modules/remote-code-signing.

See its README for instructions on how to use. Once deployed at a different hostname, you’ll need to provide the
--remote-signing-url argument to relevant commands to override the default signing server URL.

A Primer on Gatekeeper

Gatekeeper is the name Apple gives to a set of technologies that enforce application execution policies at the operating
system level. Essentially, Gatekeeper answers the question is this software allowed to run.

When Gatekeeper runs, it performs a security assessment against the binary and the currently configured system policies
from the system policy database (see man syspolicyd). If the binary fails to meet the requirements, Gatekeeper
prevents the binary from running.

1.1. Apple Code Signing 41

https://github.com/indygreg/PyOxidizer/tree/main/terraform-modules/remote-code-signing
https://github.com/indygreg/PyOxidizer/tree/main/terraform-modules/remote-code-signing

PyOxidizer, Release 0.21.0

The spctl Tool

The spctl program distributed with macOS allows you to query and manipulate the assessment policies.

If you run sudo spctl --list, it will print a list of rules. e.g.:

$ sudo spctl --list
8[Apple System] P20 allow lsopen

anchor apple
3[Apple System] P20 allow execute

anchor apple
2[Apple Installer] P20 allow install

anchor apple generic and certificate 1[subject.CN] = "Apple Software Update.
—Certification Authority"
17[Testflight] P10 allow execute

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.1] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.25.1] exists
10[Mac App Store] P10 allow install

anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.10] exists
5[Mac App Store] P10 allow install

anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.10] exists
4[Mac App Store] P10 allow execute

anchor apple generic and certificate leaf[field.1.2.840.113635.100.6.1.9] exists
16[Notarized Developer ID] P5 allow lsopen

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.13] exists and notarized
12[Notarized Developer ID] P5 allow install

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and (certificate leaf[field.1.2.840.113635.100.6.1.14] or certificate leaf[field.1.2.
—840.113635.100.6.1.13]) and notarized
11[Notarized Developer ID] P5 allow execute

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.13] exists and notarized
9[Developer ID] P4 allow lsopen

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.13] exists and legacy
7[Developer ID] P4 allow install

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and (certificate leaf[field.1.2.840.113635.100.6.1.14] or certificate leaf[field.1l.2.
-»840.113635.100.6.1.13]) and legacy
6[Developer ID] P4 allow execute

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.13] exists and (certificate.
—leaf[timestamp.1.2.840.113635.100.6.1.33] absent or certificate leaf[timestamp.1.2.840.
-»113635.100.6.1.33] < timestamp "20190408000000Z")
2718[GKE] P® allow lsopen [(gke)]

cdhash H"975d9247503b596784dd8a9665fd3ff43eb7722£"
2717[GKE] PO allow execute [(gke)]

cdhash H"cf782d6467be86b73a83d86cd6d8c9£87d9d9ce5"

18[GKE] PO allow lsopen [(gke)]
cdhash H"cf5f88b3b2ff4d8612aabb915f6d1£f712el16b6£2"
15[Unnotarized Developer ID] P® deny lsopen

(continues on next page)

42 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

(continued from previous page)

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.13] exists
14[Unnotarized Developer ID] PO deny install

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and (certificate leaf[field.1.2.840.113635.100.6.1.14] or certificate leaf[field.1.2.
-.840.113635.100.6.1.13])
13[Unnotarized Developer ID] PO deny execute

anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists.
—and certificate leaf[field.1.2.840.113635.100.6.1.13] exists and (certificate.
—leaf[timestamp.1.2.840.113635.100.6.1.33] exists and certificate leaf[timestamp.1.2.
-.840.113635.100.6.1.33] >= timestamp "20190408000000Z")

The first line of each item identifies the policy. The second line is a code requirement language expression. This is a
DSL that compiles to a binary expression tree for representing a test to perform against a binary. See man csreq for
more.

Some of these expressions are pretty straightforward. For example, the following entry says to allow executing a binary
with a code signature whose code directory hash is c£782d6467be86b73a83d86cd6d8c9£87d9d9ce5:

2717[GKE] PO allow execute [(gke)]
cdhash H"cf782d6467be86b73a83d86cd6d8c9£87d9d9ce5"

The code directory refers to a data structure within the code signature that contains (among other things)
content digests of the binary. The hash/digest of the code directory itself is effectively a chained di-
gest to the actual binary content and theoretically a unique way of identifying a binary. So cdhash
H"cf782d6467be86b73a83d86cd6d8c9£87d9d9ce5" is a very convoluted way of saying allow this specific binary
(specified by its content hash) to execute.

Other rules are more interesting. For example:

11[Notarized Developer ID] P5 allow execute
anchor apple generic and certificate 1[field.1.2.840.113635.100.6.2.6] exists
and certificate leaf[field.1.2.840.113635.100.6.1.13] exists and notarized

We see the description (Notarized Developer ID) but what does that expression mean?

Well, first this expression parses into a tree. We won’t attempt to format the tree here. But essentially the following
conditions must all be true:

e anchor apple generic

e certificate 1[field.1.2.840.113635.100.6.2.6] exists

e certificate leaf[field.1.2.840.113635.100.6.1.13] exists
e notarized

anchor apple generic and notarized are essentially special expressions that expand to mean the certificate sign-
ing chain leads back to an Apple root certificate authority (CA) and there is a supplemental code signature from Apple
that can only come from Apple’s notarization service.

But what about those certificate expressions? That certificate <position>[field.*] syntax essentially
says the code signature certificate at “'<position> ""in the certificate chain has an X.509 certificate extension with OID
X" (where X is a value like A.B.C.D.E.F).

This is all pretty low level. But essentially X.509 certificates can have a series of extensions that further describe the
certificate. Apple code signing uses these extensions to convey metadata about the certificate. And since code signing

1.1. Apple Code Signing 43

PyOxidizer, Release 0.21.0

certificates are signed, whoever signed those certificates is effectively also approving of whatever is conveyed by the
extensions within.

But what do these extensions actually mean? Running rcodesign x509-o0ids may give us some help:

$ rcodesign x509-o0ids”

(-Ic.x.ie Signing Certificate Extension 0IDs

i:é.84®. 113635.100.6.1.13 DeveloperIdApplication
ée.u.."tificate Authority Certificate Extension 0IDs

1.2.840.113635.100.6.2.6 DeveloperId

We see 1.2.840.113635.100.6.2.6 is the OID of an extension on certificate authorities indicating they act as the
Apple Developer ID certificate authority. We also see that 1.2.840.113635.100.6.1. 13 is the OID of an extension
saying the certificate acts as a code signing certificate for applications associated with an Apple Developer ID.

So, what this expression translates to is essentially:
* Trust code signatures whose certificate signing chain leads back to an Apple CA.

* The signer of the code signing certificate must have the extension that identifies it as the Apple Developer ID
certificate authority.

* The code signing certificate itself must have the extension that says it is an Apple Developer ID for use with
application signing.

* The binary is notarized.

In simple terms, this is saying allow execution of binaries that were signed by a Developer ID code signing certificate
which was signed by Apple’s Developer ID certificate authority and are also notarized.

Selectively Bypassing Gatekeeper with Custom Assessment Policies
By default, Apple locks down their operating systems such that the default assessment policies enforced by Gatekeeper
restrict what can be run. The restrictions vary by operating system (iOS is more locked down than macOS for example).

On macOS, it is possible to change the system assessment policies via the spctl tool. By injecting your own rules,
you can allow binaries through meeting criteria expressible via code requirements language expressions. This allows
you to allow binaries having:

* A specific code directory hash (uniquely identifies the binary).

* A specific code signing certificate identified by its certificate hash.

* Any code signing certificate whose trust/signing chain leads to a trusted certificate.

* Any code signing certificate signed by a certificate containing a certain X.509 extension OID.

* A code signing certificate with specific values in its subject field.

¢ And many more possibilities. See Apple’s docs on the requirements language for more possibilities.

Defining custom rules is possible via the under-documented spctl --add --requirement mode. In this mode, you
can register a code requirements expression into the system database for Gatekeeper to utilize. The following sections
give some examples of this.

44 Chapter 1. Multiple Tools Under One Roof

https://developer.apple.com/library/archive/documentation/Security/Conceptual/CodeSigningGuide/RequirementLang/RequirementLang.html

PyOxidizer, Release 0.21.0

Verifying Assessment Policies

The sections below document how to define custom assessment policies to allow execution of binaries/installers/etc
signed by certificates that aren’t normally supported.

When doing this, you probably want a way to verify things work as expected.

The spctl --assess mode puts spctl in assessment mode and tells you what verdict Gatekeeper would render. e.g.:

$ spctl --assess --type execute -vv /Applications/Firefox.app
/Applications/Firefox.app: accepted
source=Notarized Developer ID

Do note that this only works on app bundles (not standalone executable binaries)! If you run spctl --assess on a
standalone executable, you get an error:

$ spctl --assess -vv /usr/bin/ssh
/usr/bin/ssh: rejected (the code is valid but does not seem to be an app)
origin=Software Signing

In addition, macOS uses the com.apple.quarantine extended file attribute to quarantine files and prevent them
from running via the graphical Ul It can sometimes be handy to add this attribute back to a file to simulate a fresh
quarantine. You can do this by running a command like the following:

xattr -w com.apple.quarantine "0001;$(printf $(date +%s));manual;$(/usr/bin/uuidgen)"”.
- /path/to/file

(This extended attribute isn’t added to files downloaded by tools like curl or wget which is why you can execute
binaries obtained via these tools but can’t run the same binary downloaded via a web browser.)

Allowing Execution of Binaries Signed by a Specific Certificate

Say you have a single code signing certificate and want to be able to run all binaries signed by that certificate. We can
construct a code requirement expression that refers to this specific certificate.

The most reliable way to specify a single certificate is via a digest of its content. Assuming no two certificates have the
same digest, this uniquely identifies a certificate.

You can use rcodesign analyze-certificate to locate a certificate’s content digest.:

rcodesign analyze-certificate --pem-source path/to/cert | grep fingerprint
SHA-1 fingerprint: 0b724bcd713c9£3691b0a8b0926ae®ecfIe7edd8
SHA-256 fingerprint: o
-»ac5c4b5936677942e017bcal570aaa9e763674c4b66709231b15118e5842aeca

The code requirement language only supports SHA-1 hashes. So we construct our expression referring to this certificate
as certificate leaf H"Ob724bcd713c9£3691b0a8b0926aefectIe7edd8".

Now, we define an assessment rule to allow execution of binaries signed with this certificate:

sudo spctl --add --type execute --label 'My Cert' --requirement \
'certificate leaf H"Ob724bcd713c9£3691b0a8b0926aeldecf9e7edd8""’

Now Gatekeeper should allow execution of all binaries signed with this exact code signing certificate!

If the signing certificate hash is registered in the system assessment policy database, there is no need to register the
certificate in a keychain or mark that certificate as trusted in a keychain. The signing certificate also does not need to

1.1. Apple Code Signing 45

PyOxidizer, Release 0.21.0

chain back to an Apple certificate. And since the requirement expression doesn’t say and notarized, binaries don’t
need to be notarized by Apple either. This effectively allows you to sidestep the default requirement that binaries
be signed and notarized by certificates that Apple is aware of. Congratulations, you’ve just escaped Apple’s walled
garden (at your own risk of course).

Do note that for files with the com. apple.quarantine extended attribute, you may see a dialog the first time you run
this file. You can prevent that by removing the extended attribute via xattr -d com.apple.quarantine /path/
to/file.

Allowing Execution of Binaries Signed by a Trusted CA

Say you are an enterprise or distributed organization and want to have multiple code signing certificates. Using the
approach in the section above you could individually register each code signing certificate you want to allow. However,
the number of certificates can quickly grow and become unmanageable.

To solve this problem, you can employ the strategy that Apple itself uses for code signing certificates associated with
Developer ID accounts: trust code signing certificates themselves issued/signed by a trusted certificate authority (CA).

To do this, we’ll again craft a code requirement expression referring to our trusted CA certificate.

This looks very similar to above except we change the position of the trusted certificate:

sudo spctl --add --type execute --label 'My Trusted CA' --requirement \
'certificate 1 H"Ob724bcd713c9£3691b0a8b0926ae®ecf9e7edd8""

That certificate 1 says to apply to the certificate that signed the certificate that produced the code signature. By
trusting the CA certificate, you implicitly trust all certificates signed by that CA certificate.

Note that if you use a custom CA for signing code signing certificates, you’ll probably want to follow some best practices
for running your own Public Key Infrastructure (PKI) like publishing a Certificate Revocation List (CRL). This is a
complex topic outside the scope of this documentation. Ask someone with Security in their job title for assistance.

For CA certificates issuing/signing code signing certificates, you’ll want to enable a few X.509 certificate extensions:
» Key Usage (2.5.29.15): Digital Signature and Key Cert Sign
* Basic Constraints (2.5.29.19): CA=yes
» Extended Key Usage (2.5.29.37): Code Signing (1.3.6.1.5.5.7.3. 3); critical=true

You can create CA certificates in the Keychain Access macOS application. If you create CA certificates another way,
you may want to compare certificate extensions and other fields against those produced via Keychain Access to make
sure they align. It is unknown how much Apple’s operating systems enforce requirements on the X.509 certificates.
But it is a good idea to keep things as similar as possible.

1.2 oxidized_importer

A Python extension module [implemented in Rust] providing a highly performant alternate module and resource im-
porting mechanism. oxidzed_importer can be used to import Python modules and resources from memory, enabling
Python applications to be single file executables.

oxidized_importer is usable as a standalone Python package and can be installed from PyPI.

46 Chapter 1. Multiple Tools Under One Roof

https://pypi.org/project/oxidized-importer/

PyOxidizer, Release 0.21.0

1.2.1 oxidized_importer Python Extension

oxidized_importer is a Python extension module maintained as part of the PyOxidizer project that allows you to:

¢ Install a custom, high-performance module importer (OxidizedFinder) to service Python import statements
and resource loading (potentially from memory).

* Scan the filesystem for Python resources (source modules, bytecode files, package resources, distribution meta-
data, etc) and turn them into Python objects.

* Serialize Python resource data into an efficient binary data structure for loading into an OxidizedFinder in-
stance. This facilitates producing a standalone resources blob that can be distributed with a Python application
which contains all the Python modules, bytecode, etc required to power that application.

oxidized_importer is automatically compiled into applications built with PyOxidizer. It can also be built as a
standalone extension module and used with regular Python installs.

Getting Started
Requirements
oxidized_importer requires CPython 3.8 or newer. This is because it relies on modern C and Python standard library

APIs only available in that version.

Building oxidized_importer from source requires a working Rust toolchain for the target platform.

Installing from PyPI

oxidized_importer is available on PyPI. This means that installing is as simple as:

$ pip3 install oxidized_importer

Compiling from Source

To build from source, obtain a clone of PyOxidizer’s Git repository and run the setup.py script or use pip to build
the Python project in the root of the repository. e.g.:

$ python3.9 setup.py build_ext -i
$ python3.9 setup.py install

$ pip3.9 install .
$ pip3.9 wheel .

The setup.py is pretty minimal and is a thin wrapper around cargo build for the underlying Rust project. If you
want to build using Rust’s standard toolchain, do something like the following:

$ cd oxidized-importer
$ cargo build --release

If you don’t have a Python 3.9 python3 executable in your PATH, you will need to tell the Rust build system which
python3 executable to use to help derive the build configuration for the Python extension:

$ PYO3_PYTHON=/path/to/python3.9 cargo build

1.2. oxidized_importer 47

https://pypi.org/project/oxidized_importer/

PyOxidizer, Release 0.21.0

Using

To use oxidized_importer, simply import the module:

import oxidized_importer

To register a custom importer with Python, do something like the following:

import sys
import oxidized_importer
finder = oxidized_importer.0OxidizedFinder()

You want to register the finder first so it has the highest priority.
sys.meta_path.insert(0, finder)

To get performance benefits of loading modules and resources from memory, you’ll need to index resources with the
OxidizedFinder, serialize that data out, then load that data into a new OxidizedFinder instance. See Freezing
Applications with oxidized_importer for more detailed examples.

Python Meta Path Finders

Python allows providing custom Python types to handle the low-level machinery behind the import statement. The
way this works is a meta path finder instance (as defined by the importlib.abc.MetaPathFinder interface) is registered
on sys.meta_path. When an import is serviced, Python effectively iterates the objects on sys.meta_path and asks
each one can you service this request until one does.

These meta path finder not only service basic Python module loading, but they can also facilitate loading resource files
and package metadata. There are a handful of optional methods available on implementations.

This documentation will often refer to a meta path finder as an importer, because it is primarily used for importing
Python modules.

Normally when you start a Python process, the Python interpreter itself will install 3 meta path finders on sys.
meta_path before your code even has a chance of running:

BuiltinImporter
Handles importing of built-in extension modules, which are compiled into the Python interpreter. These include
modules like sys.

FrozenImporter
Handles importing of frozen bytecode modules, which are compiled into the Python interpreter. This finder is
typically only used to initialize Python’s importing mechanism.

PathFinder
Handles filesystem-based loading of resources. This is what is used to import . py and . pyc files. It also handles
.zip files. This is the meta path finder that most imports are traditionally serviced by. It queries the filesystem
at import time to find and load resources.

48 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder
https://docs.python.org/3/library/sys.html#sys.meta_path

PyOxidizer, Release 0.21.0

OxidizedFinder Meta Path Finder

OxidizedFinder is a Python type implementing a custom and fully-featured meta path finder. Oxidized is in its name
because it is implemented in Rust.

Unlike traditional meta path finders which have to dynamically discover resources (often by scanning the filesystem),
OxidizedFinder instances maintain an index of known resources. When a resource is requested, OxidizedFinder
can retrieve that resource by effectively performing 1 or 2 lookups in a Rust HashMap. This makes resource resolution
extremely efficient, as no filesystem probing or other explicit I/O is performed.

Instances of OxidizedFinder are optionally bound to binary blobs holding packed resources data. This is a custom
serialization format for expressing Python modules (source and bytecode), Python extension modules, resource files,
shared libraries, etc. This data format along with a Rust library for interacting with it are defined by the python-packed-
resources crate.

When an OxidizedFinder instance is created, the packed resources data is parsed into a Rust data structure. On a
modern machine, parsing this resources data for the entirety of the Python standard library takes ~1 ms.

OxidizedFinder instances can index built-in extension modules and frozen modules, which are compiled
into the Python interpreter. This allows OxidizedFinder to subsume functionality normally provided by the
BuiltinImporter and FrozenImporter meta path finders, allowing you to potentially replace sys.meta_path
with a single instance of OxidizedFinder.

OxidizedFinder in PyOxidizer Applications

When running from an application built with PyOxidizer (or using the pyembed crate directly), an OxidizedFinder
instance will (likely) be automatically registered as the first element in sys.meta_path when starting a Python inter-
preter.

You can verify this inside a binary built with PyOxidizer:

>>> import sys
>>> sys.meta_path
[<OxidizedFinder object at 0x7f16bb6£93d0>]

Contrast with a typical Python environment:

>>> import sys
>>> sys.meta_path

[
<class '_frozen_importlib.BuiltinImporter'>,
<class '_frozen_importlib.FrozenImporter'>,
<class '_frozen_importlib_external.PathFinder'>
]

The OxidizedFinder instance will (likely) be associated with resources data embedded in the binary.

This OxidizedFinder instance is constructed very early during Python interpreter initialization. It is registered on
sys.meta_path before the first import requesting a .py/.pyc is performed, allowing it to service every import
except those from the very few built-in extension modules that are compiled into the interpreter and loaded as part of
Python initialization (e.g. the sys module).

If OxidizedFinder is being installed on sys.meta_path, its path_hook method will be registered as the first item
on sys.path_hooks.

If filesystem importing is disabled, all entries of sys.meta_path and sys.path_hooks not related to
OxidizedFinder will be removed.

1.2. oxidized_importer 49

https://crates.io/crates/python-packed-resources
https://crates.io/crates/python-packed-resources

PyOxidizer, Release 0.21.0

Python API

See OxidizedFinder for the Python API documentation.

OxidizedFinder Behavior and Compliance

OxidizedFinder strives to be as compliant as possible with other meta path importers. So generally speaking, the
behavior as described by the importlib documentation should be compatible. In other words, things should mostly just
work and any deviance from the importlib documentation constitutes a bug worth reporting.

That being said, OxidizedFinder’s approach to loading resources is drastically different from more traditional means,
notably loading files from the filesystem. oxidized_finder breaks a lot of assumptions about how things have worked
in Python and there is some behavior that may seem odd or in violation of documented behavior in Python.

The sections below attempt to call out known areas where OxidizedFinder deviates from typical behavior.

__file__ and __cached__ Module Attributes

Python modules typically have a __file__ attribute holding a str defining the filesystem path the source module
was imported from (usually a path to a . py file). There is also the similar - but lesser known - __cached__ attribute
holding the filesystem path of the bytecode module (usually the path to a .pyc file).

Important: OxidizedFinder will not set either attribute when importing modules from memory.

These attributes are not set because it isn’t obvious what the values should be! Typically, __file__ is used by Python
as an anchor point to derive the path to some other file. However, when loading modules from memory, the traditional
filesystem hierarchy of Python modules does not exist. In the opinion of PyOxidizer’s maintainer, exposing __file__
would be lying and this would cause more potential for harm than good.

While we may make it possible to define __file__ (and __cached__) on modules imported from memory someday,
we do not yet support this.

OxidizedFinder does, however, set __file__ and __cached__ on modules imported from the filesystem. So, a
workaround to restore these missing attributes is to avoid in-memory loading.

Note: Use of __file__ is commonly encountered in code loading resource files. See Loading Resource Files for
more on this topic, including how to port code to more modern Python APIs for loading resources.

__path__ Module Attribute

Python modules that are also packages must have a __path__ attribute containing an iterable of str. The iterable can
be empty.
If a module is imported from the filesystem, OxidizedFinder will set __path__ to the parent directory of the mod-

ule’s file, just like the standard filesystem importer would.

If amodule is imported from memory, __path__ will be set to the path of the current executable joined with the package
name. e.g. if the current executable is /usr/bin/myapp and the module/package name is foo.bar, __path__ will
be ["/usr/bin/myapp/foo/bar"]. On Windows, paths might look like C:\dev\myapp .exe\foo\bar.

Python’s zipimport importer uses the same approach for modules imported from zip files, so there is precedence for
OxidizedFinder doing things this way.

50 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/importlib.html
https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.21.0

Support for __init__ in Module Names

There exists Python code that does things like from .__init__ import X.

__init__ is special in Python module names because it is the filename used to denote a Python package’s filename.
So syntax like from .__init__ import Xis probably intended to be equivalent to from . import X. Or import
foo.__init__ is probably intended to be written as import foo.

Python’s filesystem importer doesn’t treat __init__ in module names as special. If you attempt to import a module
named foo.__init__, it will attempt to locate a file named foo/__init__.py. If that module is a package, this will
succeed. However, the module name seen by the importer has __init__ in it and the name on the created module
object will have __init__ in it. This means that you can have both a module foo and foo.__init__. These will
both be derived from the same file but are actually separate module objects.

PyOxidizer will automatically remove trailing . __init__ from module names. This will enable PyOxidizer to work
with syntax such as import foo.__init__ and from .__init__ import X and therefore be compatible with
Python code in the wild. However, PyOxidizer may not preserve the .__init__ in the module name. For exam-
ple, with Python’s path based importer, you could have both foo and foo.__init__ in sys.modules but PyOxidizer
will only have foo.

A limitation of PyOxidizer module name normalization is it only normalizes the single trailing . __init__ from the
module name: __init__ appearing inside the module name are not normalized. e.g. foo.__init__.bar is not
normalized to foo.bar. This may introduce incompatibilities with Python code in the wild. However, for this to be
true, the filesystem layout would have to be something like foo/__init__/bar.py. This hopefully does not occur in
the wild. But it is conceivable it does.

See https://github.com/indygreg/PyOxidizer/issues/317 and https://bugs.python.org/issue42564 for more discussion
on this issue.

ResourceReader Compatibility

ResourceReader has known compatibility differences with Python’s default filesystem-based importer. See Support
for ResourceReader for details.

ResourceLoader Compatibility

The ResourceLoader interface is implemented but behavior of get_data(path) has some variance with Python’s
filesystem-based importer.

See Support for ResourceLoader for details.

Note: Resourceloader is deprecated as of Python 3.7. Code should be ported to ResourceReader / importlib.
resources if possible.

1.2. oxidized_importer 51

https://github.com/indygreg/PyOxidizer/issues/317
https://bugs.python.org/issue42564

PyOxidizer, Release 0.21.0

importlib.metadata Compatibility

OxidizedFinder implements find_distributions() and therefore provides the required hook for importlib.
metadata to resolve Distribution instances. However, the returned objects do not implement the full
Distribution interface.

Here are the known differences between OxidizedDistribution and importlib.metadata.Distribution in-
stances:

e OxidizedDistribution is not an instance of importlib.metadata.Distribution.
e locate_file() is not defined.

* @staticmethod at() is not defined.

e @property files raises NotImplementedError.

There are additional _ prefixed attributes of importlib.metadata.Distribution that are not implemented. But
we do not consider these part of the public API and don’t feel they are worth calling out.

In addition, OxidizedFinder.find_distributions() ignores the path attribute of the passed Context instance.
Only the name attribute is consulted. If name is None, all packages with registered distribution files will be returned.
Otherwise the returned 1ist contains at most 1 PyOxidizerDistribution corresponding to the requested package
name.

pkgutil Compatibility

The pkgutil package in Python’s standard library reacts to special functionality on MetaPathFinder instances.

pkgutil.iter_modules() attempts to use an iter_modules() method to obtain results.

OxidizedFinder implements iter_modules(prefix="") and pkgutil.iter_modules() should work. How-

ever, there are some differences in behavior:

e iter_modules() is defined to be a generator but OxidizedFinder.iter_modules() returns a list. list
is iterable and this difference should hopefully be a harmless implementation detail.

* Support for the path argument to pkgutil.iter_modules() requires that OxidizedFinder’s path_hook is
installed in sys.path_hooks. This will be done automatically if OxidizedFinder is installed at interpreter
initialization time.

Paths Hooks Compatibility

The OxidizedFinder.path_hook method from an instantiated instance can be installed on sys.path_hooks to
enable a OxidizedFinder to function as a path entry finder.

As a brief refresher, callables on sys.path_hooks are called with paths, giving them the opportunity to service a
particular path. If a path hook responds to a path by returning a path entry finder, that returned object will service that
path. Often, the paths passed to path hooks are from sys . path. However, arbitrary paths can be passed in. A property
of the returned path entry finder is it only targets a particular level in the package hierarchy. Unlike meta path finders
(which can service any named resource it knows about), path entry finders are bound to a specific package target level
and will only return resources existing at that level.

path hooks are used by the following mechanisms:

* The standard library PathFinder (the meta path finder that Python uses to load resources from the filesystem)
uses sys.path_hooks as part of resolving a finder for a given sys.path entry.

52 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/pkgutil.html
https://docs.python.org/3/reference/import.html#path-entry-finders
https://docs.python.org/3/library/importlib.html#importlib.machinery.PathFinder

PyOxidizer, Release 0.21.0

e pkgutil.get_importer() for resolving the finder for a given sys.path entry. This in turn is used by various
code, including other pkgutil APIs.

» pkg_resources maps path entry finder types to functions to enable a resolution of pkg_resources.
Distribution instances for individual paths.

When installed on sys.path_hooks, OxidizedFinder.path_hook will respond to the following path values:
* The path to the current executable, as defined by OxidizedFinder.path_hook_base_str.

e A virtual sub-directory of the path to the current executable, as defined by OxidizedFinder.
path_hook_base_str.

Important: path_hook is very strict about what values it will respond to.

The value must be a str and be equal to OxidizedFinder.path_hook_base_str or have OxidizedFinder.
path_hook_base_str plus a directory separator as the exact string prefix.

path_hook will not respond to bytes, pathlib.Path, or any other path-like type.

OxidizedFinder.path_hook_base_str may not be the same value as sys.executable. Always use
OxidizedFinder.path_hook_base_str to derive sys.path values to ensure the path hook will respond.

When path_hook is called with its OxidizedFinder.path_hook_base_str value, a OxidizedPathEntryFinder
bound to the source OxidizedFinder is returned. This finder is able to service root resources (i.e. top-level modules
and packages).

When path_hook is called with a virtual sub-directory of OxidizedFinder.path_hook_base_str, the same thing
happens except the returned OxidizedPathEntryFinder will only service resources at the exact package hierarchy
specified by that virtual sub-directory.

The validation and normalization of path values is similar to the following:

def path_hook(self, path: str):
Path exactly matching current_exe will be bound to resources at root.
if path == self.path_hook_base_str:
return ...

Virtual sub-directories must begin with self.current_exe + directory

separator.

if not path.startswith((self.path_hook_base_str + "/", self.path_hook_base_str + "\\
(Hll)):

raise ImportError

Part after directory separator.
package_part = path[len(self.path_hook_base_str) + 1:]

Normalize to UNIX style directory separators, allowing Windows
separators to exist.
package_part = package_part.replace("\\", "/™)

Ban leading, trailing, and consecutive directory separators.
if package_part.startswith("/") or package_part.endswith("\\") or package_part.
—contains("//"):
raise ImportError()

Ban dots in directory components.

(continues on next page)

1.2. oxidized_importer 53

PyOxidizer, Release 0.21.0

(continued from previous page)

for part in package_part.split("/"):

if part.startswith(".") or part.endswith(".") or part.contains(".."):
raise ImportError()

Normalize directory tree to package hierarchy. e.g. foo/bar -> foo.bar.
package = package_part.replace("/", ".")

When converting the package string to a Rust string to facilitate
resource name comparisons, it is encoded to UTF-8, replacing

"bad" code points with the Unicode replacement code point.
rust_package_string = package.encode("utf-8", "replace")

Note that when the package component of virtual sub-directories is converted to a Rust string, we use the UTF-8
encoding, not Python’s active filesystem encoding. This is to keep things simpler. And since OxidizedFinder indexes
resource names using Rust’s UTF-8 backed string type anyway, this seems semantically correct from the perspective
of oxidized_importer.

As an example, if path were os.path. join(finder.path_hook_base_str, "a"), the finder would only service

5

modules of the form a.*. So a, a.b would match but a.b.c and d would not.

For best results, use os.path. join(finder.path_hook_base_str, str) to define values that will be accepted
by the path hook.

OxidizedPathEntryFinder complies with the PathEntryFinder = protocol and implements
OxidizedPathEntryFinder.find_spec() and OxidizedPathEntryFinder.invalidate_caches(). How-
ever, support for the deprecated methods find_loader and find_module is not implemented. Instances also
implement OxidizedPathEntryFinder.iter_modules (), enabling it to be used by pkgutil.iter_modules().

pkg_resources Compatibility

OxidizedFinder can be registered as a provider for pkg_resources, enabling pkg_resources APIs to be used
with resources tracked by OxidizedFinder instances.

However, there are known compatibility differences. See Support for pkg_resources for more.
oxidized_importer Python Resource Types

The oxidized_importer module defines Python types beyond OxidizedFinder. This page documents those types
and their APIs.

Important: All types are backed by Rust structs and all properties return copies of the data. This means that if you
mutate a Python variable that was obtained from an instance’s property, that mutation won’t be reflected in the backing
Rust struct.

54 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/importlib.html#importlib.abc.PathEntryFinder

PyOxidizer, Release 0.21.0

OxidizedResource

Represents a resource that is indexed by a OxidizedFinder instance.

See OxidizedResource for API documentation.

OxidizedResource Resource Types

Each OxidizedResource instance describes a particular type of resource. If a resource identifies as a type, it sets one
of the following is_* attributes to True:

OxidizedResource.is_module
A Python module. These typically have source or bytecode attached.

Modules can also be packages. In this case, they can hold additional data, such as a mapping of resource files.

OxidizedResource.is_builtin_extension_module
A built-in extension module. These represent Python extension modules that are compiled into the application
and don’t exist as separate shared libraries.

OxidizedResource.is_frozen_module
A frozen Python module. These are Python modules whose bytecode is compiled into the application.

OxidizedResource.is_extension_module
A Python extension module. These are shared libraries that can be loaded to provide additional modules to
Python.

OxidizedResource.is_shared_library
A shared library. e.g. a .so or .d11.

PythonModuleSource

The PythonModuleSource type represents Python module source code. e.g. a .py file. See its linked API documen-
tation for more.

PythonModuleBytecode

The PythonModuleBytecode type represents Python module bytecode. e.g. what a . pyc file holds (but without the
header that a . pyc file has).

PythonExtensionModule

The PythonExtensionModule type represents a Python extension module. This is a shared library defining a Python
extension implemented in native machine code that can be loaded into a process and defines a Python module. Extension
modules are typically defined by .so, .dylib, or .pyd files.

Note: Properties of this type are read-only.

1.2. oxidized_importer 55

PyOxidizer, Release 0.21.0

PythonPackageResource

The PythonPackageResource type represents a non-module resource file.

PythonPackageDistributionResource

The PythonPackageDistributionResource type represents a non-module resource file living in a package distri-
bution directory

Resource Scanning APIs

The oxidized_importer module exposes functions and Python types to facilitate scanning for and collecting Python
resources.

find_resources_in_path(path)

This function scans a filesystem path and returns discovered resources. See find_resources_in_path() for the API
documentation.

To discover all filesystem based resources that Python’s PathFinder meta path finder would (with the exception of
.zip files), try the following:

import os
import oxidized_importer
import sys

resources = []
for path in sys.path:
if os.path.isdir(path):
resources.extend(oxidized_importer.find_resources_in_path(path))

OxidizedResourceCollector Python Type

The OxidizedResourceCollector type provides functionality for turning instances of Python resource types into
a collection of OxidizedResource for loading into an OxidizedFinder instance. It exists as a convenience, as
working with individual OxidizedResource instances can be rather cumbersome.

To create a collector that only marks resources for in-memory loading:

import oxidized_importer

collector = oxidized_importer.OxidizedResourceCollector(
allowed_locations=["in-memory"]

)

56 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Loading Resource Files

Many Python application need to load resources. Resources are typically non-Python support files, such as images,
config files, etc. In some cases, resources could be Python source or bytecode files. For example, many plugin systems
load Python modules outside the context of the normal import mechanism and therefore treat standalone Python
source/bytecode files as non-module resources.

oxidized_importer has support for loading resource files. But compatibility with Python’s expected behavior may
vary.

Python Resource Loading Mechanisms

Before we talk about oxidized_importer’s support for resource loading, it is important to understand how Python
code in the wild can load resources.

We’ll overview them in the chronological order they were introduced into the Python ecosystem.

The most basic and oldest mechanism to load resources is to perform raw filesystem I/O. Typically, Python code looks
at __file__ to get the filename of the current module. Then, it calculates the directory name and derives paths to
resource files using e.g. os.path. join(). It will usually then open() these paths directly.

Python packaging evolved over time. Packaging tools could express various metadata at build time, such as supplemen-
tary resource files. This metadata would be installed next to a package and APIs could be used to access it. One such
API was pkg_resources. Using e.g. pkg_resources.resource_string("foo", "bar.txt"), you could obtain
the content of the resource bar.txt in the foo package.

pkg_resources had useful functionality. And it was the recommended mechanism for loading resource files for
several years. But it wasn’t part of the Python standard library and needed to be explicitly installed. So not everyone
used it.

Python 3.1 added the importlib package, which is the primary home for all core functionality related to import.
Python importers were now defined via interfaces. One of those interfaces is ResourceLoader. It has a single method
get_data(path). Given a Python module’s loader (e.g. via the __loader__ attribute on the module), you could
call get_data(path) and load a resource. e.g. import foo; foo.__loader__.get_data("bar.txt").

The standard library only had ResourceLoader for several years. And ResourceLoader wasn’t exactly a convenient
API to use because it was so low-level. Many Python applications continued to use pkg_resources or direct file-based
I/0.

Python 3.7 introduced significant improvements to resource loading in the standard library.

At a low level, module loaders could now implement a get_resource_reader (name) method, which would return
an object implementing the ResourceReader interface. This interface defined methods like open_resource (name)
and contents () to open a file-like handle on a named resource and obtain a list of all available resources.

At a high level, the importlib.resources package provided a user-friendly API for interacting with ResourceReader
instances. You could call e.g. importlib.resources.open_binary(package, name) to obtain a file-like handle
on a specific resource within a package.

Python 3.7’s new resource APIs finally gave the Python standard library access to powerful APIs for loading resources
without using a 3rd party package (like pkg_resources).

At the time of writing this in April 2020, it looks like Python 3.9 will invent yet another low-level resource loading
APL

Because Python hasn’t had a robust resource loading API in the standard library for much of its history, lots of Python
code in the wild does not make use of the APIs in the standard library. It is not uncommon to see code in 2020 that
still uses __file__ to load resources. Furthermore, because Python 3.7 is still relatively young and code may wish to
maintain compatibility with older Python versions, the newer APIs may be actively avoided.

1.2. oxidized_importer 57

https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://docs.python.org/3.7/library/importlib.html#importlib.abc.ResourceReader
https://docs.python.org/3.7/library/importlib.html#module-importlib.resources

PyOxidizer, Release 0.21.0

Important: As of Python 3.8, ResourceReader and importlib.resources are the most robust mechanisms for
loading resources and we recommend adopting these APIs if possible.

Support for ResourceReader

oxidized_importer implements the ResourceReader interface for loading resource files.

However, compatibility with Python’s default filesystem-based implementation can vary. Unfortunately, various be-
havior with ResourceReader is undefined, so it isn’t clear if CPython or oxidized_importer is buggy here.

oxidized_importer maintains an index of known resource files. This index is logically a dict of dict™ "s, where
the outer key is the Python package name and the inner key is the resource name. Package
names are fully qualified. e.g. "~ foo or foo.bar. Resource names are effectively relative filesystem
paths. e.g. resource.txt or subdir/resource.txt. The relative paths always use / as the directory separator,
even on Windows.

OxidizedFinder.get_resource_reader() returns instances of OxidizedResourceReader. Each instance is
bound to a specific Python package: that’s how they are defined. When an OxidizedResourceReader receives the
name of a resource, it performs a simple lookup in the global resources index. If the string key is found, it is used.
Otherwise, it is assumed the resource doesn’t exist.

The OxidizedResourceReader.contents() method will return a list of all keys in the internal resources index.

OxidizedResourceReader works the same way for in-memory and filesystem-relative resource locations because
internally both use the same index of resources to drive execution: only the location of the resource content varies.

OxidizedResourceReader’s implementation varies from the standard library filesystem-based implementation in the
following ways:

* OxidizedResourceReader.contents() will return keys from the package’s resources dictionary, not all
the files in the same directory as the underlying Python package (the standard library uses os.listdir()).
OxidizedResourceReader will therefore return resource names in sub-directories as long as those sub-
directories aren’t themselves Python packages.

* Resources must be explicitly registered with OxidizedFinder as such in order to be exposed via the resources
API. By contrast, the filesystem-based importer - relying on os.1listdir() - will expose all files in a directory
as a resource. This includes . py files.

e OxidizedResourceReader.is_resource() will return True for resource names containing a slash. Con-
trast with Python’s, which returns False (even though you can open a resource with ResourceReader.
open_resource() for the same path). OxidizedResourceReader’s behavior is more consistent.

Support for ResourceLoader

OxidizedFinder implements the deprecated ResourceLoader interface and get_data(path) will return bytes
instances for registered resources or raise OSError on request of an unregistered resource.

The path passed to get_data(path) MUST be an absolute path that has the prefix of either the currently running
executable file or the directory containing it.

If the resource path is prefixed with the current executable’s path, the path components after the current executable path
are interpreted as the path to a resource registered for in-memory loading.

If the resource path is prefixed with the current executable’s directory, the path components after this directory are
interpreted as the path to a resource registered for application-relative loading.

58 Chapter 1. Multiple Tools Under One Roof

https://bugs.python.org/issue36128

PyOxidizer, Release 0.21.0

All other resource paths aren’t recognized and an OSError will be raised. There is no fallback to loading from the
filesystem, even if a valid filesystem path pointing to an existing file is passed in.

Note: The behavior of not servicing paths that actually exist but aren’t registered with OxidizedFinder as resources
may be overly opinionated and undesirable for some applications.

If this is a legitimate use case for your application, please create a GitHub issue to request this feature.

Once a path is recognized as having the prefix of the current executable or its directory, the remaining path components
will be interpreted as the resource path. This resource path logically contains a package name component and a resource
name component. OxidizedFinder will traverse all potential package names starting from the longest/deepest up until
the top-level package looking for a known Python package. Once a known package name is encountered, its resources
will be consulted. At most 1 package will be consulted for resources.

Here is a concrete example.

If the path is /usr/bin/myapp/foo/bar/resource.txt and the current executable is /usr/bin/myapp, the re-
quested resource will be foo/bar/resource.txt. Since the path was prefixed with the executable path, only re-
sources registered for in-memory loading will be consulted.

Our candidate package names are foo.bar and foo, in that order.

If foo.bar is a known package and resource. txt is registered for in-memory loading, that resource’s contents will
be returned.

If foo.bar is a known package and resource. txt is not registered in that package, OSError is raised.

If foo.bar is not a known package, we proceed to check for package foo.

If foo is a known package and bar/resource. txt is registered for in-memory loading, its contents will be returned.
Otherwise, we’re out of possible packages, so OSError is raised.

Similar logic holds for resources registered for filesystem-relative loading. The difference here is the stripped path
prefix and we are only looking for resources registered for filesystem-relative loading. Otherwise, the traversal logic is
exactly the same.

If OSError is raised due to a missing resource, its errno is ENOENT and its £ilename is the passed in path. Python
should automatically translate this to a FileNotFoundError exception. But callers should catch OSError, as other
OSError variants can be raised (e.g. for file permission errors).

Support for __file__

OxidizedFinder may or may notsetthe __file__ attribute on loaded modules. See __file_ and __cached__ Module
Attributes for details.

Therefore, Python code relying on the presence of __file__ to derive paths to resource files may or may not work
with oxidized_importer.

Code utilizing __file__ for resource loading is highly encouraged to switch to the importlib.resources APIL If
this is not possible, you can change packaging settings to move the resource locations from in-memory to filesystem-
relative, as __file__ is set when loading modules from the filesystem.

1.2. oxidized_importer 59

PyOxidizer, Release 0.21.0

Support for pkg_resources

oxidized_importer has support for working with pkg_resources.
oxidized_importer integration with pkg_resources is enabled by calling register_pkg_resources().

If an OxidizedFinder imports the pkg_resources module, register_pkg_resources() may be called automat-
ically.

The pyembed crate and PyOxidizer both have this functionality enabled by default and will likely have
OxidizedFinder servicing the pkg_resources import. So there are likely no additional steps needed to enable
pkg_resources support in these scenarios.

If you are using oxidized_importer as a standalone extension module in the context of a regular Python interpreter,
you may need to call register_pkg_resources () manually to ensure integration is enabled.

To test whether integration is enabled, look for an <class ‘OxidizedFinder’>: <class ‘OxidizedPkgResource-
sProvider’> entry in pkg_resources._provider_factories.

Distribution Resolving

OxidizedPathEntryFinder is a path entry finder type that responds to paths via the sys.path_hooks mechanism.

Distribution resolution support requires OxidizedFinder.path_hook to be registered on sys.path_hook and for
register_pkg resources() to have been called. If both these conditions are satisfied, pkg_resources should be
able to find package distributions indexed by OxidizedFinder instances.

pkg_resources_find_distributions () isthe callable registered with pkg_resources for resolving distributions.
It respects path targeting and the only flag, per the behavior documented by pkg_resources.

Metadata and Resource Resolving

If pkg_resources derives the provider for any module loaded with OxidizedFinder or
OxidizedPathEntryFinder, it should create an instance of OxidizedPkgResourcesProvider to resolve
package metadata and resource info.

There are known behavior differences with OxidizedPkgResourcesProvider that may result in runtime errors. See
that type’s API documentation for more.

Porting Code to Modern Resources APIs

Say you have resources next to a Python module. Legacy code inside a module might do something like the following:

def get_resource(name):
"""Return a file handle on a named resource next to this module.
module_dir = os.path.abspath(os.path.dirname(__file__))
Warning: there is a path traversal attack possible here if
name continues values like ../../../../../etc/password.
resource_path = os.path.join(module_dir, name)

i

return open(resource_path, 'rb')

Modern code targeting Python 3.7+ can use the ResourceReader API directly:

60 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

def get_resource(name):
"""Return a file handle on a named resource next to this module.
get_resource_reader() may not exist or may return None, which this
code doesn't handle.
reader = __loader__.get_resource_reader(__name__)
return reader.open_resource(name)

i

The ResourceReader interface is quite low-level. If you want something higher level or want to access resources
outside the current module, it is recommended to use the importlib.resources APIs. e.g.:

import importlib.resources

with importlib.resources.open_binary('mypackage', 'resource-name') as fh:
data = fh.read()

The importlib.resources functions are glorified wrappers around the low-level interfaces on module loaders. But
they do provide some useful functionality, such as additional error checking and automatic importing of modules,
making them useful in many scenarios, especially when loading resources outside the current package/module.

Maintaining Compatibility With Python <3.7

If you want to maintain compatibility with Python <3.7, you can’t use ResourceReader or importlib.resources,
as they are not available. The recommended solution here is to use a shim.

The best shim to use is importlib_resources. This is a standalone Python package that is a backport of importlib.
resources to older Python versions. Essentially, you can always get the APIs from the latest Python version. This
shim knows about the various APIs available on Loader instances and chooses the best available one. It should just
work with oxidized_importer.

If you want to implement your own shim without introducing a dependency on importlib_resources, the following
code can be used as a starting implementation:

import importlib

try:
import importlib.resources
Defeat lazy module importers.
importlib.resources.open_binary
HAVE_RESOURCE_READER = True
except ImportError:
HAVE_RESOURCE_READER = False

try:
import pkg_resources
Defeat lazy module importers.
pkg_resources.resource_stream
HAVE_PKG_RESOURCES = True
except ImportError:
HAVE_PKG_RESOURCES = False

def get_resource(package, resource):
"""Return a file handle on a named resource in a Package.

o

(continues on next page)

1.2. oxidized_importer 61

https://docs.python.org/3.7/library/importlib.html#module-importlib.resources
https://importlib-resources.readthedocs.io/en/latest/index.html

PyOxidizer, Release 0.21.0

(continued from previous page)

Prefer ResourceReader APIs, as they are newest.
if HAVE_RESOURCE_READER:
If we're in the context of a module, we could also use
__loader__.get_resource_reader(__name__).open_resource(resource) .
We use open_binary() because it is simple.
return importlib.resources.open_binary(package, resource)

Fall back to pkg_resources.
if HAVE_PKG_RESOURCES:
return pkg_resources.resource_stream(package, resource)

Fall back to __file__.

We need to first import the package so we can find its location.
This could raise an exception!
mod = importlib.import_module(package)

Undefined __file__ will raise NameError on variable access.
try:

package_path = os.path.abspath(os.path.dirname(mod.__file__))
except NameError:

package_path = None

if package_path is not None:
Warning: there is a path traversal attack possible here if
resource contains values like ../../../../etc/password. Input
must be trusted or sanitized before blindly opening files or
you may have a security vulnerability!
resource_path = os.path.join(package_path, resource)

return open(resource_path, 'rb')
Could not resolve package path from __file__.

raise Exception('do not know how to load resource: %s:%s' % (
package, resource))

(The above code is dedicated to the public domain and can be used without attribution.)

This code is provided for example purposes only. It may or may not be sufficient for your needs.

Freezing Applications with oxidized_importer

oxidized_importer can be used to create and run frozen Python applications, where Python resources data (module
source and bytecode, etc) is frozen/packaged and distributed next to your application.

This is conceptually similar to what PyOxidizer does. The major difference is that PyOxidizer will package and dis-
tribute a Python distribution with your application: when only oxidized_importer is being used, the Python distribu-
tion is provided by some other means (it is typically already installed on the system). This makes oxidized_importer
a light-weight alternative to PyOxidizer for scenarios where PyOxidizer isn’t suitable or viable.

62 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

High-Level Freezing Workflow

The steps for freezing an application all look the same:
1. Load OxidizedResource instances into an OxidizedFinder instance so they are indexed.
2. Serialize indexed resources.
3. Write the serialized resources blob somewhere along with any files (if using filesystem-based loading).
4

. Somehow make that resources blob available to others (you could add it as a resource file in your Python package
for example).

5. From your application, construct an OxidizedFinder instance and load the resources blob you generated.
6. Register the OxidizedFinder instance as the first element on sys.meta_path.

The next sections show what this may look like.

Indexing and Serializing Resources

In your build process, you’ll need to index resources and serialize them. You can construct OxidizedResource
instances directly and hand them off to an OxidizedFinder instance. But you’ll probably want to use
OxidizedResourceCollector to make this simpler.

Try something like the following:

import os
import stat
import sys

import oxidized_importer

Create a collector to help with managing resources.
collector = oxidized_importer.OxidizedResourceCollector(
allowed_locations=["in-memory"]

)

Add all known Python resources by scanning sys.path.
Note: this will pull in the Python standard library and
any other installed packages, which may not be desirable!
for path in sys.path:

Only directories can be scanned by oxidized_importer.

if os.path.isdir(path):

for resource in oxidized_importer.find_resources_in_path(path):
collector.add_in_memory(resource)

Turn the collected resources into “‘OxidizedResource' and file
install rules.
resources, file_installs = collector.oxidize()

Now index the resources so we can serialize them.
finder = oxidized_importer.0OxidizedFinder()

finder.add_resources(resources)

Turn the indexed resources into an opaque blob.

(continues on next page)

1.2. oxidized_importer 63

PyOxidizer, Release 0.21.0

(continued from previous page)

packed_data = finder.serialize_indexed_resources()

Write out that data somewhere.
with open("oxidized_resources", "wb") as fh:
fh.write(packed_data)

Then for all the file installs, materialize those files.
for (path, data, executable) in file_installs:
path.parent.mkdir(parents=True, exist_ok=True)

with path.open("wb") as fh:
fh.write(data)

if executable:
path.chmod(path.stat().st_mode | stat.S_IEXEC)

At this point, you’ve collected all known Python resources and written out a data structure describing them all. For
resources targeting in-memory loading, the content of those resources is embedded in the data structure. For resources
targeting filesystem-relative loading, the data structure contains the relative path to those resources. And you’ve written
out the files in the locations where those relative paths point to.

Loading Serialized Resources in Your Application

Now, from our application code, we need to load the resources and register the custom importer with Python:

import os
import sys

import oxidized_importer

Load those resources into an instance of our custom importer. This
will read the index in the passed data structure and make all

resources immediately available for importing.

finder = oxidized_importer.OxidizedFinder()
finder.index_file_memory_mapped("oxidized_resources")

If the relative path of filesystem-based resources is not relative

to the current executable (which is likely the “‘python3™ executable),

you'll need to set “‘origin’® to the directory the resources are

relative to.

finder = oxidized_importer.0OxidizedFinder(
relative_path_origin=os.path.dirname(os.path.abspath(__file__)),

)

finder.index_bytes(packed_data)

Register the meta path finder as the first item, making it the
first finder that is consulted.
sys.meta_path.insert(0, finder)

At this point, you should be able to “import’ modules defined
in the resources data!

64 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

OxidizedZipFinder Meta Path Finder

oxidized_importer contains a pure Rust implementation of a meta path finder that can load Python resources from
zip files. Its goal is to be a compatible reimplementation of zipimport.zipimporter from the Python standard
library.

Usage

Instances of OxidizedZipFinder are bound to zip archive data.

Instances can be constructed by calling OxidizedZipFinder.from_zip_data() or OxidizedZipFinder.
from_path().

OxidizedZipFinder is a meta path finder and instances should be registered on sys.meta_path. e.g.

import os
import sys
import oxidized_importer

HERE = os.dirname(os.path.abspath(__file_))
zip_path = os.path.join(HERE, "archive.zip")

zip_importer = OxidizedZipFinder.from_path(zip_path)
sys.meta_path.insert(0, zip_importer)

Once an instance is registered on sys.meta_path, it will be consulted when an import is serviced by Python’s
importing mechanism.

Behavior

OxidizedZipFinder is similar to - but critically different from - the standard library zipimport.zipimporter.

OxidizedZipFinder is a meta path finder, not a path entry finder. This means instances are bound to sys.meta_path
and not sys.path_hooks. Support for enabling use as a path hook is planned. The lack of sys.path_hooks support
means this importer can’t be used as a replacement for zipimport.zipimporter.

All I/O and zip reading in OxidizedZipFinder is implemented in Rust. Subtle differences in behavior as a result of
zip parsing implementations could occur.

OxidizedZipFinder doesn’t yet implement support for resource reading (e.g. the importlib.abc.
ResourceReader interface). Only loading of .py and .pyc files is supported.

OxidizedZipFinder doesn’t validate the header of . pyc files. If it sees a . pyc version of a module, its bytecode will
be used as-is. (zipimport.zipimporter validates that the content in the .pyc matches expectations.)

Support for opening just sub-directories within zip files is not yet implemented.

1.2. oxidized_importer 65

PyOxidizer, Release 0.21.0

Performance

OxidizedZipFinder should perform substantially better than zipimport.zipimporter.

A test importing the ~450 modules that constitute the Python standard library yielded the following results:

Environment zipimporter | Us (memory) | Us (file) OxidizedFinder
Ryzen 5950X Linux 205.07 ms 168.70 ms 184.74 ms | 126.33 ms
Ryzen 5950X Windows | 235.73 ms 147.14 ms 167.10 ms | 140.21 ms

(The exact set of modules and Python versions were different between the environments so it isn’t fair to compare
numbers across environments: only within the same environment.)

Python API

See OxidizedZipFinder for the Python API documentation.

Common Issues

Extension Modules Support

Unlike PyOxidizer, OxidizedResourceCollector isn’t (yet) as intelligent about how to handle extension modules
(standalone machine native shared libraries). And even PyOxidizer’s support for extension modules can be brittle.

One notable difference between PyOxidizer and OxidizedResourceCollector is PyOxidizer is able to determine
whether importing extension modules from memory is supported and is able to automatically redirect an extension
module to filesystem-based loading if not supported. OxidizedResourceCollector is dumb and adds resources
where you tell it to.

OxidizedFinder supports loading extension modules from memory on Windows. But everywhere else, this isn’t
supported and will result in an ImportError if you index an extension module for in-memory loading.

To work around this deficiency, you’ll want to mark extension modules as loaded from the filesystem unless you are on
Windows. Try something like this:

import oxidized_importer

collector = oxidized_importer.OxidizedResourceCollector(
allowed_locations=["in-memory", "filesystem-relative"],

)

Redirect extension modules to the filesystem and everything else to
memory.
for resource in oxidized_importer(find_resources_in_path("/path/to/resources™)):
if isinstance(resource, oxidized_importer.PythonExtensionModule):
collector.add_filesystem_relative("lib", resource)
else:
collector.add_in_memory(resource)

66 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Resource Scanning Descends Into site-packages

find_resources_in_path() descends into site-packages directories. This is arguably not the desired behavior,
especially when in the context of virtualenvs, which may want to not inherit the resources in the site-packages of
the outer Python installation. This will likely be fixed in a future release.

Security Implications of Loading Resources

OxidizedFinder allows Python code to define its own OxidizedResource instances to be made available for loading.
This means Python code can define its own Python module source or bytecode that could later be executed. It also allows
registration of extension modules and shared libraries, which give a vector for allowing execution of native machine
code.

This feature has security implications, as it provides a vector for arbitrary code execution.

While it might be possible to restrict this feature to provide stronger security protections, we have not done so yet.
Our thinking here is that it is extremely difficult to sandbox Python code. Security sandboxing at the Python layer is
effectively impossible: the only effective mechanism to sandbox Python is to add protections at the process level. e.g.
by restricting what system calls can be performed. We feel that the capability to inject new Python modules and even
shared libraries via OxidizedFinder doesn’t provide any new or novel vector that doesn’t already exist in Python’s
standard library and can’t already be exploited by well-crafted Python code. Therefore, this feature isn’t a net regression
in security protection.

If you have a use case that requires limiting the features of OxidizedFinder so security isn’t sacrificed, please file an
issue <https://github.com/indygreg/PyOxidizer/issues>.

API Reference

Module Level Functions

oxidized_importer.decode_source (io_module, source_bytes) — str

Decodes Python source code bytes to a str.
This is effectively a reimplementation of importlib._bootstrap_external.decode_source()

oxidized_importer.find_resources_in_path(path) — List

This function will scan the specified filesystem path and return an iterable of objects representing found resources.
Those objects will be 1 of the types documented in oxidized_importer Python Resource Types.

Only directories can be scanned.

oxidized_importer.register_pkg_resources()

Enables pkg_resources integration.
This function effectively does the following:

e Calls pkg_resources.register_finder() to map OxidizedPathEntryFinder to
:py:func:pkg_resources_find_distributions’.

o Calls pkg_resources.register_load_type() to map OxidizedFinder to
OxidizedPkgResourcesProvider.

It is safe to call this function multiple times, as behavior should be deterministic.

1.2. oxidized_importer 67

https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

oxidized_importer.pkg_resources_find_distributions (finder: OxidizedPathEntryFinder, path_item: str,
only=false) — list

Resolve pkg_resources.Distribution instances given a OxidizedPathEntryFinder and search criteria.

This function is what is registered with pkg_resources for distribution resolution and you likely don’t need to
call it directly.

The 0OxidizedFinder Class

class oxidized_importer.OxidizedFinder

A meta path finder that resolves indexed resources. See See OxidizedFinder Meta Path Finder for more high-level
documentation.

This type implements the following interfaces:
e importlib.abc.MetaPathFinder
e importlib.abc.Loader
e importlib.abc.InspectLoader
e importlib.abc.ExecutionLoader
See the importlib.abc documentation for more on these interfaces.

In addition to the methods on the above interfaces, the following methods defined elsewhere in importlib are
exposed:

e get_resource_reader(fullname: str) -> importlib.abc.ResourceReader

e find_distributions(context: Optional[DistributionFinder.Context]) ->
[Distribution]

ResourceReader is documented alongside other importlib.abc interfaces. find_distribution() is doc-
umented in importlib.metadata.

Instances have additional functionality beyond what is defined by importlib. This functionality allows you to
construct, inspect, and manipulate instances.

multiprocessing_set_start_method

(Opional[str]) Value to pass to multiprocessing.set_start_method() on import of
multiprocessing module.

None means the method won’t be called.
origin
(str) The path this instance is using as the anchor for relative path references.

path_hook_base_str
(str) The base path that the path hook handler on this instance will respond to.

This value is often the same as sys.executable but isn’t guaranteed to be that exact value.

pkg_resources_import_auto_register

(bool) Whether this instance will be registered via pkg_resources.register_finder() upon this in-
stance importing the pkg_resources module.

__new__(cls, relative_path_origin: Optional[os.PathLike]) — OxidizedFinder
Construct a new instance of OxidizedFinder.

New instances of OxidizedFinder can be constructed like normal Python types:

68 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder
https://docs.python.org/3/library/importlib.html#module-importlib.abc
https://docs.python.org/3/library/importlib.metadata.html
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/os.html#os.PathLike

PyOxidizer, Release 0.21.0

finder = OxidizedFinder()

The constructor takes the following named arguments:

relative_path_origin
A path-like object denoting the filesystem path that should be used as the origin value for relative path
resources. Filesystem-based resources are stored as a relative path to an anchor value. This is that
anchor value. If not specified, the directory of the current executable will be used.

See the python_packed_resources Rust crate for the specification of the binary data blob defining packed
resources data.

Important: The packed resources data format is still evolving. It is recommended to use the same version
of the oxidized_importer extension to produce and consume this data structure to ensure compatibility.

index_bytes(data: bytes) — None
This method parses any bytes-like object and indexes the resources within.

index_file_memory_mapped(path: pathlib.Path) — None
This method parses the given Path-like argument and indexes the resources within. Memory mapped 1/O
is used to read the file. Rust managed the memory map via the memmap crate: this does not use the Python
interpreter’s memory mapping code.

index_interpreter_builtins() — None
This method indexes Python resources that are built-in to the Python interpreter itself. This indexes built-in
extension modules and frozen modules.

index_interpreter_builtin_extension_modules() — None
This method will index Python extension modules that are compiled into the Python interpreter itself.

index_interpreter_frozen_modules() — None
This method will index Python modules whose bytecode is frozen into the Python interpreter itself.

indexed_resources() — List[OxidizedResource]

This method returns a list of resources that are indexed by the instance. It allows Python code to inspect
what the finder knows about.

Any mutations to returned values are not reflected in the finder.
See OxidizedResource for more on the returned type.

add_resource (resource: OxidizedResource)

This method registers an OxidizedResource instance with the finder, enabling the finder to use it to service
lookups.

When an OxidizedResource is registered, its data is copied into the finder instance. So changes to the
original OxidizedResource are not reflected on the finder. (This is because 0xidizedFinder maintains
an index and it is important for the data behind that index to not change out from under it.)

Resources are stored in an invisible hash map where they are indexed by the name attribute. When a
resource is added, any existing resource under the same name has its data replaced by the incoming
OxidizedResource instance.

If you have source code and want to produce bytecode, you can do something like the following:

1.2. oxidized_importer 69

https://docs.rs/python-packed-resources/0.1.0/python_packed_resources/
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

PyOxidizer, Release 0.21.0

def register_module(finder, module_name, source):
code = compile(source, module_name, "exec")
bytecode = marshal.dumps(code)

resource = OxidizedResource()
resource.name = module_name
resource.is_module = True
resource.in_memory_bytecode = bytecode
resource.in_memory_source = source

finder.add_resource(resource)

add_resources(resources: List[0OxidizedResource]

This method is syntactic sugar for calling add_resource() for every item in an iterable. It is exposed
because function call overhead in Python can be non-trivial and it can be quicker to pass in an iterable of
OxidizedResource than to call add_resource() potentially hundreds of times.

serialize_indexed_resources (ignore_builtin=true, ignore_frozen=true) — bytes

This method serializes all resources currently indexed by the instance into an opaque bytes instance. The
returned data can be fed into a separate OxidizedFinder instance by passing it to OxidizedFinder.
__new__Q).

Arguments:

ignore_builtin (bool)
Whether to ignore builtin extension modules from the serialized data.

Default is True

ignore_frozen (bool)
Whether to ignore frozen extension modules from the serialized data.

Default is True.

Entries for built-in and frozen modules are ignored by default because they aren’t portable, as they are
compiled into the interpreter and aren’t guaranteed to work from one Python interpreter to another. The
serialized format does support expressing them. Use at your own risk.

path_hook (path: Union[str, bytes, os.PathLike[AnyStr]]) — OxidizedPathEntryFinder

Implements a path hook for obtaining a PathEntryFinder from a sys.path entry. See Paths Hooks Com-
patibility for details.

Raises ImportError if the given path isn’t serviceable. The exception should have .__cause__ set to an
inner exception with more details on why the path was rejected.

The OxidizedDistribution Class

class oxidized_importer.OxidizedDistribution

Represents the metadata of a Python package. Comparable to importlib.metadata.Distribution. In-
stances of this type are emitted by OxidizedFinder.find_distributions.

from_name (cls, name: str) — OxidizedDistribution

Classmethod

Resolve the instance for the given package name.

70 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/importlib.html#importlib.abc.PathEntryFinder
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

discover(cls, **kwargs) — list[OxidizedDistribution)

Classmethod
Resolve instances for all known packages.

read_text (filename) — str

Attempt to read metadata file given its filename.

property metadata

Type

email.message.EmailMessage
Return the parsed metadata for this distribution.
property name
Type
Str
Return the Name metadata for this distribution package.
property _normalized_name
Type
str
Return the normalized version of the Name.

property version

Type

str

Return the Version metadata for this distribution package.
property entry_points

Resolve entry points for this distribution package.
property files

Not implemented. Always raises when called.
property requires

Generated requirements specified for this distribution.

The OxidizedResourceReader Class

class oxidized_importer.OxidizedResourceReader

importlib.abc.ResourceReader implementer for OxidizedFinder.

open_resource (resource: str)
resource_path(resource: str)
is_resource (name: str) — bool

contents () — list[str]

. oxidized_importer

71

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/email.message.html#email.message.EmailMessage
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

The OxidizedPathEntryFinder Class

class oxidized_importer.OxidizedPathEntryFinder

A path entry finder that can find resources contained in an associated OxidizedFinder instance.
Instances are created via OxidizedFinder.path_hook.

Direct use of OxidizedPathEntryFinder is generally unnecessary: OxidizedFinder is the primary interface
to the custom importer.

See Paths Hooks Compatibility for more on path hook and path entry finder behavior in oxidized_importer.

find_spec(fullname: str, target: Optional[types.ModuleType] = None) —
Optional[importlib.machinery.ModuleSpec]

Search for modules visible to the instance.

invalidate_caches() — None

Invoke the same method on the OxidizedFinder instance with which the OxidizedPathEntryFinder
instance was constructed.

iter_modules (prefix: str = ") — List[pkgutil. Modulelnfo]
Iterate over the visible modules. This method complies with pkgutil.iter_modules’s protocol.

The OxidizedPkgResourcesProvider Class

class oxidized_importer.0OxidizedPkgResourcesProvider

A pkg_resources.IMetadataProvider and pkg_resources.IResourceProvider enabling
pkg_resources to access package metadata and resources.

All members of the aforementioned interfaces are implemented. Divergence from pkg_resources defined
behavior is documented next to the method.

has_metadata(name: str) — bool
get_metadata(name: str) — str
get_metadata_lines (name: str) — List[str]
Returns a 1ist instead of a generator.
metadata_isdir (name: str) — bool
metadata_listdir (name: str) — List[str]
run_script (script_name: str, namespace: Any)
Always raises NotImplementedError.
Please leave a comment in #384 if you would like this functionality implemented.

get_resource_filename (manager, resource_name: str)
Always raises NotImplementedError.

This behavior appears to be allowed given code in pkg_resources. However, it means that
pkg_resources.resource_filename() will not work. Please leave a comment in #383 if you would
like this functionality implemented.

get_resource_stream(manager, resource_name: str) — io.ByteslO

get_resource_string (manager, resource_name: str) — bytes

72

Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/reference/import.html#path-entry-finders
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/types.html#types.ModuleType
https://docs.python.org/3/library/importlib.html#importlib.machinery.ModuleSpec
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pkgutil.html#pkgutil.ModuleInfo
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/indygreg/PyOxidizer/issues/384
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/indygreg/PyOxidizer/issues/383
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.BytesIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

PyOxidizer, Release 0.21.0

has_resource (resource_name: str) — bool
resource_isdir (resource_name: str) — bool

resource_listdir (resource_name: str) — List[str]

Returns a 1ist instead of a generator.

The OxidizedResource Class

class oxidized_importer.OxidizedResource
Represents a resource that is indexed by a OxidizedFinder instance.

Each instance represents a named entity with associated metadata and data. e.g. an instance can represent a
Python module with associated source and bytecode.

(1R1]

New instances can be constructed via OxidizedResource (). This will return an instance whose name =
and all properties will be None or false.
is_module

A bool indicating if this resource is a Python module. Python modules are backed by source or bytecode.

is_builtin_extension_module
A bool indicating if this resource is a Python extension module built-in to the Python interpreter.

is_frozen_module
A bool indicating if this resource is a Python module whose bytecode is frozen into the Python interpreter.

is_extension_module
A bool indicating if this resource is a Python extension module.

is_shared_library
A bool indicating if this resource is a shared library.
name
The str name of the resource.
is_package
A bool indicating if this resource is a Python package.
is_namespace_package
A bool indicating if this resource is a Python namespace package.

in_memory_source
bytes or None holding Python module source code that should be imported from memory.

in_memory_bytecode
bytes or None holding Python module bytecode that should be imported from memory.
This is raw Python bytecode, as produced from the marshal module. .pyc files have a header before this
data that will need to be stripped should you want to move data from a .pyc file into this field.
in_memory_bytecode_optl
bytes or None holding Python module bytecode at optimization level 1 that should be imported from

memory.

This is raw Python bytecode, as produced from the marshal module. .pyc files have a header before this
data that will need to be stripped should you want to move data from a . pyc file into this field.

1.2. oxidized_importer 73

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

in_memory_bytecode_opt2
bytes or None holding Python module bytecode at optimization level 2 that should be imported from
memory.

This is raw Python bytecode, as produced from the marshal module. .pyc files have a header before this
data that will need to be stripped should you want to move data from a . pyc file into this field.
in_memory_extension_module_shared_library
bytes or None holding native machine code defining a Python extension module shared library that should
be imported from memory.
in_memory_package_resources
dict[str, bytes] or None holding resource files to make available to the importlib.resources APIs
via in-memory data access. The name of this object will be a Python package name. Keys in this dict are
virtual filenames under that package. Values are raw file data.
in_memory_distribution_resources
dict[str, bytes] or None holding resource files to make available to the importlib.metadata API
via in-memory data access. The name of this object will be a Python package name. Keys in this dict are
virtual filenames. Values are raw file data.
in_memory_shared_library
bytes or None holding a shared library that should be imported from memory.

shared_library_dependency_names
list[str] or None holding the names of shared libraries that this resource depends on. If this resource
defines a loadable shared library, this list can be used to express what other shared libraries it depends on.

relative_path_module_source
pathlib.Path or None holding the relative path to Python module source that should be imported from
the filesystem.

relative_path_module_bytecode
pathlib.Path or None holding the relative path to Python module bytecode that should be imported from
the filesystem.

relative_path_module_bytecode_optl
pathlib.Path or None holding the relative path to Python module bytecode at optimization level 1 that
should be imported from the filesystem.

relative_path_module_bytecode_opt2
pathlib.Path or None holding the relative path to Python module bytecode at optimization level 2 that
should be imported from the filesystem.

relative_path_extension_module_shared_library
pathlib.Path or None holding the relative path to a Python extension module that should be imported
from the filesystem.

relative_path_package_resources

dict[str, pathlib.Path] or None holding resource files to make available to the importlib.
resources APIs via filesystem access. The name of this object will be a Python package name. Keys
in this dict are filenames under that package. Values are relative paths to files from which to read data.

relative_path_distribution_resources

dict[str, pathlib.Path] or None holding resource files to make available to the importlib.
metadata APIs via filesystem access. The name of this object will be a Python package name. Keys
in this dict are filenames under that package. Values are relative paths to files from which to read data.

74

Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

The OxidizedResourceCollector Class

class oxidized_importer.OxidizedResourceCollector

Provides functionality for turning instances of Python resource types into a collection of OxidizedResource
for loading into an OxidizedFinder instance.

__new__(cls, allowed_locations: list[str])

Construct an instance by defining locations that resources can be loaded from.
The accepted string values are in-memory and filesystem-relative.

allowed_locations
(1ist[str]) Exposes allowed locations where resources can be loaded from.

add_in_memory_resource (resource)

Adds a Python resource type (PythonlModuleSource, PythonModuleBytecode, etc) to the collector and
marks it for loading via in-memory mechanisms.

add_filesystem_relative (prefix, resource)

Adds a Python resource type (PythonModuleSource, PythonModuleBytecode, etc) to the collector and
marks it for loading via a relative path next to some origin path (as specified to the OxidizedFinder). That
relative path can have a prefix value prepended to it. If no prefix is desired and you want the resource
placed next to the origin, use an empty str for prefix.

oxidize () — tuple[list[OxidizedResource], list[tuple[pathlib.Path, bytes, bool]]]

Takes all the resources collected so far and turns them into data structures to facilitate later use.
The first element in the returned tuple is a list of OxidizedResource instances.

The second is a list of 3-tuples containing the relative filesystem path for a file, the content to write to that
path, and whether the file should be marked as executable.

The 0xidizedResourceReader Class

class oxidized_importer.OxidizedResourceResource

An implementation of importlib.abc.ResourceReader to facilitate resource reading from an OxidizedFinder.

See Support for ResourceReader for more.

The OxidizedZipFinder Class

class oxidized_importer.OxidizedZipFinder
A meta path finder that operates on zip files.

This type attempts to be a pure Rust reimplementation of the Python standard library zipimport.zipimporter
type.
This type implements the following interfaces:

e importlib.abc.MetaPathFinder

e importlib.abc.Loader

e importlib.abc.InspectlLoader

1.2. oxidized_importer 75

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3.9/library/importlib.html#importlib.abc.ResourceReader
https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder

PyOxidizer, Release 0.21.0

from_zip_data(cls, source: bytes, path: Union[bytes, str, pathlib.Path, None] = None) —
OxidizedZipFinder

Construct an instance from zip archive data.

The source argument can be any bytes-like object. A reference to the original Python object will be kept
and zip I/0O will be performed against the memory tracked by that object. It is possible to trigger an out-of-
bounds memory read if the source object is mutated after being passed into this function.

The path argument denotes the path to the zip archive. This path will be advertised in __file__ attributes.
If not defined, the path of the current executable will be used.

from_path(cls, path: Union[bytes, str, pathlib.Path]) — OxidizedZipFinder

Construct an instance from a filesystem path.

The source represents the path to a file containing zip archive data. The file will be opened using Rust file
I/0. The content of the file will be read lazily.

If you don’t already have a copy of the zip data and the zip file will be immutable for the lifetime of the
constructed instance, this method may yield better performance than opening the file, reading its content,
and calling OxidizedZipFinder. from_zip_data() because it may incur less overall I/O.

The PythonModuleSource Class

class oxidized_importer.PythonModuleSource

Represents Python module source code. e.g. a .py file.

module
(str) The fully qualified Python module name. e.g. my_package. foo.

source
(bytes) The source code of the Python module.

Note that source code is stored as bytes, not str. Most Python source is stored as utf-8, so you can
.encode ("utf-8") or .decode("utf-8") to convert between bytes and str.

is_package
(bool) Whether this module is a Python package.

The PythonModuleBytecode Class

class oxidized_importer.PythonModuleBytecode
Represents Python module bytecode. e.g. what a . pyc file holds (but without the header that a .pyc file has).

module
(str) The fully qualified Python module name.

bytecode
(bytes) The bytecode of the Python module.

This is what you would get by compiling Python source code via something like marshal.
dumps (compile(source, "exe")). The bytecode does not contain a header, like what would be found
ina .pyc file.

optimize_level
(int) The bytecode optimization level. Either 0, 1, or 2.

76 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

PyOxidizer, Release 0.21.0

is_package
(bool) Whether this module is a Python package.

The PythonPackageResource Class

class oxidized_importer.PythonPackageResource

Represents a non-module resource file. These are files that live next to Python modules that are typically accessed

via the APIs in importlib.resources.

package
(str) The name of the leaf-most Python package this resource is associated with.
With OxidizedFinder, an importlib.abc.ResourceReader associated with this package will be used
to load the resource.

name
(str) The name of the resource within its package. This is typically the filename of the resource. e.g.
resource.txt or child/foo.png.

data

(bytes) The raw binary content of the resource.

The PythonPackageDistributionResource Class

class oxidized_importer.PythonPackageDistributionResource
Represents a non-module resource file living in a package distribution directory (e.g. <package>-<version>.
dist-info or <package>-<version>.egg-info).

These resources are typically accessed via the APIs in importlib.metadata.
package
(str) The name of the Python package this resource is associated with.

version

(str) Version string of Python package this resource is associated with.

name
(str) The name of the resource within the metadata distribution. This is typically the filename of the
resource. e.g. METADATA.

data

(bytes) The raw binary content of the resource.

The PythonExtensionModule Class

class oxidized_importer.PythonExtensionModule
Represents a Python extension module. This is a shared library defining a Python extension implemented in
native machine code that can be loaded into a process and defines a Python module. Extension modules are
typically defined by .so, .dylib, or .pyd files.

Note: Properties of this type are read-only.

1.2. oxidized_importer 77

PyOxidizer, Release 0.21.0

Python Packed Resources
This project has defined a custom data format for storing resources useful to the execution of a Python interpreter. We
call this data format Python packed resources.

The way it works is that some producer collects resources required by a Python interpreter. These resources include
Python module source and bytecode, non-module resource/data files, extension modules, and shared libraries. Metadata
about these resources and sometimes the raw resource data itself is serialized to a binary data structure.

At Python interpreter run time, an instance of the OxidizedFinder meta path finder parses this data structure and
uses it to power Python module importing.

This functionality is similar to using a .zip file for holding Python modules. However, the Python packed resources
data structure is far more advanced.

Implementation

The canonical implementation of the writer and parser of this data structure lives in the python-packed-resources
Rust crate. The canonical home of this crate is https://github.com/indygreg/PyOxidizer/tree/main/
python-packed-resources.

This crate is published to crates.io at https://crates.io/crates/python-packed-resources.

The oxidized_importer Rust crate / Python extension defines the OxidizedFinder Python class for using this data
structure to power importing. That extension also exposes APIs to interact with instances of the data structure.

Concepts

The data structure is logically an iterable of resources.
A resource is a sparse collection of attributes or fields.

Each attribute describes behavior of the resource or defines data for that resource. For example, there are attributes
that denote the type of a resource. A Python module resource might have an attribute holding its Python sourcecode or
bytecode.

In Rust speak, a resource is a struct and attributes are fields in that struct. Many fields are Option<T> because
they are optional and not always defined.

Serialization Format
High-Level Overview

The serialization format consists of:
* A global header containing identifying magic and describing the overall payload.
* An index describing data for each distinct attribute type. This is called the blob index.
* An index describing each resource and its attributes. This is called the resources index.
* A series of sections holding data for each distinct attribute type. We call these blob sections.

All integers are little-endian.

78 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/tree/main/python-packed-resources
https://github.com/indygreg/PyOxidizer/tree/main/python-packed-resources
https://crates.io/crates/python-packed-resources

PyOxidizer, Release 0.21.0

Global Header

The first 8 bytes of the data structure are a magic header identifying the content as our data structure and the version
of it. The first 7 bytes are pyembed and the following 1 byte denotes a version. Semantics of each version are denoted
in sections below.

The first 13 bytes after the magic header describe the blob and resource indices as follows:
* A u8 denoting the number of blob sections, blob_sections_count.
* A u32 denoting the length of the blob index, blob_index_length.
* A u32 denoting the total number of resources in this data, resources_count.

* A u32 denoting the length of the resources index, resources_index_length.

Blob Index

Following the global header is the blob index, which describes the blob sections present later in the data structure.

Each entry in the blob index logically consists of a set of fields defining metadata about each blob section. This is
encoded by a start of entry u8 marker followed by N u8 field type values and their corresponding metadata, followed
by an end of entry u8 marker.

The blob index is terminated by an end of index u8 marker.
The total number of bytes in the blob index including the end of index marker should be blob_index_length.

The blob index allows attributing a sparse set of metadata with every blob section entry. The type of metadata being
conveyed is defined by a u8. Some field types have additional metadata following that field.

The various field types and their semantics follow.

0x00
End of index. This field indicates that there are no more blob index entries and we’ve reached the end of the blob
index.

0x01
Start of blob section entry. Encountering this value signals the beginning of a new blob section. From a specifi-
cation standpoint, this isn’t strictly required. But it helps ensure parser state.

Oxff
End of blob section entry. Encountering this value signals the end of the current blob section definition. The
next encountered u8 in the index should be 0x01 to denote a new entry or 0x00 to denote end of index.

0x02
Resource field type. This field defines which resource field this blob section is holding data for. A u8 following
this one will contain the resource field type value (see section below).

0x03
Raw payload length. This field defines the raw length in bytes of the blob section in the payload. The u64
containing that length will immediately follow this u8.

0x04
Interior padding mechanism. This field defines interior padding between elements in the blob section. Following
this u8 is another u8 denoting the padding mechanism.

0x01 indicates no padding. 0x02 indicates NULL padding (a x00 between elements).

If not present, no padding is assumed. If the payload data logically consists of discrete resources (e.g. Python
package resource files), then padding applies to these sub-elements as well.

1.2. oxidized_importer 79

PyOxidizer, Release 0.21.0

For example, a blob index byte sequence of 0x01 0x02 0x03 0x03 0x0000000000000042 0x04 0x01 Oxff
0x00 would be decoded as:

* 0x01 - Start of blob section entry.

* 0x02 0x03 - Resource field type definition (0x02) for field 0x03.

* 0x03 0x0000000000000042 - Blob section length (0x03) of 0x42 bytes long.

* 0x04 0x01 - Interior padding in blob section (0x04) is defined as no padding (0x01).
* Oxff - End of blob section entry.

* 0x00 - End of index.

Resources Index

Following the blob index is the resources index.
Each entry in this index defines a sparse set of metadata describing a single resource.

Entries are composed of a series of u8 identifying pieces of metadata, followed by field-specific supplementary de-
scriptions.

The following u8 fields and their behavior/payloads are as follows:

0x00
End of index. Special type to denote the end of an index.

0x01
Start of resource entry. Signals the beginning of a new resource. From a specification standpoint this isn’t strictly
required. But it helps ensure parser state.

0x02
Previously held the resource flavor. This field is deprecated in version 2 in favor of the individual fields expressing
presence of a resource type. (See fields starting at x16.)

Oxff
End of resource entry. The next encountered u8 in the index should be an end of index or start of resource marker.

0x03
Resource name. A ul6 denoting the length in bytes of the resource name immediately follows this byte. The
resource name must be valid UTF-8.

0x04
Package flag. If encountered, the resource is identified as a Python package.

0x05
Namespace package flag. If encountered, the resource is identified as a Python namespace package.

0x06
In-memory Python module source code. A u32 denoting the length in bytes of the module’s source code imme-
diately follows this byte.

0x07
In-memory Python module bytecode. A u32 denoting the length in bytes of the module’s bytecode immediately
follows this byte.

0x08
In-memory Python module optimized level 1 bytecode. A u32 denoting the length in bytes of the module’s
optimization level 1 bytecode immediately follows this byte.

80 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

0x09
In-memory Python module optimized level 2 bytecode. Same as previous, except for bytecode optimization level
2.

0x0a
In-memory Python extension module shared library. A u32 denoting the length in bytes of the extension module’s
machine code immediately follows this byte.

0x0b
In-memory Python resources data. If encountered, the module/package contains non-module resources files and
the number of resources is contained in a u32 that immediately follows. Following this u32 is an array of (ul6,
u64) denoting the resource name and payload size for each resource in this package.

0x0c
In-memory Python distribution resource. Defines resources accessed from importlib.metadata APIs. If
encountered, the module/package contains distribution metadata describing the package. The number of files
being described is contained in a u32 that immediately follows this byte. Following this u32 is an array of
(ul6, u64) denoting the distribution file name and payload size for each virtual file in this distribution.

0x0d
In-memory shared library. If set, this resource is a shared library and not a Python module. The resource name
field is the name of this shared library, with file extension (as it would appear in a dynamic binary’s loader
metadata to indicate a library dependency). A u64 denoting the length in bytes of the shared library data follows.
This shared library should be loaded from memory.

0x0e
Shared library dependency names. This field indicates the names of shared libraries that this entity depends on.
The number of library names is contained in a ul6 that immediately follows this byte. Following this ul6 is an
array of ul6 denoting the length of the library name for each shared library dependency. Each described shared
library dependency may or may not be described by other entries in this data structure.

0x0£f
Relative filesystem path to Python module source code. A u32 holding the length in bytes of a filesystem path
encoded in the platform-native file path encoding follows. The source code for a Python module will be read
from a file at this path.

0x10
Relative filesystem path to Python module bytecode. Similar to the previous except the filesystem path holds
Python module bytecode.

0x11
Relative filesystem path to Python module bytecode at optimization level 1. Similar to the previous except for
what is being pointed to.

0x12
Relative filesystem path to Python module bytecode at optimization level 2. Similar to the previous except for
what is being pointed to.

0x13
Relative filesystem path to Python extension module shared library. Similar to the previous except the file holds
a Python extension module loadable as a shared library.

0x14
Relative filesystem path to Python package resources. The number of resources is contained in a u32 that imme-
diately follows. Following this u32 is an array of (ul6, u32) denoting the resource name and filesystem path
to each resource in this package.

0x15
Relative filesystem path to Python distribution resources.

1.2. oxidized_importer 81

PyOxidizer, Release 0.21.0

Defines resources accessed from importlib.metadata APIs. If encountered, the module/package contains
distribution metadata describing the package. The number of files being described is contained in a u32 that
immediately follows this byte. Following this u32 is an array of (ul6, u32) denoting the distribution file name
and filesystem path to that distribution file.

0x16
Is Python module flag. If set, this resource contains data for an importable Python module or package. Resource
data is associated with Python packages and is covered by this type.

0x17
Is builtin extension module flag. This type represents a Python extension module that is built in (compiled into)
the interpreter itself or is otherwise made available to the interpreter via PyImport_Inittab such that it should
be imported with the builtin importer.

0x18
Is frozen Python module flag. This type represents a Python module whose bytecode is frozen and made available
to the Python interpreter via the PyImport_FrozenModules array and should be imported with the frozen
importer.

0x19
Is Python extension flag. This type represents a compiled Python extension. Extensions have specific require-
ments around how they are to be loaded and are differentiated from regular Python modules.

0Oxla
Is shared library flag. This type represents a shared library that can be loaded into a process.

0x1b
Is utf-8 filename data flag. This type represents an arbitrary filename. The resource name is a UTF-8 encoded
filename of the file this resource represents. The file’s data is either embedded in memory or referred to via a
relative path reference.

Oxlc
File data is executable flag.

If set, the arbitrary file this resource tracks should be marked as executable.

0x1d
Embedded file data.

If present, the resource should be a file resource and this field holds its raw file data in memory.
A u64 containing the length of the embedded data follows this field.

Oxle
UTF-8 relative path file data.

If present, the resource should be a file resource and this field defines the relative path containing that file’s data.
The relative path filename is UTF-8 encoded.

A u32 denoting the length of the UTF-8 relative path (in bytes) follows.

82 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Blob Sections

Following the resources index is blob data.

Blob data is logically composed of different sections holding data for different fields for different resources. But there
is no internal structure or separators: all the individual blobs are just laid out next to each other. The resources index
for a given field will describe where in a blob section a particular value occurs.

pyembed\x01 Format

The initially released/formalized packed resources data format.

Supports resource field types up to and including 0x15.

pyembed\x02 Format

Version 2 of the packed resources data format.

This version introduces field type values 0x16 to O0x1a. The resource flavor field type (0x02) is deprecated and the
individual field types denoting resource types should be used instead.

(PyOxidizer removed run-time code looking at field type ®x02 when this format was introduced.)

pyembed\x03 Format

Version 3 of the packed resources data format.
This version introduces field type values ®x1b to 0x1le.

These fields provide the ability for a resource to identify itself as an arbitrary filename and for the arbitrary file data to
be embedded within the data structure or referenced via a relative path.

Unlike previous fields that use OS-native encoding of filesystem paths ([u8] on POSIX and [ul6] on Windows), the
paths for these new fields use UTF-8. This can’t represent all valid paths on all platforms. But it is portable and works
for most paths encountered in the wild.

Design Considerations

The design of the packed resources data format was influenced by a handful of considerations.

Performance is a significant consideration. We want everything to be as fast as possible. Possible dimensions influenc-
ing performance include parse time, payload size, and I/O access patterns.

The payload is designed such that the index data is at the beginning so a reader only has to read a contiguous slice of
data to fully understand the data within. This is in opposition to jumping around the entire data structure to extract
metadata of the data within. This means that we only need to page in a fraction of the total backing data structure in
order to initialize our custom importer. In addition, the index data is read sequentially. Sequential I/O should always
be faster than random access I/O.

x86 is little endian, so we use little endian integers so we don’t need to waste cycles on endian transformation.

We store all data for the same field next to each other in the data structure. This is in opposition to say packing all
of resource A’s data then resource B’s, etc. We do this to help maximize locality for similar data. This can help with
performance because often the same field for multiple resources is accessed together. e.g. an importer will access a

1.2. oxidized_importer 83

PyOxidizer, Release 0.21.0

bunch of module bytecode entries at the same time. This locality helps minimize the number of pages that must be
read. Locality can also help yield higher compression ratios.

Everything is designed to facilitate a reader leveraging O-copy. If a reader has the data structure in memory, we don’t
want to require it to copy memory in order to reference entries. In Rust speak, we should be able to hold &[u8]
references everywhere.

There is no checksumming of the data because we don’t want to incur I/O overhead to read the entire blob. It could be
added as an optional feature.

Potential Future Features

This data structure is robust enough to be used by PyOxidizer to power importing of every Python module used by a
Python interpreter. However, there are various aspects that could be improved.

Compression

A potential area for optimization is use of general compression. Various fields should compress well - either in stream-
ing mode or by utilizing compression dictionaries. Compression would undermine 0-copy, of course. But in environ-
ments where we want to optimize for size, it could be desirable.

Project History

Changelog
0.6.0

Released on June 6, 2022.
* Added missing API docs for OxidizedDistribution.

e OxidizedDistribution.metadata now returns an importlib.metadata._adapters.Message instance
on Python 3.10+.

e OxidizedDistribution.entry_points now calls importlib.metadata.EntryPoints.
_from_text_for on Python 3.10+. Previously, the implementation of this method didn’t work properly
on 3.10+.

¢ Added name property to OxidizedDistribution.
* Added _normalized_name property to OxidizedDistribution.

* PyO3 Rust crate upgraded to 0.16.5. This gets us better compatibility with Python 3.10.

1.3 pyembed

A Rust library crate to control embedded Python interpreters in Rust applications. The pyembed crate enhances
the functionality of embedded Python interpreters by implementing additional features such as integration with ox-
idized_importer, easy configuration of alternate memory allocators, automatic terminfo database resolution, and more.

pyembed is usable as a standalone Rust crate and can be used by any Rust project embedding Python to abstract over
some of the complexities with embedding a Python interpreter.

84 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

1.3.1 The pyembed Rust Crate

The pyembed Rust crate facilitates the control of an embedded Python interpreter.

The crate provides an API for instantiating and controlling an embedded Python interpreter. It also defines a custom
meta path importer that can be used to import Python resources (such as module bytecode) from memory.

The crate is developed alongside the PyOxidizer project. However, it is a generic crate and can be used outside the
context of PyOxidizer.

The pyembed crate is published to crates.io and its Rust documentation is available at https://docs.rs/pyembed.

Building

A design goal of pyembed is for it to exist like normal Rust crates. However, because pyembed needs to link against
Python, there are some special requirements.

Configuring PyO3

pyembed pulls in a Python library link dependency via the pyo3 crate. At cargo build time, pyo3 (technically
pyo3-build-config) will attempt to locate a 1ibpython to link against. This behavior is documented at https:
/Ipyo3.rs/v0.15.0/building_and_distribution.html.

Generally speaking, all the caveats documented by pyo3 apply to pyembed as well, since this project is a glorified,
value-adding wrapper around pyo3.

The short version of the PyO3 documentation is as follows:

* By default the build script will look for an executable python on PATH and attempt to derive its build configu-
ration from it.

* You can point it at a specific Python executable by setting the PYO3_PYTHON environment variable.

» For more advanced use cases (including cross-compiling), you can create a custom config file to configure the
pyo3-build-config crate and point to it via the PYO3_CONFIG_FILE environment variable.

Generally speaking, if you are able to build the pyo3 crate in isolation, you should be able to build the pyembed crate.
To customize how the pyembed crate links against Python, use pyo3’s mechanisms for doing that.

Controlling Python from Rust Code

Initializing a Python Interpreter

Initializing an embedded Python interpreter in your Rust process is as simple as calling
pyembed: :MainPythonInterpreter: :new(config: OxidizedPythonInterpreterConfig).

The hardest part about this is constructing the pyembed: : 0OxidizedPythonInterpreterConfig instance.

1.3. pyembed 85

https://crates.io/crates/pyembed
https://docs.rs/pyembed
https://pyo3.rs/v0.15.0/building_and_distribution.html
https://pyo3.rs/v0.15.0/building_and_distribution.html

PyOxidizer, Release 0.21.0

Using a Python Interpreter

Once you’ve constructed a pyembed: : MainPythonInterpreter instance, you can obtain a pyo3: :Python instance
via .with_gil() and then use it:

fn do_it(interpreter: &MainPythonInterpreter) -> {
interpreter.with_gil(|py| {
match py.eval("print('hello, world')") {
Ok(_) => print("python code executed successfully"),
Err(e) => print("python error: {:?}", e),

b
}

Since CPython’s API relies on static variables (sadly), if you really wanted to, you could call out to CPython C APIs
directly (probably via the bindings in the pyo3 crate) and they would interact with the interpreter started by the pyembed
crate. This is all unsafe, of course, so tread at your own peril.

Finalizing the Interpreter

pyembed: :MainPythonInterpreter implements Drop and it will call Py_FinalizeEx() when called. So to ter-
minate the Python interpreter, simply have the MainPythonInterpreter instance go out of scope or drop it explicitly.

A Note on the pyembed APIs

The pyembed crate is highly tailored towards PyOxidizer’s default use cases and the APIs are not considered extremely
well polished.

While the functionality should work, the ergonomics may not be great.

It is a goal of the PyOxidizer project to support Rust programmers who want to embed Python in Rust applications. So
contributions to improve the quality of the pyembed crate will likely be greatly appreciated!

Adding Extension Modules At Run-Time

A Python extension module is effectively a callable function defined in a library somewhere.

The pyembed crate supports registering Python extension modules multiple ways.

Statically Linked Extension Modules

You can inform the pyembed crate about the existence of additional Python extension modules which are statically
linked into the binary.

To do this, you will need to populate the extra_extension_modules field of the
OxidizedPythonInterpreterConfig Rust struct used to construct the Python interpreter. Simply add an
entry defining the extension module’s import name and a pointer to its C initialization function (often named
PyInit_<name>. e.g. if you are defining the extension module foo, the initialization function would be PyInit_foo
by convention.

86 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Please note that Python stores extension modules in a global variable. So instantiating multiple interpreters via the
pyembed interfaces may result in duplicate entries or unwanted extension modules being exposed to the Python inter-
preter.

Dynamically Linked Extension Modules

If you have an extension module provided as a shared library (this is typically how Python extension modules work), it
will be possible to load this extension module provided that the Python interpreter supports loading dynamically linked
Python extension modules.

There is not yet an explicit Rust API for loading additional dynamically linked extension modules. It is theoretically
possible to add an entry to the parsed embedded resources data structure. The path of least resistance is likely to enable
the standard filesystem importer and put your shared library extension module somewhere on Python’s sys.path.
(This is how extension modules are typically loaded.)

Python Interpreter Configuration Data Structures
This document describes the data structures for configuring the behavior of a Python interpreter. The data structures
are consumed by the pyembed Rust crate. All type names should correspond to public symbols in the pyembed crate.

This documentation is auto-generated from the inline documentation in Rust source files. Some formatting has been
lost as part of the conversion. See https://docs.rs/pyembed/ for the native Rust API documentation

Structs:
* OxidizedPythonlnterpreterConfig
* PythoniInterpreterConfig
Enums:
* MemoryAllocatorBackend
* PythonlnterpreterProfile
* Allocator
* BytecodeOptimizationLevel
* BytesWarning
* CheckHashPycsMode
e CoerceCLocale
* MultiprocessingStartMethod

e TerminfoResolution

OxidizedPythonInterpreterConfig Struct

Configuration for a Python interpreter.

This type is used to create a crate: :MainPythonInterpreter, which manages a Python interpreter running in the
current process.

This type wraps a PythonInterpreterConfig, which is an abstraction over the low-level C structs (PyPreConfig
and PyConfig) used as part of Python’s C initialization API. In addition to this data structure, the fields on this type
facilitate control of additional features provided by this crate.

1.3. pyembed 87

https://docs.rs/pyembed/

PyOxidizer, Release 0.21.0

The PythonInterpreterConfig has a single non-optional field: PythonInterpreterConfig::profile. This
defines the defaults for various fields of the PyPreConfig and PyConfig C structs. See https://docs.python.org/3/
c-api/init_config.html#isolated-configuration for more.

When this type is converted to PyPreConfig and PyConfig, instances of these C structs are created from the
specified profile. e.g. by calling PyPreConfig_InitPythonConfig(), PyPreConfig_InitIsolatedConfig,
PyConfig_InitPythonConfig, and PyConfig_InitIsolatedConfig. Then for each field in PyPreConfig and
PyConfig, if a corresponding field on PythonInterpreterConfig is Some, then the PyPreConfig or PyConfig
field will be updated accordingly.

During interpreter initialization, Self: :resolve() is called to resolve/finalize any missing values and convert the in-
stance into a ResolvedOxidizedPythonInterpreterConfig. It is this type that is used to produce a PyPreConfig
and PyConfig, which are used to initialize the Python interpreter.

Some fields on this type are redundant or conflict with those on PythonInterpreterConfig. Read the documentation
of each field to understand how they interact. Since PythonInterpreterConfig is defined in a different crate, its
docs are not aware of the existence of this crate/type.

This struct implements Deserialize and Serialize and therefore can be serialized to any format supported by the
serde crate. This feature is used by pyoxy to allow YAML-based configuration of Python interpreters.

exe Field

The path of the currently executing executable.
This value will always be Some on ResolvedOxidizedPythonInterpreterConfig instances.
Default value: None.

Self::resolve() behavior: sets to std: :env: :current_exe() if not set. Will canonicalize the final path, which
may entail filesystem I/O.

Type: Option<PathBuf>

origin Field

The filesystem path from which relative paths will be interpreted.

This value will always be Some on ResolvedOxidizedPythonInterpreterConfig instances.
Default value: None.

Self::resolve() behavior: sets to Self::exe.parent () if not set.

Type: Option<PathBuf>

interpreter_config Field

Low-level configuration of Python interpreter.

Default value: PythonInterpreterConfig: :default () with PythonInterpreterConfig: :profile always set
to PythonInterpreterProfile: :Python.

Self::resolve() behavior: most fields are copied verbatim. PythonInterpreterConfig: :module_search_paths
entries have the special token $ORIGIN expanded to the resolved value of Self::origin.

Type: PythonInterpreterConfig

88 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#isolated-configuration
https://docs.python.org/3/c-api/init_config.html#isolated-configuration

PyOxidizer, Release 0.21.0

allocator_backend Field

Memory allocator backend to use.
Default value: MemoryAllocatorBackend: :Default.

Interpreter initialization behavior: after Py_PreInitialize() iscalled, crate: :pyalloc: :PythonMemoryAllocator: : from_back
is called. If this resolves to a crate::pyalloc::PythonMemoryAllocator, that allocator will

be installed as per Self::allocator_raw, Self::allocator_mem, Self::allocator_obj, and
Self::allocator_pymalloc_arena. If a custom allocator backend is defined but all the allocator_*

flags are false, the allocator won’t be used.

Type: MemoryAllocatorBackend

allocator_raw Field

Whether to install the custom allocator for the raw memory domain.

See https://docs.python.org/3/c-api/memory.html for documentation on how Python memory allocator domains work.
Default value: true

Interpreter initialization behavior: controls whether Self: :allocator_backend is used for the raw memory domain.
Has no effect if Self::allocator_backend is MemoryAllocatorBackend: :Default.

Type: bool

allocator_mem Field

Whether to install the custom allocator for the mem memory domain.

See https://docs.python.org/3/c-api/memory.html for documentation on how Python memory allocator domains work.
Default value: false

Interpreter initialization behavior: controls whether Self: :allocator_backendis used for the mem memory domain.
Has no effect if Self::allocator_backend is MemoryAllocatorBackend: :Default.

Type: bool

allocator_obj Field

Whether to install the custom allocator for the obj memory domain.

See https://docs.python.org/3/c-api/memory.html for documentation on how Python memory allocator domains work.
Default value: false

Interpreter initialization behavior: controls whether Self: :allocator_backend is used for the obj memory domain.
Has no effect if Self::allocator_backend is MemoryAllocatorBackend: :Default.

Type: bool

1.3. pyembed 89

https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/memory.html

PyOxidizer, Release 0.21.0

allocator_pymalloc_arena Field

Whether to install the custom allocator for the pymalloc arena allocator.
See https://docs.python.org/3/c-api/memory.html for documentation on how Python memory allocation works.
Default value: false

Interpreter initialization behavior: controls whether Self::allocator_backend is used for the pymalloc arena
allocator.

This setting requires the pymalloc allocator to be used for the mem or obj domains (allocator_mem = false
and allocator_obj = false - this is the default behavior) and for Self::allocator_backend to not be
MemoryAllocatorBackend: :Default.

Type: bool

allocator_debug Field

Whether to set up Python allocator debug hooks to detect memory bugs.
Default value: false

Interpreter initialization behavior: triggers the calling of PyMem_SetupDebugHooks() after custom allocators are
installed.

This setting can be used with or without custom memory allocators (see other allocator_* fields).

Type: bool

set_missing_path_configuration Field

Whether to automatically set missing “path configuration” fields.

If true, various path configuration (https://docs.python.org/3/c-api/init_config.html#path-configuration) fields will
be set automatically if their corresponding .interpreter_config fields are None. For example, program_name
will be set to the current executable and home will be set to the executable’s directory.

If this is false, the default path configuration built into libpython is used.

Setting this to false likely enables isolated interpreters to be used with “external” Python installs. If this is true,
the default isolated configuration expects files like the Python standard library to be installed relative to the cur-
rent executable. You will need to either ensure these files are present, define packed_resources, and/or set .
interpreter_config.module_search_paths to ensure the interpreter can find the Python standard library, other-
wise the interpreter will fail to start.

Without this set or corresponding .interpreter_config fields set, you may also get run-time errors
like Could not find platform independent libraries <prefix> or Consider setting $PYTHONHOME
to <prefix>[:<exec_prefix>]. If you see these errors, it means the automatic path config resolutions built into
libpython didn’t work because the run-time layout didn’t match the build-time configuration.

Default value: true

Type: bool

90 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/memory.html
https://docs.python.org/3/c-api/init_config.html#path-configuration

PyOxidizer, Release 0.21.0

oxidized_importer Field

Whether to install oxidized_importer during interpreter initialization.

If true, oxidized_importer will be imported during interpreter initialization and an instance of
oxidized_importer.OxidizedFinder will be installed on sys.meta_path as the first element.

If Self: :packed_resources are defined, they will be loaded into the OxidizedFinder.

If Self::filesystem_importer is true, its path hook will be registered on sys.path_hooks so PathFinder (the
standard filesystem based importer) and pkgutil can use it.

Default value: false
Interpreter initialization behavior: See above.

Type: bool

filesystem_importer Field

Whether to install the path-based finder.

Controls whether to install the Python standard library PathFinder meta path finder (this is the meta path finder that
loads Python modules and resources from the filesystem).

Also controls whether to add OxidizedFinder’s path hook to sys.path_hooks.

Due to lack of control over low-level Python interpreter initialization, the standard library PathFinder will be regis-
tered on sys.meta_path and sys.path_hooks for a brief moment when the interpreter is initialized. If sys.path
contains valid entries that would be serviced by this finder and oxidized_importer isn’t able to service imports, it is
possible for the path-based finder to be used to import some Python modules needed to initialize the Python interpreter.
In many cases, this behavior is harmless. In all cases, the path-based importer is removed after Python interpreter
initialization, so future imports won’t be serviced by this path-based importer if it is disabled by this flag.

Default value: true

Interpreter initialization behavior: If false, path-based finders are removed from sys.meta_path and sys.
path_hooks is cleared.

Type: bool

packed_resources Field

References to packed resources data.

The format of the data is defined by the python-packed-resources crate. The data will be parsed as part of
initializing the custom meta path importer during interpreter initialization when oxidized_importer=true. If
oxidized_importer=false, this field is ignored.

If paths are relative, that will be evaluated relative to the process’s current working directory following the operating
system’s standard path expansion behavior.

Default value: vec![]

Self::resolve() behavior: PackedResourcesSource: :MemoryMappedPath members have the special string
$ORIGIN expanded to the string value that Self::origin resolves to.

This field is ignored during serialization.

Type: Vec<PackedResourcesSource>

1.3. pyembed 91

PyOxidizer, Release 0.21.0

extra_extension_modules Field

Extra extension modules to make available to the interpreter.
The values will effectively be passed to PyImport_ExtendInitTab().
Default value: None

Interpreter initialization behavior: PyImport_Inittab will be extended with entries from this list. This makes the
extensions available as built-in extension modules.

This field is ignored during serialization.

Type: Option<Vec<ExtensionModule>>

argv Field

Command line arguments to initialize sys.argv with.
Default value: None

Self::resolve() behavior: Some value is used if set. Otherwise PythonInterpreterConfig: :argv is used if
set. Otherwise std: :env: :args_os() is called.

Interpreter initialization behavior: the resolved Some value is used to populate PyConfig.argv.

Type: Option<Vec<OsString>>

argvb Field

Whether to set sys.argvb with bytes versions of process arguments.
On Windows, bytes will be UTF-16. On POSIX, bytes will be raw char* values passed to int main().

Enabling this feature will give Python applications access to the raw bytes values of raw argument data passed into
the executable. The single or double width bytes nature of the data is preserved.

Unlike sys.argv which may chomp off leading argument depending on the Python execution mode, sys.argvb has
all the arguments used to initialize the process. i.e. the first argument is always the executable.

Default value: false

Interpreter initialization behavior: sys.argvb will be set to a list[bytes]. sys.argv and sys.argvb should have
the same number of elements.

Type: bool

multiprocessing_auto_dispatch Field

Automatically detect and run in multiprocessing mode.

If set, crate: :MainPythonInterpreter: :run() will detect when the invoked interpreter looks like it is supposed
to be a multiprocessing worker and will automatically call into the multiprocessing module instead of running
the configured code.

Enabling this has the same effect as calling multiprocessing. freeze_support() in your application code’s
__main__ and replaces the need to do so.

Default value: true

92 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Type: bool

multiprocessing_start_method Field

Controls how to call multiprocessing.set_start_method().
Default value: MultiprocessingStartMethod: : Auto

Interpreter initialization behavior: if Self::oxidized_importer is true, the OxidizedImporter will be taught to
call multiprocessing.set_start_method() when multiprocessing is imported. If false, this value has no
effect.

Type: MultiprocessingStartMethod

sys_frozen Field

Whether to set sys.frozen=True.

Setting this will enable Python to emulate “frozen” binaries, such as those used by PyInstaller.

Default value: false

Interpreter initialization behavior: If true, sys.frozen = True. If false, sys.frozen is not defined.

Type: bool

sys_meipass Field

Whether to set sys._MEIPASS to the directory of the executable.

Setting this will enable Python to emulate PylInstaller’s behavior of setting this attribute. This could potentially help
with self-contained application compatibility by masquerading as Pylnstaller and causing code to activate Pylnstaller
mode.

Default value: false

Interpreter initialization behavior: If true, sys._MEIPASS will be set to a str holding the value of Self: :origin.
If false, sys._MEIPASS will not be defined.

Type: bool

terminfo_resolution Field

How to resolve the terminfo database.
Default value: TerminfoResolution: :Dynamic

Interpreter initialization behavior: the TERMINFO_DIRS environment variable may be set for this process depending on
what TerminfoResolution instructs to do.

terminfo is not used on Windows and this setting is ignored on that platform.

Type: TerminfoResolution

1.3. pyembed 93

PyOxidizer, Release 0.21.0

tcl_library Field

Path to use to define the TCL_LIBRARY environment variable.

This directory should contain an init.tcl file. It is commonly a directory named tclX.Y.e.g. tc18.6.

Default value: None

Self::resolve() behavior: the token $ORIGIN is expanded to the resolved value of Self: :origin.

Interpreter initialization behavior: if set, the TCL_LIBRARY environment variable will be set for the current process.

Type: Option<PathBuf>

write_modules_directory_env Field

Environment variable holding the directory to write a loaded modules file.

If this value is set and the environment it refers to is set, on interpreter shutdown, we will write a modules-<random>
file to the directory specified containing a \n delimited list of modules loaded in sys.modules.

This setting is useful to record which modules are loaded during the execution of a Python interpreter.
Default value: None

Type: Option<String>

PythonInterpreterConfig Struct

Holds configuration of a Python interpreter.
This struct holds fields that are exposed by PyPreConfig and PyConfig in the CPython API.

Other than the profile (which is used to initialize instances of PyPreConfig and PyConfig), all fields are optional.
Only fields with Some (T) will be updated from the defaults.

profile Field

Profile to use to initialize pre-config and config state of interpreter.

Type: PythonInterpreterProfile

allocator Field

Name of the memory allocator.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.allocator.

Type: Option<Allocator>

94 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.allocator

PyOxidizer, Release 0.21.0

configure_locale Field

Whether to set the LC_CTYPE locale to the user preferred locale.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.configure_locale.
Type: Option<bool>

coerce_c_locale Field

How to coerce the locale settings.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale.

Type: Option<CoerceCLocale>

coerce_c_locale_warn Field

Whether to emit a warning if the C locale is coerced.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale_warn.

Type: Option<bool>

development_mode Field

Whether to enable Python development mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.dev_mode.
Type: Option<bool>

isolated Field

Isolated mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.isolated.
Type: Option<bool>

legacy_windows_fs_encoding Field

Whether to use legacy filesystem encodings on Windows.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.legacy_windows_fs_encoding.
Type: Option<bool>

1.3. pyembed

95

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.configure_locale
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale_warn
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.dev_mode
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.isolated
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.legacy_windows_fs_encoding

PyOxidizer, Release 0.21.0

parse_argv Field

Whether argv should be parsed the way python parses them.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.parse_argv.
Type: Option<bool>

use_environment Field

Whether environment variables are read to control the interpreter configuration.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.use_environment.

Type: Option<bool>

utf8_mode Field

Controls Python UTF-8 mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.utf8_mode.
Type: Option<bool>

argv Field

Command line arguments.
These will become sys.argv.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.argv.

Type: Option<Vec<OsString>>

base_exec_prefix Field

Controls sys.base_exec_prefix.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_exec_prefix.
Type: Option<PathBuf>

base_executable Field

Controls sys._base_executable.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_executable.
Type: Option<PathBuf>

96 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.parse_argv
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.use_environment
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.utf8_mode
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.argv
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_exec_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_executable

PyOxidizer, Release 0.21.0

base_prefix Field

Controls sys.base_prefix.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_prefix.
Type: Option<PathBuf>

buffered_stdio Field

Controls buffering on stdout and stderr.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.buffered_stdio.
Type: Option<bool>

bytes_warning Field

Controls warnings/errors for some bytes type coercions.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.bytes_warning.
Type: Option<BytesWarning>

check_hash_pycs_mode Field

Validation mode for .pyc files.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.check_hash_pycs_mode.
Type: Option<CheckHashPycsMode>

configure_c_stdio Field

Controls binary mode and buffering on C standard streams.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.configure_c_stdio.
Type: Option<bool>

dump_refs Field

Dump Python references.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.dump_refs.
Type: Option<bool>

1.3. pyembed 97

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.buffered_stdio
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.bytes_warning
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.check_hash_pycs_mode
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.configure_c_stdio
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.dump_refs

PyOxidizer, Release 0.21.0

exec_prefix Field

Controls sys.exec_prefix.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.exec_prefix.
Type: Option<PathBuf>

executable Field

Controls sys.executable.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.executable.
Type: Option<PathBuf>

fault_handler Field

Enable faulthandler.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.faulthandler.
Type: Option<bool>

filesystem_encoding Field

Controls the encoding to use for filesystems/paths.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_encoding.

Type: Option<String>

filesystem_errors Field

Filesystem encoding error handler.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_errors.

Type: Option<String>

hash_seed Field

Randomized hash function seed.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.hash_seed.

Type: Option<c_ulong>

98 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.exec_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.executable
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.faulthandler
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_encoding
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_errors
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.hash_seed

PyOxidizer, Release 0.21.0

home Field

Python home directory.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.home.
Type: Option<PathBuf>

import_time Field

Whether to profile import time.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.import_time.
Type: Option<bool>

inspect Field

Enter interactive mode after executing a script or a command.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.inspect.
Type: Option<bool>

install_signal_handlers Field

Whether to install Python signal handlers.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.install_signal_handlers.
Type: Option<bool>

interactive Field

Whether to enable the interactive REPL mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.interactive.
Type: Option<bool>

legacy_windows_stdio Field

Controls legacy stdio behavior on Windows.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.legacy_windows_stdio.
Type: Option<bool>

1.3. pyembed 99

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.home
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.import_time
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.inspect
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.install_signal_handlers
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.interactive
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.legacy_windows_stdio

PyOxidizer, Release 0.21.0

malloc_stats Field

Whether to dump statistics from the pymalloc allocator on exit.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.malloc_stats.
Type: Option<bool>

module_search_paths Field

Defines sys.path.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.module_search_paths.
This value effectively controls the initial value of sys.path.

The special string $ORIGIN in values will be expanded to the absolute path of the directory of the executable at run-time.
For example, if the executable is /opt/my-application/pyapp, $ORIGIN will expand to /opt/my-application
and the value $ORIGIN/1ib will expand to /opt/my-application/lib.

Type: Option<Vec<PathBuf>>

optimization_level Field

Bytecode optimization level.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.optimization_level.

This setting is only relevant if write_bytecode is true and Python modules are being imported from the filesystem
using Python’s standard filesystem importer.

Type: Option<BytecodeOptimizationLevel>

parser_debug Field

Parser debug mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.parser_debug.
Type: Option<bool>

pathconfig_warnings Field

Whether calculating the Python path configuration can emit warnings.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pathconfig_warnings.
Type: Option<bool>

100 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.malloc_stats
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.module_search_paths
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.optimization_level
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.parser_debug
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pathconfig_warnings

PyOxidizer, Release 0.21.0

prefix Field

Defines sys.prefix.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.prefix.
Type: Option<PathBuf>

program_name Field

Program named used to initialize state during path configuration.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.program_name.
Type: Option<PathBuf>

pycache_prefix Field

Directory where . pyc files are written.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pycache_prefix.
Type: Option<PathBuf>

python_path_env Field

See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pythonpath_env.

Type: Option<String>

quiet Field

Quiet mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.quiet.
Type: Option<bool>

run_command Field

Value of the -c command line option.
Effectively defines Python code to evaluate in Py_RunMain().
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_command.

Type: Option<String>

1.3. pyembed

101

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.program_name
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pycache_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pythonpath_env
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.quiet
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_command

PyOxidizer, Release 0.21.0

run_filename Field

Filename passed on the command line.

Effectively defines the Python file to run in Py_RunMain().

See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_filename.
Type: Option<PathBuf>

run_module Field

Value of the -m command line option.
Effectively defines the Python module to run as __main__ in Py_RunMain().
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_module.

Type: Option<String>

show_ref_count Field

Whether to show the total reference count at exit.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.show_ref_count.
Type: Option<bool>

site_import Field

Whether to import the site module at startup.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.site_import.

The site module is typically not needed for standalone applications and disabling it can reduce application startup
time.

Type: Option<bool>

skip_first_source_line Field

Whether to skip the first line of Self::run_filename.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.skip_source_first_line.
Type: Option<bool>

102 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_filename
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_module
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.show_ref_count
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.site_import
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.skip_source_first_line

PyOxidizer, Release 0.21.0

stdio_encoding Field

Encoding of sys.stdout, sys.stderr, and sys.stdin.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_encoding.

Type: Option<String>

stdio_errors Field

Encoding error handler for sys.stdout and sys.stdin.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_errors.

Type: Option<String>

tracemalloc Field

Whether to enable tracemalloc.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.tracemalloc.
Type: Option<bool>

user_site_directory Field

Whether to add the user site directory to sys.path.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.user_site_directory.
Type: Option<bool>

verbose Field

Verbose mode.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.verbose.
Type: Option<bool>

warn_options Field

Options of the warning module to control behavior.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.warnoptions.

Type: Option<Vec<String>>

1.3. pyembed

103

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_encoding
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_errors
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.tracemalloc
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.user_site_directory
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.verbose
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.warnoptions

PyOxidizer, Release 0.21.0

write_bytecode Field

Controls sys.dont_write_bytecode.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.write_bytecode.
Type: Option<bool>

x_options Field

Values of the -X command line options / sys._xoptions.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.xoptions.

Type: Option<Vec<String>>

MemoryAllocatorBackend Enum

Defines a backend for a memory allocator.

This says which memory allocator API / library to configure the Python interpreter to use.
Not all allocators are available in all program builds.

Serialization type: string

Default Variant
The default allocator as configured by Python.

This likely utilizes the system default allocator, normally the malloc(), free(), etc functions from the libc
implementation being linked against.

Serialized value: default

Jemalloc Variant
Use the jemalloc allocator.

Requires the binary to be built with jemalloc support.
Never available on Windows.
Serialized value: jemalloc

Mimalloc Variant
Use the mimalloc allocator (https://github.com/microsoft/mimalloc).

Requires the binary to be built with mimalloc support.
Serialized value: mimalloc

Snmalloc Variant
Use the snmalloc allocator (https://github.com/microsoft/snmalloc).

Not always available.
Serialized value: snmalloc

Rust Variant
Use Rust’s global allocator.

The Rust allocator is less efficient than other allocators because of overhead tracking allocations. For optimal
performance, use the default allocator. Or if Rust is using a custom global allocator, use the enum variant corre-
sponding to that allocator.

104 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.write_bytecode
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.xoptions
https://github.com/microsoft/mimalloc
https://github.com/microsoft/snmalloc

PyOxidizer, Release 0.21.0

Serialized value: rust

PythonInterpreterProfile Enum

Defines the profile to use to configure a Python interpreter.

This effectively provides a template for seeding the initial values of PyPreConfig and PyConfig C structs.

Serialization type: string.

Isolated Variant
Python is isolated from the system.

See https://docs.python.org/3/c-api/init_config.html#isolated-configuration.
Serialized value: isolated

Python Variant
Python interpreter behaves like python.

See https://docs.python.org/3/c-api/init_config.html#python-configuration.

Serialized value: python

Allocator Enum

Name of the Python memory allocators.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.allocator.
Serialization type: string

NotSet Variant
Don’t change memory allocators (use defaults).

Serialized value: not-set

Default Variant
Default memory allocators.

Serialized value: default

Debug Variant
Default memory allocators with debug hooks.

Serialized value: debug

Malloc Variant
Usemalloc() from the C library.

Serialized value: malloc

MallocDebug Variant
Force usage of malloc() with debug hooks.

Serialized value: malloc-debug

PyMalloc Variant
Python pymalloc allocator.

Serialized value: py-malloc

1.3. pyembed

105

https://docs.python.org/3/c-api/init_config.html#isolated-configuration
https://docs.python.org/3/c-api/init_config.html#python-configuration
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.allocator

PyOxidizer, Release 0.21.0

PyMallocDebug Variant
Python pymalloc allocator with debug hooks.

Serialized value: py-malloc-debug

BytecodeOptimizationLevel Enum

An optimization level for Python bytecode.
Serialization type: int

Zero Variant
Optimization level 0.

Serialized value: 0

One Variant
Optimization level 1.

Serialized value: 1

Two Variant
Optimization level 2.

Serialized value: 2

BytesWarning Enum

Defines what to do when comparing bytes or bytesarray with str or comparing bytes with int.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.bytes_warning.
Serialization type: string

None Variant
Do nothing.

Serialization value: none

Warn Variant
Issue a warning.

Serialization value: warn

Raise Variant
Raise a BytesWarning.

Serialization value: raise

CheckHashPycsMode Enum

Control the validation behavior of hash-based .pyc files.
See https://docs.python.org/3/c-api/init_config.html#c.PyConfig.check_hash_pycs_mode.
Serialization type: string

Always Variant
Hash the source file for invalidation regardless of value of the check_source flag.

Serialized value: always

106 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.bytes_warning
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.check_hash_pycs_mode

PyOxidizer, Release 0.21.0

Never Variant
Assume that hash-based pycs always are valid.

Serialized value: never

Default Variant
The check_source flag in hash-based pycs determines invalidation.

Serialized value: default

CoerceClLocale Enum

Holds values for coerce_c_locale.
See https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale.
Serialization type: string

LCCtype Variant
Read the LC_CTYPE locale to decide if it should be coerced.

Serialized value: LC_CTYPE

C Variant
Coerce the C locale.

Serialized value: C

MultiprocessingStartMethod Enum

Defines how to call multiprocessing.set_start_method() when multiprocessing is imported.

When set to a value that is not none, when oxidized_importer.OxidizedFinder services an import of the
multiprocessing module, it will automatically call multiprocessing.set_start_method() to configure how
worker processes are created.

If the multiprocessing module is not imported by oxidized_importer.OxidizedFinder, this setting has no
effect.

Serialization type: string

None Variant
Do not call multiprocessing.set_start_method().

This mode is what Python programs do by default.
Serialized value: none

Fork Variant
Call with value fork.

Serialized value: fork

ForkServer Variant
Call with value forkserver

Serialized value: forkserver

Spawn Variant
Call with value spawn

Serialized value: spawn

1.3. pyembed 107

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale

PyOxidizer, Release 0.21.0

Auto Variant
Call with a valid appropriate for the given environment.

This likely maps to spawn on Windows and fork on non-Windows.

Serialized value: auto

TerminfoResolution Enum

Defines terminfo database resolution semantics.

Python links against libraries like readline, 1ibedit, and ncurses which need to utilize a terminfo database (a
set of files defining terminals and their capabilities) in order to work properly.

The absolute path to the terminfo database is typically compiled into these libraries at build time. If the compiled
path on the building machine doesn’t match the path on the runtime machine, these libraries cannot find the terminfo
database and terminal interactions won’t work correctly because these libraries don’t know how to resolve terminal
features. This can result in quirks like the backspace key not working in prompts.

The pyembed Rust crate is able to point libraries at a terminfo database at runtime, overriding the compiled-in default
path. This enum is used to control that behavior.

Serialization type: string.

Dynamic Variant
Resolve terminfo database using appropriate behavior for current OS.

We will look for the terminfo database in paths that are common for the current OS / distribution. The terminfo
database is present in most systems (except the most barebones containers or sandboxes) and this method is
usually successfully in locating the terminfo database.

Serialized value: dynamic

None Variant
Do not attempt to resolve the terminfo database. Basically a no-op.

This is what should be used for applications that don’t interact with the terminal. Using this option will prevent
some I/O syscalls that would be incurred by dynamic.

Serialized value: none

Static Variant
Use a specified string as the TERMINFO_DIRS value.

Serialized value: static:<path>

e.g. static:/usr/share/terminfo.

1.4 PyOxidizer

PyOxidizer is a [Rust] application for streamlining the creation of distributable Python applications.

PyOxidizer is often used to generate binaries embedding a Python interpreter and a custom Python application. How-
ever, its configuration files support additional functionality, such as the ability to produce Windows MSI installers,
macOS application bundles, and more.

PyOxidizer is primarily made available as the pyoxidizer command line tool. However, it is also usable as a Rust
library crate.

108 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

1.4.1 PyOxidizer

PyOxidizer is a utility for streamlining the creation and distribution of Python applications. See Overview for more.
Or click through to a documentation section via the index below.

Overview

From a very high level, PyOxidizer is a tool for packaging and distributing Python applications. The over-arching
goal of PyOxidizer is to make this (often complex) problem space simple so application maintainers can focus on
building quality applications instead of toiling with build systems and packaging tools.

On a lower, more technical level, PyOxidizer has a command line tool - pyoxidizer - that is capable of building
binaries (executables or libraries) that embed a fully-functional Python interpreter plus Python extensions and modules
in a single binary. Binaries produced with PyOxidizer are highly portable and can work on nearly every system
without any special requirements like containers, FUSE filesystems, or even temporary directory access. On Linux,
PyOxidizer can produce executables that are fully statically linked and don’t even support dynamic loading.

The Oxidizer part of the name comes from Rust: binaries built with PyOxidizer are compiled from Rust and Rust
code is responsible for managing the embedded Python interpreter and all its operations. But the existence of Rust
should be invisible to many users, much like the fact that CPython (the official Python distribution available from
www.python.org) is implemented in C. Rust is simply a tool to achieve an end goal (albeit a rather effective and powerful
tool).

Benefits of PyOxidizer

You may be wondering why you should use or care about PyOxidizer. Great question!

Python application distribution is generally considered an unsolved problem. At PyCon 2019, Russel Keith-Magee
identified code distribution as a potential black swan for Python during a keynote talk. In their words, Python hasn’t
ever had a consistent story for how I give my code to someone else, especially if that someone else isn’t a developer and
Jjust wants to use my application. The over-arching goal of PyOxidizer is to solve this problem. If we’re successful,
we help Python become a more attractive option in more domains and eliminate this potential black swan that is an
existential threat for Python’s longevity.

On a less existential level, there are several benefits to PyOxidizer.

Ease of Application Installation

Installing Python applications can be hard, especially if you aren’t a developer.

Applications produced with PyOxidizer are self-contained - as small as a single file executable. From the perspective
of the end-user, they get an executable containing an application that just works. There’s no need to install a Python
distribution on their system. There’s no need to muck with installing Python packages. There’s no need to configure a
container runtime like Docker. There’s just an executable containing an embedded Python interpreter and associated
Python application code and running that executable just works. From the perspective of the end-user, your application
is just another platform native executable.

1.4. PyOxidizer 109

https://youtu.be/ftP5BQh1-YM?t=2033

PyOxidizer, Release 0.21.0

Ease of Packaging and Distribution

Python application developers can spend a large amount of time managing how their applications are packaged and
distributed. There’s no universal standard for distributing Python applications. Instead, there’s a hodgepodge of random
tools, typically different tools per operating system.

Python application developers typically need to solve the packaging and distribution problem N times. This is thankless
work and sucks valuable time away from what could otherwise be spent improving the application itself. Furthermore,
each distinct Python application tends to solve this problem redundantly.

Again, the over-arching goal of PyOxidizer is to provide a comprehensive solution to the Python application packaging
and distribution problem space. We want to make it as turn-key as possible for application maintainers to make their
applications usable by novice computer users. If we’re successful, Python developers can spend less time solving
packaging and distribution problems and more time improving Python applications themselves. That’s good for the
Python ecosystem.

Components

The most visible component of PyOxidizer is the pyoxidizer command line tool. This tool contains functionality
for creating new projects using PyOxidizer, adding PyOxidizer to existing projects, producing binaries containing
a Python interpreter, and various related functionality.

The pyoxidizer executable is written in Rust. Behind that tool is a pile of Rust code performing all the function-
ality exposed by the tool. That code is conveniently also made available as a library, so anyone wanting to integrate
PyOxidizer’s core functionality without using our pyoxidizer tool is able to do so.

The pyoxidizer crate and command line tool are effectively glorified build tools: they simply help with various
project management, build, and packaging.

The run-time component of PyOxidizer is completely separate from the build-time component. The run-time compo-
nent of PyOxidizer consists of a Rust crate named pyembed. The role of the pyembed crate is to manage an embedded
Python interpreter. This crate contains all the code needed to interact with the CPython APIs to create and run a Python
interpreter. pyembed also contains the special functionality required to import Python modules from memory using
ZEero-copy.

How It Works

The pyoxidizer tool is used to create a new project or add PyOxidizer to an existing (Rust) project. This entails:
* Generating a boilerplate Rust source file to call into the pyembed crate to run a Python interpreter.
* Generating a working pyoxidizer.bzl configuration file.
* Telling the project’s Rust build system about PyOxidizer.

When that project’s pyembed crate is built by Rust’s build system, it calls out to PyOxidizer to process the active
PyOxidizer configuration file. PyOxidizer will obtain a specially-built Python distribution that is optimized for
embedding. It will then use this distribution to finish packaging itself and any other Python dependencies indicated in
the configuration file. For example, you can process a pip requirements file at build time to include additional Python
packages in the produced binary.

At the end of this sausage grinder, PyOxidizer emits an archive library containing Python (which can be linked into
another library or executable) and resource files containing Python data (such as Python module sources and bytecode).
Most importantly, PyOxidizer tells Rust’s build system how to integrate these components into the binary it is building.

From here, Rust’s build system combines the standard Rust bits with the files produced by PyOxidizer and turns
everything into a binary, typically an executable.

110 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

At run time, an instance of the OxidizedPythonInterpreterConfig struct from the pyembed crate is created to
define how an embedded Python interpreter should behave. (One of the build-time actions performed by PyOxidizer
is to convert the Starlark configuration file into a default instance of this struct.) This struct is used to instantiate a
Python interpreter.

The pyembed crate implements a Python extension module which provides custom module importing functionality.
Light magic is used to coerce the Python interpreter to load this module very early during initialization. This allows
the module to service Python import requests. The custom module importer installed by pyembed supports retrieving
data from a read-only data structure embedded in the executable itself. Essentially, the Python import request calls
into some Rust code provided by pyembed and Rust returns a void * to memory containing data (module source
code, bytecode, etc) that was generated at build time by PyOxidizer and later embedded into the binary by Rust’s
build system.

Once the embedded Python interpreter is initialized, the application works just like any other Python application!
The main differences are that modules are (probably) getting imported from memory and that Rust - not the Python
distribution’s python executable logic - is driving execution of Python.

Read on to Getting Started to learn how to use PyOxidizer.

Getting Started

Python Requirements

PyOxidizer currently targets Python 3.8, 3.9, and 3.10. Your Python application will need to already be compatible
with 1 of these versions for it to work with PyOxidizer. See Why is Python 3.8 Required? for more on the minimum
Python requirement.

Operating System Requirements

PyOxidizer is officially supported on the following operating systems:
¢ Windows x86 (32-bit)
¢ Windows x86_64/amd64 (64-bit)
* macOS x86_64 (Intel processors)
* macOS aarch64 (ARM/Apple processors)
¢ Linux i686 (32-bit)
e Linux x86_64 (64-bit)

It is likely possible to run PyOxidizer on unsupported operating systems and architectures. However, PyOxidizer needs
to run Python interpreters on the machine performing build/packaging actions and the built binary needs to run a Python
interpreter for the target architecture and operating system. These Python interpreters need to be built/packaged in a
specific way so PyOxidizer can interact with them.

See Available Python Distributions for the full list of available Python distributions. The supported operating systems
and architectures of the built-in Python distributions are:

* Linux x86_64 (glibc 2.19 or musl linked)
¢ Windows 8+ / Server 2012+ 1686 and x86_64
¢ macOS 10.9+ Intel x86_64 or 11.0+ ARM

1.4. PyOxidizer 111

PyOxidizer, Release 0.21.0

Other System Dependencies

You will need a working C compiler/toolchain in order to build binaries. If a C compiler cannot be found, you should
see an error message with instructions on how to install one.

On macOS, you will need an Apple SDK that is at least as new as the SDK used to build the Python distribution
embedded in the binary. PyOxidizer will automatically attempt to locate, validate, and use an appropriate SDK. See
Build Machine Requirements for more.

There is a known issue with PyOxidizer on Fedora 30+ that will require you to install the 1ibxcrypt-compat package
to avoid an error due to a missing libcrypt.so.1 file. See https://github.com/indygreg/PyOxidizer/issues/89 for
more info.

While PyOxidizer is implemented in Rust and invokes the Rust compiler and build tooling to build binaries, PyOxidizer
manages a Rust installation for you. This means Rust is not an explicit install dependency for PyOxidizer unless you
are building PyOxidizer from source code.

Installing
Pre-Built Installers and Executables

PyOxidizer provides pre-built installers and executables as part of its release process. The following should be made
available:

* Linux x86-64 statically linked binary.
* macOS universal binary.
¢ Windows x86 (32-bit) MSI installer.
¢ Windows amd64 (64-bit) MSI installer.
¢ Windows universal (x86+amd64) EXE installer.
* Python wheels.
These installers can generally be found at https://github.com/indygreg/PyOxidizer/releases/latest.

If this URL does not redirect to a PyOxidizer release, go to https://github.com/indygreg/PyOxidizer/releases and look
for a release with PyOxidizer release artifacts. You should see giant text that reads PyOxidizer <version> thatlooks
different from other entries in the list. You may have to click through multiple next links at the bottom of the release
list until you find a PyOxidizer release.

If pre-built artifacts are not available for your machine, you will need to compile PyOxidizer from source code.

Python Wheels

PyOxidizer is made available as a binary Python wheel (.whl) and releases are published on PyPI. So you can install
PyOxidizer like any other Python package:

$ python3 -m pip install pyoxidizer

To upgrade an existing install
$ python3 -m pip install --upgrade pyoxidizer

112 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/issues/89
https://github.com/indygreg/PyOxidizer/releases/latest
https://github.com/indygreg/PyOxidizer/releases

PyOxidizer, Release 0.21.0

Installing PyOxidizer from Source
Installing Rust

PyOxidizer is a Rust application and requires Rust (1.60 or newer) to be installed in order to build PyOxidizer.

You can verify your installed version of Rust by running:

$ rustc --version
rustc 1.61.0 (fe5b13d68 2022-05-18)

If you don’t have Rust installed, https://www.rust-lang.org/ has very detailed instructions on how to install it.

Rust releases a new version every 6 weeks and language development moves faster than other programming languages.
It is common for the Rust packages provided by common package managers to lag behind the latest Rust release by
several releases. For that reason, use of the rustup tool for managing Rust is highly recommended.

If you are a security paranoid individual and don’t want to follow the official rustup install instructions involving
a curl | sh (your paranoia is understood), you can find instructions for alternative installation methods at https:
//github.com/rust-lang/rustup.rs/#other-installation-methods.

Installing PyOxidizer

Once Rust is installed, PyOxidizer can be installed from its latest published crate on Rust’s official/default package
repository:

$ cargo install pyoxidizer

From PyOxidizer’s canonical Git repository using cargo:

The latest commit in source control.
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --branch main pyoxidizer

$ A specific release
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --tag <TAG> pyoxidizer

Or by cloning the canonical Git repository and building the project locally:

$ git clone https://github.com/indygreg/PyOxidizer.git
$ cd PyOxidizer
$ cargo install --path pyoxidizer

Note: PyOxidizer’s project policy is for the main branch to be stable. So it should always be relatively safe to use
main instead of a released version.

Danger: A cargo build from the repository root directory will likely fail due to how some of the Rust crates
are configured.

See Using Cargo with PyOxidizer Source Checkouts for instructions on how to invoke cargo.

Once the pyoxidizer executable is installed, try to run it:

1.4. PyOxidizer 113

https://www.rust-lang.org/
https://github.com/rust-lang/rustup.rs/#other-installation-methods
https://github.com/rust-lang/rustup.rs/#other-installation-methods

PyOxidizer, Release 0.21.0

$ pyoxidizer

PyOxidizer 0.14.0-pre

Gregory Szorc <gregory.szorc@gmail.com>
Build and distribute Python applications

USAGE:
pyoxidizer [FLAGS] [SUBCOMMAND]

Congratulations, PyOxidizer is installed! Now let’s move on to using it.

High-Level Project Lifecycle

PyOxidizer exposes various functionality through the interaction of pyoxidizer commands and configuration files.

The first step of any project is to create it. This is achieved with a pyoxidizer init-* command to create files
required by PyOxidizer.

After that, various pyoxidizer commands can be used to evaluate configuration files and perform actions from the
evaluated file. PyOxidizer provides functionality for building binaries, installing files into a directory tree, and run-
ning the results of build actions.

Your First PyOxidizer Project

The pyoxidizer init-config-file command will create a new PyOxidizer configuration file in a directory of
your choosing:

$ pyoxidizer init-config-file pyapp

This should have printed out details on what happened and what to do next. If you actually ran this in a terminal,
hopefully you don’t need to continue following the directions here as the printed instructions are sufficient! But if you
aren’t, keep reading.

The default configuration created by pyoxidizer init-config-file will produce an executable that embeds
Python and starts a Python REPL by default. Let’s test that:

$ cd pyapp

$ pyoxidizer run
resolving 1 targets
resolving target exe

Compiling pyapp v0.1.0 (/tmp/pyoxidizer.nv7QvpNPRgL5/pyapp)

Finished dev [unoptimized + debuginfo] target(s) in 26.07s
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
>>>

If all goes according to plan, you just started a Rust executable which started a Python interpreter, which started an
interactive Python debugger! Try typing in some Python code:

>>> print("hello, world")
hello, world

114 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

It works!
(To exit the REPL, press CTRL+d or CTRL+z.)

Continue reading The pyoxidizer Command Line Tool to learn more about the pyoxidizer tool. Or read on for a
preview of how to customize your application’s behavior.

The pyoxidizer.bzl Configuration File

The most important file for a PyOxidizer project is the pyoxidizer.bzl configuration file. This is a Starlark file
evaluated in a context that provides special functionality for PyOxidizer.

Starlark is a Python-like interpreted language and its syntax and semantics should be familiar to any Python program-
mer.

From a high-level, PyOxidizer’s configuration files define named targets, which are callable functions associated
with a name - the rarget - that resolve to an entity. For example, a configuration file may define a build_exe()
function which returns an object representing a standalone executable file embedding Python. The pyoxidizer build
command can be used to evaluate just that target/function.

Target functions can call out to other target functions. For example, there may be an install target that creates a set
of files composing a full application. Its function may evaluate the exe target to produce an executable file.

See Configuration Files for comprehensive documentation of pyoxidizer.bzl files and their semantics.

Customizing Python and Packaging Behavior

Embedding Python in a Rust executable and starting a REPL is cool and all. But you probably want to do something
more exciting.

The autogenerated pyoxidizer.bzl file created as part of running pyoxidizer init-config-file defines how
your application is configured and built. It controls everything from what Python distribution to use, which Python
packages to install, how the embedded Python interpreter is configured, and what code to run in that interpreter.

Open pyoxidizer.bzl in your favorite editor and find the commented lines assigning to python_config.run_¥*.
Let’s uncomment or add a line to match the following:

python_config.run_command = "import uuid; print(uuid.uuid4())"

We’re now telling the interpreter to run the Python statement eval (import uuid; print(uuid.uuid4()) when it
starts. Test that out:

$ pyoxidizer run

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 3.92s
Running " target/debug/pyapp"
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
96£776c8-c32d-48d8-8clc-aef8a735£f535

It works!

This is still pretty trivial. But it demonstrates how the pyoxidizer.bzl is used to influence the behavior of built
executables.

Let’s do something a little bit more complicated, like package an existing Python application!

1.4. PyOxidizer 115

PyOxidizer, Release 0.21.0

Find the exe = dist.to_python_executable(line in the pyoxidizer.bzl file. Let’s add a new line to
make_exe () just below where exe is assigned:

for resource in exe.pip_install(["pyflakes==2.2.0"]1):
resource.add_location = "in-memory"
exe.add_python_resource(resource)

In addition, set the python_config.run_command attribute to execute pyflakes:

python_config.run_command = "from pyflakes.api import main; main()"

Now let’s try building and running the new configuration:

$ pyoxidizer run -- --help

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)

Finished dev [unoptimized + debuginfo] target(s) in 5.49s
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/pyapp
Usage: pyapp [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit

You’ve just produced an executable for pyflakes!

Note: pyflakes with no command arguments will read from stdin and will effectively hang until stdin is closed
(typically via CTRL + D). So the -- --help in the above example is important, as it forces the command to produce
output.

There are far more powerful packaging and configuration settings available. Read all about them at Configuration Files
and Packaging User Guide. Or continue on to The pyoxidizer Command Line Tool to learn more about the pyoxidizer
tool.

The pyoxidizer Command Line Tool

The pyoxidizer command line tool is a frontend to the various functionality of PyOxidizer. See Components for
more on the various components of PyOxidizer.

Settings
Cache Directory

pyoxidizer may need to download resources such as Python distributions and Rust toolchains from the Internet.
These resources are cached in a per-user directory.

PyOxidizer chooses the first available directory from the following list to use as the cache:
* The value of the environment variable PYOXIDIZER_CACHE_DIR.
¢ $XDG_CACHE_HOME/pyoxidizer on Linux if XDG_CACHE_HOME is set.
e $HOME/.cache/pyoxidizer on Linux if HOME is set.

116 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

e $HOME/Library/Caches/pyoxidizer on macOS if HOME is set.
e {FOLDERID_LocalAppData}/pyoxidizer on Windows.
e ~/.pyoxidizer/cache

The pyoxidizer cache-clear command can be used to delete the contents of the cache.

Managed Rust Toolchain

PyOxidizer leverages the Rust programming language and its tooling for building binaries embedding Python.

By default, PyOxidizer will automatically download and use Rust toolchains (the Rust compiler, standard library, and
Cargo) when their functionality is needed. PyOxidizer will store these Rust toolchains in the configured cache.

If you already have Rust installed on your machine and want PyOxidizer to use the existing Rust installation, either pass
the --system-rust flag to pyoxidizer invocations or define the PYOXIDIZER_SYSTEM_RUST environment variable
to any value. When the sysfem Rust is being used, pyoxidizer will automatically use the cargo executable found on
the current search path (typically the PATH environment variable).

Creating New Projects with init-config-file

The pyoxidizer init-config-file command will create a new pyoxidizer.bzl configuration file in the target
directory:

$ pyoxidizer init-config-file pyapp

This should have printed out details on what happened and what to do next.

Creating New Rust Projects with init-rust-project

The pyoxidizer init-rust-project command creates a minimal Rust project configured to build an application
that runs an embedded Python interpreter from a configuration defined in a pyoxidizer.bzl configuration file. Run
it by specifying the directory to contain the new project:

$ pyoxidizer init-rust-project pyapp

This should have printed out details on what happened and what to do next.

The explicit creation of Rust projects to use PyOxidizer is not required. If your produced binaries only need to perform
actions configurable via PyOxidizer configuration files (like running some Python code), an explicit Rust project isn’t
required, as PyOxidizer can auto-generate a temporary Rust project at build time.

But if you want to supplement the behavior of the binaries built with Rust, an explicit and persisted Rust project can
facilitate that. For example, you may want to run custom Rust code before, during, and after a Python interpreter runs
in the process.

See PyOxidizer Rust Projects for more on the composition of Rust projects.

1.4. PyOxidizer 117

PyOxidizer, Release 0.21.0

Building PyObject Projects with build

The pyoxidizer build command is probably the most important and used pyoxidizer command. This command
evaluates a pyoxidizer.bzl configuration file by resolving fargets in it.

By default, the default zarget in the configuration file is resolved. However, callers can specify a list of explicit targets
to resolve. e.g.:

Resolve the default target.
$ pyoxidizer build
Resolve the "exe" and "install" targets, in that order.
$ pyoxidizer build exe install

PyOxidizer configuration files are effectively defining a build system, hence the name build for the command to
resolve targets within.

Running the Result of Building with run

Target functions in PyOxidizer configuration files return objects that may be runnable. For example, a
PythonExecutable returned by a target function that defines a Python executable binary can be run by executing
a new process.

The pyoxidizer run command is used to attempt to run an object returned by a build target. It is effectively
pyoxidizer build followed by running the returned object. e.g.:

Run the default target.
$ pyoxidizer run

Run the "install" target.
$ pyoxidizer run --target install

Analyzing Produced Binaries with analyze

The pyoxidizer analyze command is a generic command for analyzing the contents of executables and libraries.
While it is generic, its output is specifically tailored for PyOxidizer.

Run the command with the path to an executable. For example:

$ pyoxidizer analyze build/apps/myapp/x86_64-unknown-1linux-gnu/debug/myapp

Behavior is dependent on the format of the file being analyzed. But the general theme is that the command attempts to
identify the run-time requirements for that binary. For example, for ELF binaries it will list all shared library depen-
dencies and analyze glibc symbol versions and print out which Linux distributions it thinks the binary is compatible
with.

Note: pyoxidizer analyze is not yet implemented for all executable file types that PyOxidizer supports.

118 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Inspecting Python Distributions

PyOxidizer uses special pre-built Python distributions to build binaries containing Python.

These Python distributions are zstandard compressed tar files. Zstandard is a modern compression format that is really,
really, really good. (PyOxidizer’s maintainer also maintains Python bindings to zstandard and has written about the
benefits of zstandard on his blog. You should read that blog post so you are enlightened on how amazing zstandard
is.) But because zstandard is relatively new, not all systems have utilities for decompressing that format yet. So,
the pyoxidizer python-distribution-extract command can be used to extract the zstandard compressed tar
archive to a local filesystem path.

Python distributions contain software governed by a number of licenses. This of course has implications for application
distribution. See Licensing Considerations for more.

The pyoxidizer python-distribution-licenses command can be used to inspect a Python distribution archive
for information about its licenses. The command will print information about the licensing of the Python distribution
itself along with a per-extension breakdown of which libraries are used by which extensions and which licenses apply
to what. This command can be super useful to audit for license usage and only allow extensions with licenses that you
are legally comfortable with.

For example, the entry for the readline extension shows that the extension links against the ncurses and readline
libraries, which are governed by the X11, and GPL-3.0 licenses:

readline

Dependency: ncurses
Link Type: library

Dependency: readline
Link Type: library

Licenses: GPL-3.0, X11
License Info: https://spdx.org/licenses/GPL-3.0.html
License Info: https://spdx.org/licenses/X11.html

Note: The license annotations in Python distributions are best effort and can be wrong. They do not constitute a
legal promise. Paranoid individuals may want to double check the license annotations by verifying with source code
distributions, for example.

Debugging Resource Scanning and Identification with find-resources

The pyoxidizer find-resources command can be used to scan for resources in a given source and then print
information on what’s found.

PyOxidizer’s packaging functionality scans directories and files and classifies them as Python resources which can be
operated on. See Resource Types. PyOxidizer’s run-time importer/loader (oxidized_importer Python Extension) works
by reading a pre-built index of known resources. This all works in contrast to how Python typically works, which is to
put a bunch of files in directories and let the built-in importer/loader figure it out by dynamically probing for various
files.

Because PyOxidizer has introduced structure where it doesn’t exist in Python and because there are many subtle nuances
with how files are classified, there can be bugs in PyOxidizer’s resource scanning code.

1.4. PyOxidizer 119

https://github.com/indygreg/python-zstandard
https://gregoryszorc.com/blog/2017/03/07/better-compression-with-zstandard/
https://gregoryszorc.com/blog/2017/03/07/better-compression-with-zstandard/

PyOxidizer, Release 0.21.0

The pyoxidizer find-resources command exists to facilitate debugging PyOxidizer’s resource scanning code.

Simply give the command a path to a directory or Python wheel archive and it will tell you what it discovers. e.g.:

$ pyoxidizer find-resources dist/oxidized_importer-0.1-cp38-cp38-manylinuxl_x86_64.whl
parsing dist/oxidized_importer-0.1-cp38-cp38-manylinuxl_x86_64.whl as a wheel archive
PythonExtensionModule { name: oxidized_importer }

PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:._.
—LICENSE }

PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:.
—WHEEL }

PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name: top_
~level.txt }

PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:.
—METADATA }

PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:.
—RECORD }

Or give it the path to a site-packages directory:

$ pyoxidizer find-resources ~/.pyenv/versions/3.8.6/1lib/python3.8/site-packages

This command needs to use a Python distribution so it knows what file extensions correspond to Python extensions,
etc. By default, it will download one of the built-in distributions that is compatible with the current machine and use
that. You can specify a --distributions-dir to use to cache downloaded distributions:

$ pyoxidizer find-resources --distributions-dir distributions /usr/lib/python3.8

Defining Extra Variables in Starlark Environment

Various pyoxidizer commands (like build and run) accept arguments to define extra variables in the Starlark en-
vironment in the VARS global dict. This feature can be used to parameterize and conditionalize the evaluation of
configuration files.

Note: While we could inject global variables into the Starlark environment, since it is illegal to access an undefined
symbol (there’s not even a way to test if a symbol is defined) and since we have no hook point to inject variables after
the symbol has been defined, we resort to populating a global VARS dict with variables.

For example, let’s make the name of the built executable dynamic:

DEFAULT_APP_NAME = "default"
def make_exe(dist):
dist = default_python_distribution()
return dist.to_python_executable(name = VARS.get("app_name", DEFAULT_APP_NAME))

register_target("exe", make_exe)

resolve_targets()

Then let’s build it:

120 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Uses "default’™ as the application name.
$ pyoxidizer build

Uses 'my_app as the application name.
$ pyoxidizer build --var app_name my_app

Uses "env_name as the application name via an environment variable.
§ APP_NAME=env_name pyoxidizer build --var-env app_name APP_NAME

Configuration Files

PyOxidizer uses Starlark files to configure run-time behavior.

Starlark is a dialect of Python intended to be used as a configuration language and the syntax should be familiar to any
Python programmer.

This documentation section contains both a high-level overview of the configuration files and their semantics as well
as low-level documentation for every type and function in the Starlark dialect.

Automatic File Location Strategy

If the PYOXIDIZER_CONFIG environment variable is set, the path specified by this environment variable will be used
as the location of the Starlark configuration file.

If the OUT_DIR environment variable is set (we’re building from the context of a Rust project), the ancestor directories
will be searched for a pyoxidizer.bzl file and the first one found will be used.

Otherwise, PyOxidizer will look for a pyoxidizer.bzl file starting in either the current working directory or from
the directory containing the pyembed crate and then will traverse ancestor directories until a file is found.

If no configuration file is found, an error occurs.

Concepts
Processing

A configuration file is evaluated in a custom Starlark dialect which provides primitives used by PyOxidizer. This dialect
provides some well-defined global variables (defined in UPPERCASE) as well as some types and functions that can be
constructed and called. See Global Symbols for a full list of what’s available to the Starlark environment.

Since Starlark is effectively a subset of Python, executing a PyOxidizer configuration file is effectively running a
sandboxed Python script. It is conceptually similar to running python setup.py to build a Python package. As
functions within the Starlark environment are called, PyOxidizer will perform actions as described by those functions.

1.4. PyOxidizer 121

https://github.com/bazelbuild/starlark

PyOxidizer, Release 0.21.0

Targets

PyOxidizer configuration files are composed of functions registered as named fargets. You define a function that does
something then register it as a target by calling the register_target() global function provided by our Starlark dialect.

e.g.:

def get_python_distribution():
return default_python_distribution()

register_target('dist", get_python_distribution)

When a configuration file is evaluated, PyOxidizer attempts to resolve an ordered list of targets This list of targets is
either specified by the end-user or is derived from the configuration file. The first register_target() target or the
last register_target () call passing default=True is the default target.

When evaluated in Rust build script mode (typically via pyoxidizer run-build-script), the default target will be
the one specified by the last register_target () call passing default_build_script=True, or the default target
if no target defines itself as the default build script target.

PyOxidizer calls the registered target functions in order to resolve the requested set of targets.

Target functions can depend on other targets and dependent target functions will automatically be called and have their
return value passed as an argument to the target function depending on it. See register_target() for more.

The value returned by a target function is special. Some types defined by our Starlark dialect have special build or run
behavior associated with them. If you run pyoxidizer build or pyoxidizer run against a target that returns one
of these types, that behavior will be performed.

For example, if you return a PythonExecutable, the build behavior is to produce that executable file and the run
behavior is to run that built executable.

See Types with Target Behavior for the full list of types with registered target behaviors.

Python Distributions Provide Python

The PythonDistribution Starlark type defines a Python distribution. A Python distribution is an entity which
contains a Python interpreter, Python standard library, and which PyOxidizer knows how to consume and integrate
into a new binary.

PythonDistribution instances are arguably the most important type in configuration files because without them you
can’t perform Python packaging actions or construct binaries with Python embedded.

Instances of PythonDistribution are typically constructed from default_python_distribution().

Python Executables Run Python

The PythonExecutable Starlark type defines an executable file embedding Python. Instances of this type are used to
build an executable file (and possibly other files needed by it) that contains an embedded Python interpreter and other
resources required by it.

Instances of PythonExecutable are derived from a PythonDistribution instance via PythonDistribution.
to_python_executable (). There is typically a standalone function/target in config files for doing this.

122 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Python Resources

At run-time, Python interpreters need to consult resources like Python module source and bytecode as well as re-
source/data files. We refer to all of these as Python Resources.

Configuration files represent Python Resources via the following types:
e PythonModuleSource
e PythonPackageResource
* PythonPackageDistributionResource

e PythonExtensionModule

Specifying Resource Locations

Various functionality relates to the concept of a resource location, or where a resource should be loaded from at run-
time. See Managing How Resources are Added for more.

Resource locations are represented as strings in Starlark. The mapping of strings to resource locations is as follows:

in-memory
Load the resource from memory.

filesystem-relative:<prefix>
Install and load the resource from a filesystem relative path to the build binary. e.g. filesystem-relative:1lib
will place resources in the 1ib/ directory next to the build binary.

Resource Attributes Influencing Adding

Individual Starlark values representing resources expose various attributes prefixed with add_ which influence
what happens when that resource is added to a resource collector. These attributes are derived from the
PythonPackagingPolicy attached to the entity creating the resource. But they can be modified by Starlark code
before the resource is added to a collection.

The following sections describe each attribute that influences how the resource is added to a collection.

add_include

This bool attribute defines a yes/no filter for whether to actually add this resource to a collection. If a resource with
.add_include = False is added to a collection, that add is processed as a no-op and no change is made.

add_location

This string attributes defines the primary location this resource should be added to and loaded from at run-time.
It can be set to the following values:

in-memory
The resource should be loaded from memory.

For Python modules and resource files, the module is loaded from memory using 0-copy by the custom module
importer.

1.4. PyOxidizer 123

PyOxidizer, Release 0.21.0

For Python extension modules, the extension module may be statically linked into the built binary or loaded as
a shared library from memory (the latter is not supported on all platforms).

filesystem-relative:<prefix>
The resource is materialized on the filesystem relative to the built entity and loaded from the filesystem at run-
time.

<prefix> here is a directory prefix to place the resource in. . (e.g. filesystem-relative:.) can be used to
denote the same directory as the built entity.

add_location_fallback

This string or None value attribute is equivalent to add_location except it only comes into play if the location
specified by add_location could not be satisfied.

Some resources (namely Python extension modules) cannot exist in all locations. Setting this attribute to a different
location gives more flexibility for packaging resources with location constraints.

add_source

This bool attribute defines whether to add source code for a Python module.

For Python modules, typically only bytecode is required at run-time. For some applications, the presence of source
code doesn’t provide sufficient value or isn’t desired since the application developer may want to obfuscate the source
code. Setting this attribute to False prevents Python module source code from being added.

add_bytecode_optimization_level_zero

This bool attributes defines whether to add Python bytecode for optimization level O (the default optimization level).
If True, Python source code will be compiled to bytecode at build time.

The default value is whatever PythonPackagingPolicy.bytecode_optimize_level_zero is set to.

add_bytecode_optimization_level_one

This bool attributes defines whether to add Python bytecode for optimization level 1.

The default value is whatever PythonPackagingPolicy.bytecode_optimize_level_one is set to.

add_bytecode_optimization_level_two

This bool attributes defines whether to add Python bytecode for optimization level 2.

The default value is whatever PythonPackagingPolicy.bytecode_optimize_level_two is set to.

124 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Global Symbols

This document lists every single global type, variable, and function available in PyOxidizer’s Starlark execution envi-
ronment.

The Starlark environment contains symbols from the following:
e Starlark built-ins
» Tugger’s Starlark Dialect
» PyOxidizer’s Dialect (documented below)

In addition, extra global variables can be injected into the execution environment on a per-invocation basis. This is
commonly encountered with use of the --var and —var-env * arguments to various pyoxidizer sub-commands.

Global Types

PyOxidizer’s Starlark dialect defines the following custom types:

File
Represents a filesystem path and content.

starlark_tugger.FileContent
Represents the content of a file on the filesystem.

(Unlike File, this does not track the filename internally.)

starlark_tugger.FileManifest
Represents a mapping of filenames to file content.

PythonDistribution
Represents an implementation of Python.

Used for embedding into binaries and running Python code.

PythonEmbeddedResources
Represents resources made available to a Python interpreter.

PythonExecutable
Represents an executable file containing a Python interpreter.

PythonExtensionModule
Represents a compiled Python extension module.

PythonInterpreterConfig
Represents the configuration of a Python interpreter.

PythonPackageDistributionResource
Represents a file containing Python package distribution metadata.

PythonPackageResource
Represents a non-module resource data file.

PythonPackagingPolicy
Represents a policy controlling how Python resources are added to a binary.

PythonModuleSource
Represents a . py file containing Python source code.

1.4. PyOxidizer 125

https://github.com/bazelbuild/starlark/blob/master/spec.md#built-in-constants-and-functions

PyOxidizer, Release 0.21.0

Global Constants

The Starlark execution environment defines various variables in the global scope which are intended to be used as
read-only constants. The following sections describe these variables.

BUILD_TARGET_TRIPLE

The string Rust target triple that we’re currently building for. Will be a value like x86_64-unknown-1inux-gnu or
x86_64-pc-windows-msvc. Run rustup target list to see a list of targets.

CONFIG_PATH

The string path to the configuration file currently being evaluated.

CONTEXT

Holds build context. This is an internal variable and accessing it will not provide any value.

CWD

The current working directory. Also the directory containing the active configuration file.

Global Functions

PyOxidizer’s Starlark dialect defines the following global functions:

default_python_distribution()
Obtain the default PythonDistribution for the active build configuration.

register_target()
Register a named rarget that can be built.

resolve_target()
Build/resolve a specific named target.

resolve_targets()
Triggers resolution of requested build rargets.

set_build_path()
Set the filesystem path to use for writing files during evaluation.

126 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Types with Target Behavior

As described in 7argets, a function registered as a named target can return a type that has special build or run behavior.
The following types have special behavior registered:

starlark_tugger.FileManifest
Build behavior is to materialize all files in the file manifest.

Run behavior is to run the last added PythonExecutable if available, falling back to an executable file installed
by the manifest if there is exactly 1 executable file.

PythonEmbeddedResources
Build behavior is to write out files this type represents.

There is no run behavior.

PythonExecutable
Build behavior is to build the executable file.

Run behavior is to run that built executable.

Functions for Manipulating Global State

starlark_pyoxidizer.set_build_path(path: str)
Configure the directory where build artifacts will be written.

Build artifacts include Rust build state, files generated by PyOxidizer, staging areas for built binaries, etc.
If a relative path is passed, it is interpreted as relative to the directory containing the configuration file.

The default value is $CWD/build.

Important: This needs to be called before functionality that utilizes the build path, otherwise the default value
will be used.

Functions for Managing Targets
register_target()

Registers a named target that can be resolved by the configuration file.
A target consists of a string name, callable function, and an optional list of targets it depends on.

The callable may return one of the types defined by this Starlark dialect to facilitate additional behavior, such as how
to build and run it.

Arguments:

name
(string) The name of the target being register.

fn
(function) A function to call when the target is resolved.

1.4. PyOxidizer 127

https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

depends
(1ist of string or None) List of target strings this target depends on. If specified, each dependency will be
evaluated in order and its returned value (possibly cached from prior evaluation) will be passed as a positional
argument to this target’s callable.

default
(bool) Indicates whether this should be the default target to evaluate. The last registered target setting this to
True will be the default. If no target sets this to True, the first registered target is the default.

default_build_script
(bool) indicates whether this should be the default target to evaluate when run from the context of a Rust build
script (e.g. from pyoxidizer run-build-script. It has the same semantics as default.

Note: It would be easier for target functions to call resolve_target () within their implementation. However,
Starlark doesn’t allow recursive function calls. So invocation of target callables must be handled specially to avoid this
recursion.

resolve_target()

Triggers resolution of a requested build target.

This function resolves a target registered with register_target() by calling the target’s registered function or re-
turning the previously resolved value from calling it.

This function should be used in cases where 1 target depends on the resolved value of another target. For example, a
target to create a starlark_tugger.FilelManifest may wish to add a PythonExecutable that was resolved from
another target.

resolve_targets()

Triggers resolution of requested build targets.

This is usually the last meaningful line in a config file. It triggers the building of targets which have been requested to
resolve by whatever is invoking the config file.

Extensions to Tugger’s Starlark Dialect

PyOxidizer extends Tugger’s Starlark dialect with addition methods.

FileManifest.add_python_resource()

This method adds a Python resource to a starlark_tugger.FileManifest instance in a specified directory prefix.
Arguments:

prefix
(string) Directory prefix to add resource to.

value
(various) A Python resource instance to add. e.g. PythonModuleSource or PythonPackageResource.

This method can be used to place the Python resources derived from another type or action in the filesystem next to an
application binary.

128 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

FileManifest.add_python_resources()

This method adds an iterable of Python resources to a starlark_tugger.FileManifest instance in a specified di-
rectory prefix. This is effectively a wrapper for for value in values: self.add_python_resource(prefix,
value).

For example, to place the Python distribution’s standard library Python source modules in a directory named 1ib:

m = FileManifest()
dist = default_python_distribution()
for resource in dist.python_resources():
if type(resource) == "PythonModuleSource":
m.add_python_resource("lib", resource)

File

class starlark_pyoxidizer.File

This type represents a concrete file in an abstract filesystem. The file has a path and content.

Instances can be constructed by calling methods that emit resources with a PythonPackagingPolicy having
PythonPackagingPolicy.file_scanner_emit_files setto True.

path
(string)

The filesystem path represented. Typically relative. Doesn’t have to correspond to a valid, existing file on
the filesystem.

is_executable

(bool)

Whether the file is executable.
is_*

(various)

See Resource Attributes Influencing Adding.

PythonDistribution

class starlark_pyoxidizer.PythonDistribution

The PythonDistribution type defines a Python distribution. A Python distribution is an entity that defines
an implementation of Python. This entity can be used to create a binary embedding or running Python and can
be used to execute Python code.

Instances of PythonDistribution can be constructed via a constructor function or via
default_python_distribution().

__init__(sha256: str, local_path: Optional[string] = None, url: Optional[string], flavor: Optional[string] =
None) — PythonDistribution

Construct an instance from arguments.
The following arguments are accepted:

sha256
The SHA-256 of the distribution archive file.

1.4. PyOxidizer 129

PyOxidizer, Release 0.21.0

local_path
Local filesystem path to the distribution archive.

url
URL from which a distribution archive can be obtained using an HTTP GET request.

flavor
The distribution flavor. Must be standalone.

A Python distribution is a zstandard-compressed tar archive containing a specially produced build of
Python. These distributions are typically produced by the python-build-standalone project. Pre-built dis-
tributions are available at https://github.com/indygreg/python-build-standalone/releases.

A distribution is defined by a location and a hash.
One of 1ocal_path or url MUST be defined.

Examples:

linux = PythonDistribution(
sha256="11a53£5755773£91111a04f6070a6bc00518a0e8e64d90£58584abf02ca79081",
local_path="/var/python-distributions/cpython-linux64.tar.zst"

)

macos = PythonDistribution(
sha256="b46a861c05cb74b5b668d2ce44dch65a449b9fef98ba5d9ec6££6937829d5eec",
url="https://github.com/indygreg/python-build-standalone/releases/download/

—20190505/cpython-3.7.3-macos-20190506T0054.tar.zst"

)

python_resources () — list{Union[PythonModuleSource, PythonExtensionModule,
PythonPackageResource]]

Returns objects representing Python resources in this distribution. Returned values can be
PythonModuleSource, PythonExtensionModule, PythonPackageResource, etc.

There may be multiple PythonExtensionModule with the same name.
make_python_interpreter_config() — PythonlnterpreterConfig

Obtain a PythonInterpreterConfig derived from the distribution.

The interpreter configuration automatically uses settings appropriate for the distribution.
make_python_packaging_policy() — PythonPackagingPolicy

Obtain a PythonPackagingPolicy derived from the distribution.

The policy automatically uses settings globally appropriate for the distribution.

to_python_executable (name: str, packaging_policy: PythonPackagingPolicy, config:
PythonInterpreterConfig) — PythonExecutable

This method constructs a PythonExecutable instance. It essentially says build an executable embedding
Python from this distribution.

The accepted arguments are:

name
The name of the application being built. This will be used to construct the default filename of the
executable.

packaging_policy
The packaging policy to apply to the executable builder.

130

Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/python-build-standalone
https://github.com/indygreg/python-build-standalone/releases
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

This influences how Python resources from the distribution are added. It also influences future resource
adds to the executable.

config
The default configuration of the embedded Python interpreter.

Default is what make_python_interpreter_config() returns.

Important: Libraries that extension modules link against have various software licenses, including GPL
version 3. Adding these extension modules will also include the library. This typically exposes your pro-
gram to additional licensing requirements, including making your application subject to that license and
therefore open source. See Licensing Considerations for more.

default_python_distribution()

starlark_pyoxidizer.default_python_distribution(flavor: str = 'standalone’, build_target: str =

BUILD_TARGET, python_version: str ='3.10") —
PythonDistribution

Resolves the default PythonDistribution.

The following named arguments are accepted:

flavor

Denotes the distribution flavor. See the section below on allowed values.

build_target

Denotes the machine target triple that we’re building for.

Defaults to the value of the BUILD_TARGET global constant.

python_version

X.Y major.minor string denoting the Python release version to use.

Supported values are 3.8, 3.9, and 3. 10.

flavor is a string denoting the distribution flavor. Values can be one of the following:

standalone

A distribution produced by the python-build-standalone project. The distribution may be statically or
dynamically linked, depending on the build_target and availability. This option effectively chooses the
best available standalone_dynamic or standalone_static option.

This option is effectively standalone_dynamic for all targets except musl libc, where it is effectively
standalone_static.

standalone_dynamic

This is like standalone but guarantees the distribution is dynamically linked against various system li-
braries, notably libc. Despite the dependence on system libraries, binaries built with these distributions can
generally be run in most environments.

This flavor is available for all supported targets except musl libc.

standalone_static

This is like standalone but guarantees the distribution is statically linked and has minimal - possibly none
- dependencies on system libraries.

On Windows, the Python distribution does not export Python’s symbols, meaning that it is impossible to
load dynamically linked Python extensions with it.

1.4. PyOxidizer 131

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

On musl libe, statically linked distributions do not support loading extension modules existing as shared
libraries.

This flavor is only available for Windows and musl libc targets.

Note: The static versus dynamic terminology refers to the linking of the overall distribution, not 1ibpython or
the final produced binaries.

The pyoxidizer binary has a set of known distributions built-in which are automatically available and used by
this function. Typically you don’t need to build your own distribution or change the distribution manually.

PythonEmbeddedResources

class starlark_pyoxidizer.PythonEmbeddedResources

The PythonEmbeddedResources type represents resources made available to a Python interpreter. The re-
sources tracked by this type are consumed by the pyembed crate at build and run time. The tracked resources
include:

* Python module source and bytecode
» Python package resources
* Shared library dependencies

While the type’s name has embedded in it, resources referred to by this type may or may not actually be embedded
in a Python binary or loaded directly from the binary. Rather, the term embedded comes from the fact that the
data structure describing the resources is typically embedded in the binary or made available to an embedded
Python interpreter.

Instances of this type are constructed by transforming a type representing a Python binary. e.g.
PythonExecutable. to_embedded_resources().

If this type is returned by a target function, its build action will write out files that represent the various resources
encapsulated by this type. There is no run action associated with this type.

PythonExecutable

class starlark_pyoxidizer.PythonExecutable

The PythonExecutable type represents an executable file containing the Python interpreter, Python resources
to make available to the interpreter, and a default run-time configuration for that interpreter.

Instances are constructed from PythonDistribution instances using PythonDistribution.
to_python_executable().

licenses_filename
(str)

The filename to use / write for an auto-generated report of software component licensing relevant to the
built executable.

The file will contain a bill-of-materials of all the known software components in the built binary. This
includes information about the Python distribution, extension modules and libraries used by the Python
distribution, 3rd party Python packages, and Rust crates.

Each component is annotated with licensing information, including the license text, if available.

All content in the file is best effort.

132

Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

If None, no file will be written.
Default: COPYING. txt

packed_resources_load_mode
(str)

Defines how the packed Python resources data (see Python Packed Resources) is written and loaded at
run-time by the embedded Python interpreter.

The following values/patterns can be defined:

none
No resources data will be serialized or loaded at run-time. (Use this if you are using Python’s filesystem
based module importer and don’t want to use PyOxidizer’s custom importer.)

embedded:<filename>
The packed resources data will be embedded in the binary and loaded from a memory address at run-
time.

filename denotes the path of the on-disk file used at build time. This file is written to the artifacts
directory that PyOxidizer writes required build files to.

binary-relative-memory-mapped:<filename>
The packed resources data will be written to a file relative to the built binary and loaded from there at
run-time using memory mapped I/O.

The default is embedded: packed-resources.

tcl_files_path
(Optional[str])

Defines a directory relative to that of the built executable in which to install tcl/tk files.

If set to a value, tcl/tk files present in the Python distribution being used will be installed next to the build
executable and the embedded Python interpreter will automatically set the TCL_LIBRARY environment vari-
able to load tcl files from this directory.

If None (the default), no tcl/tk files will be installed.

windows_runtime_dlls_mode
(str)

Controls how Windows runtime DLLs should be managed when building the binary.

Windows binaries often have a dependency on various runtime DLLs, such as vcruntime140.d11. The
built executable will need access to these DLLs or it won’t work.

This setting controls whether to install required Windows runtime DLLs next to the built binary at
build time. For example, if you are producing a myapp.exe, this setting can automatically install a
vcruntimel40.d11 next to that binary.

The following values are recognized:

never
Never install Windows runtime DLLs.

when-present
Install Windows runtime DLLs when they can be located. Do nothing if they can’t be found.

always
Install Windows runtime DLLs and fail if they can’t be located.

1.4. PyOxidizer 133

PyOxidizer, Release 0.21.0

This setting is ignored when the built binary does not have a dependency on Windows runtime DLLs.
See Distribution Considerations for Windows for more on runtime DLL requirements.

windows_subsystem
(str)

Controls the value to use for the Rust #! [windows_subsystem =
erated Rust program to build the executable.

... "] attribute added to the autogen-

This attribute only has meaning on Windows. It effectively controls the value passed to the linker’s /
SUBSYSTEM flag.

Rust only supports certain values but PyOxidizer does not impose limitations on what values are used.
Common values include:

console
Win32 character-mode application. A console window will be opened when the application runs.

This value is suitable for command-line executables.

windows
Application does not require a console and may provide its own windows.

This value is suitable for GUI applications that do not wish to launch a console window on start.
Default is console.

make_python_module_source (name: str, source: str, is_package: bool) — PythonModuleSource

This method creates a PythonlModuleSource instance suitable for use with the executable being built.
Arguments are as follows:

name
The name of the Python module. This is the fully qualified module name. e.g. foo or foo.bar.

source
Python source code comprising the module.

is_package
Whether the Python module is also a package. (e.g. the equivalent of a __init__.py file or a module
without a . in its name.

pip_download(args: list[str]) — list{Any]
This method runs pip download <args> with settings appropriate to target the executable being built.

This always uses --only-binary=:all:, forcing pip to only download wheel based packages.
This method accepts the following arguments:

args
(1ist of str) Command line arguments to pass to pip download. Arguments will be added after
default arguments added internally.

Returns a list of objects representing Python resources collected from wheels obtained via pip
download.

pip_install (args: list[str], extra_envs: Optional[dict[str, str]]) — list{Any]
This method runs pip install <args> with settings appropriate to target the executable being built.

args
List of strings defining raw process arguments to pass to pip install.

134 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyOxidizer, Release 0.21.0

extra_envs
Optional dict of string key-value pairs constituting extra environment variables to set in the invoked
pip process.

Returns a 1ist of objects representing Python resources installed as part of the operation. The types of
these objects can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

read_package_root (path: str, packages: list[str]) — list[Any]
This method discovers resources from a directory on the filesystem.

The specified directory will be scanned for resource files. However, only specific named packages will be
found. e.g. if the directory contains sub-directories foo/ and bar, you must explicitly state that you want
the foo and/or bar package to be included so files from these directories will be read.

This rule is frequently used to pull in packages from local source directories (e.g. directories containing a
setup.py file). This rule doesn’t involve any packaging tools and is a purely driven by filesystem walking.
It is primitive, yet effective.

This rule has the following arguments:

path
The filesystem path to the directory to scan.

packages
List of package names to include.

Filesystem walking will find files in a directory <path>/<value>/ or in a file <path>/<value>.py.

Returns a 1ist of objects representing Python resources found in the virtualenv. The types of these objects
can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

read_virtualenv(path: str) — list{Any]
This method attempts to read Python resources from an already built virtualenv.

Important: PyOxidizer only supports finding modules and resources populated via traditional means (e.g.
pip install or python setup.py install). If .pth or similar mechanisms are used for installing
modules, files may not be discovered properly.

It accepts the following arguments:

path
The filesystem path to the root of the virtualenv.

Python modules are typically in a 1ib/pythonX.Y/site-packages directory (on UNIX) or Lib/
site-packages directory (on Windows) under this path.

Returns a 1ist of objects representing Python resources found in the virtualenv. The types of these objects
can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

setup_py_install (package_path: str, extra_envs: dict[str, str] = {}, extra_global_arguments: dict{str, str]
= {}) — list[Any]

1.4. PyOxidizer 135

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list

PyOxidizer, Release 0.21.0

This method runs python setup.py install against a package at the specified path.
It accepts the following arguments:

package_path
String filesystem path to directory containing a setup.py to invoke.

extra_envs={}
Optional dict of string key-value pairs constituting extra environment variables to set in the invoked
python process.

extra_global_arguments=[]
Optional list of strings of extra command line arguments to pass to python setup.py. These will be
added before the install argument.

Returns a 1ist of objects representing Python resources installed as part of the operation. The types of
these objects can be PythonlModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

add_python_resource (resource: Union{PythonModuleSource, PythonPackageResource,
PythonExtensionModule[)

This method registers a Python resource of various types with the instance.

It accepts a resource argument which can be a PythonModuleSource, PythonPackageResource, or
PythonExtensionModule and registers that resource with this instance.

The following arguments are accepted:

resource
The resource to add to the embedded Python environment.

This method is a glorified proxy to the various add_python_* methods. Unlike those methods, this one
accepts all types that are known Python resources.

add_python_resources (resources: list[Union[PythonModuleSource, PythonPackageResource,
PythonExtensionModule])

This method registers an iterable of Python resources of various types. This method is identical to
add_python_resource () except the argument is an iterable of resources. All other arguments are iden-
tical.

add_cargo_manifest_licensing(manifest_path: str, all_features: bool = False, features=None)
Register software component licensing for a package defined in a Cargo.toml manifest.

This method accepts the following arguments:

manifest_path
Filesystem path of Cargo.toml to process.

all_features
Whether to activate all crate features when determining licensing info.

features
List of strings denoting explicit features to enable.

Ignored if all_features is enabled.

filter_resources_from_files(files: list[str], glob_files: list[str])

This method filters all embedded resources (source modules, bytecode modules, and resource names) cur-
rently present on the instance through a set of resource names resolved from files.

136 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

This method accepts the following arguments:

files
List of filesystem paths to files containing resource names. The file must be valid UTF-8 and consist
of a \n delimited list of resource names. Empty lines and lines beginning with # are ignored.

glob_files
List of glob matching patterns of filter files to read. * denotes all files in a directory. ** denotes
recursive directories. This uses the Rust glob crate under the hood and the documentation for that
crate contains more pattern matching info.

The files read by this argument must be the same format as documented by the files argument.

All defined files are first read and the resource names encountered are unioned into a set. This set is then
used to filter entities currently registered with the instance.

to_embedded_resources()

Obtains a PythonEmbeddedResources instance representing resources to be made available to the Python
interpreter.

See the PythonEmbeddedResources type documentation for more.

to_file_manifest (prefix: str) — starlark_tugger.FileManifest
This method transforms the PythonExecutable instance to a starlark_tugger.FileManifest. The
starlark_tugger.FileManifest is populated with the build executable and any file-based resources
that are registered with the resource collector. A 1ibpython shared library will also be present depending
on build settings.

This method accepts the following arguments:

prefix
The directory prefix of files in the starlark_tugger.FileManifest. Use . to denote no prefix.

to_wix_bundle_builder (id_prefix: str, product_name: str, product_version: str, product_manufacturer:
str, msi_builder_callback: Callable) — starlark_tugger. WiXBundleBuilder

This method transforms the PythonExecutable instance into a starlark_tugger.WiXBundleBuilder
instance. The returned value can be used to generate a Windows . exe installer. This installer will install
the Visual C++ Redistributable as well as an MSI for the build application.

This method accepts the following arguments:

id_prefix
See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

product_name
See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

product_version

See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

product_manufacturer
See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

msi_builder_callback
(function) A callable function that can be used to modify the starlark_tugger.WiXMSIBuilder
constructed for the application.

The function will receive the starlark_tugger.WiXMSIBuilder as its single argument. The return
value is ignored.

The returned value can be further customized before it is built. See starlark_tugger.
WiXBundleBuilder type documentation for more.

1.4.

PyOxidizer 137

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

Important: PythonExecutable.windows_runtime_dlIls_mode can result in DLLs being installed
next to the binary in addition to being installed as part of the installer. When using this method, you
probably want to set .windows_runtime_dlls_mode = "never" to prevent the redundant installation.

to_wix_msi_builder (id_prefix: str, product_name: str, product_version: str, product_manufacturer: str)
— starlark_tugger. WiXMSIBuilder

This method transforms the PythonExecutable instance into a starlark_tugger.WiXMSIBuilder in-
stance. The returned value can be used to generate a Windows MSI installer.

This method accepts the following arguments:

id_prefix
See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

product_name

See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

product_version
See starlark_tugger.WiXMSIBuilder.__init__ () for usage.

product_manufacturer
See starlark_tugger.WiXMSIBuilder.

_init__ () for usage.

The MSI installer configuration can be customized. See the starlark_tugger.WiXMSIBuilder type
documentation for more.

The MSI installer will not materialize the Visual C++ Runtime DLL(s).

build(target: str) — starlark_tugger.ResolvedTarget

Produces a binary executable embedding Python using the settings configured on this instance.

target
The name of the target being built.

Under the covers, this will generate a temporary Rust project and invoke cargo, Rust’s build tool, for gen-
erating an executable. The end result of this process is a single executable embedding a Python interpreter.

Upon successful generation of a binary, the produced binary will be assessed for code signing with the
python-executable-creation action.

write_licenses(path)
Writes software component licensing info to the file specified via path.

The file will contain a bill of materials of all software components included in the resulting binary and
licensing information related to them. This includes license texts, when available.

Licensing info is best effort.

PythonExtensionModule

class starlark_pyoxidizer.PythonExtensionModule

This type represents a compiled Python extension module.

name
(string)

Unique name of the module being provided.

138 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the Python distribution).
add_*

(various)

See Resource Attributes Influencing Adding.

PythonInterpreterConfig

class starlark_pyoxidizer.PythonInterpreterConfig
This type configures the default behavior of the embedded Python interpreter.
Embedded Python interpreters are configured and instantiated using a Rust

pyembed: :0xidizedPythonInterpreterConfig data structure. The pyembed crate defines a default
instance of this data structure with parameters defined by the settings in this type.

Note: If you are writing custom Rust code and constructing a custom
pyembed: :0xidizedPythonInterpreterConfig instance and don’t use the default instance, this con-
fig type is not relevant to you and can be omitted from your config file.

Danger: Some of the settings exposed by Python’s initialization APIs are extremely low level and brittle.
Various combinations can cause the process to crash/exit ungracefully. Be very cautious when setting these
low-level settings.

Instances are constructed by calling PythonDistribution.make_python_interpreter_config().
Instance state is managed via attributes.

There are a ton of attributes and most attributes are not relevant to most applications. The bulk of the attributes
exist to give full control over Python interpreter initialization.

The following attributes control features provided by the pyembed Rust crate, which manages the embedded
Python interpreter in generated executables. These attributes provide features and level of control over embedded
Python interpreters beyond what is possible with Python’s initialization C APIL.

e allocator_backend

e allocator_raw

e allocator_mem

e allocator_obj

e allocator_pymalloc_arena
e allocator_debug

e oxidized_importer

e filesystem_importer

e argvb

e multiprocessing_auto_dispatch

1.4. PyOxidizer 139

https://docs.python.org/3/c-api/init_config.html

PyOxidizer, Release 0.21.0

e multiprocessing_start_method

e sys_frozen

* Ssys_meipass

* terminfo_resolution

e write_modules_directory_env
The following attributes correspond to fields of the PyPreConfig C struct used to initialize the Python interpreter.

e config profile

e allocator

e configure_locale

* coerce_c_locale

e coerce_c_locale_warn

e development_mode

e isolated

e legacy_windows_fs_encoding

* parse_argv

* use_environment

e utf8_mode
The following attributes correspond to fields of the PyConfig C struct used to initialize the Python interpreter.

e base_exec_prefix

* base_executable

e base_prefix

* buffered_stdio

* bytes_warning

e check_hash_pycs_mode

e configure_c_stdio

e dump_refs

e exec_prefix

e executable

e fault_handler

e filesystem_encoding

e hash_seed

e home

e import_time

e inspect

e install _signal_handlers

e interactive

140 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig
https://docs.python.org/3/c-api/init_config.html#c.PyConfig

PyOxidizer, Release 0.21.0

legacy_windows_stdio
malloc_stats
module_search_paths
optimization_level
parser_debug
pathconfig_warnings
prefix
program_name
pycache_prefix
python_path_env
quiet

run_command
run_filename
run_module
show_ref_count
site_import
skip_first_source_line
stdio_encoding
stdio_errors
tracemalloc
user_site_directory
verbose
warn_options
write_bytecode

x_options

allocator_backend

(string)
See allocator_backend Field.

The jemalloc, mimalloc, and snmalloc allocators require the presence of additional Rust crates. A run-
time error will occur if these allocators are configured but the binary was built without these crates. (This
should not occur when using pyoxidizer to build the binary.)

When a custom allocator is configured, the autogenerated Rust crate used to build the binary will configure
the Rust global allocator (#[global_allocator] attribute) to use the specified allocator.

Important: The rust allocator is not recommended because it introduces performance overhead. But it
may help with debugging in some situations.

1.4. PyOxidizer 141

PyOxidizer, Release 0.21.0

Note: Both mimalloc and snmalloc require the cmake build tool to compile code as part of their
build process. If this tool is not available in the build environment, you will encounter a build error
with a message similar to failed to execute command: The system cannot find the file
specified. (os error 2) is “cmake' not installed?.

The workaround is to install cmake or use a different allocator.

Note: snmalloc only supports targeting to macOS 10.14 or newer. You will likely see build errors when
building a binary targeting macOS 10.13 or older.

Default is jemalloc on non-Windows targets and default on Windows. (The jemalloc-sys crate
doesn’t work on Windows MSVC targets.)

allocator_raw
(bool)

See allocator_raw Field.
Defaults to True.

allocator_mem
(bool)

See allocator_mem Field.
Defaults to False.

allocator_obj
(bool)

See allocator_obj Field.
Defaults to False.

allocator_pymalloc_arena
(bool)

See allocator_pymalloc_arena Field.
Defaults to False.

allocator_debug
(bool)

See allocator_debug Field.
Defaults to False.

oxidized_importer
(bool)

See oxidized_importer Field.
Defaults to True.

filesystem_importer
(bool)

See filesystem_importer Field.

142 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

The filesystem importer is enabled automatically if PythonInterpreterConfig.
module_search_paths is non-empty.

argvb
(bool)

See argvb Field.

multiprocessing_auto_dispatch
(bool)

See multiprocessing_auto_dispatch Field.
Default value is True.
See Automatic Detection and Dispatch of multiprocessing Processes for more.

multiprocessing_start_method
(str)

See multiprocessing_start_method Field.

sys_frozen
(bool)

See sys_frozen Field.
Default is True.

sys_meipass
(bool)

See sys_meipass Field.
Default is False.

terminfo_resolution
(string)

See terminfo_resolution Field.
See Terminfo Database for more about terminal databases.

write_modules_directory_env
(string or None)

See write_modules_directory_env Field.

config_profile
(string)

See profile Field.
allocator

(string or None)

See allocator Field.

configure_locale
(bool or None)

See configure_locale Field.

1.4. PyOxidizer 143

PyOxidizer, Release 0.21.0

coerce_c_locale
(string or None)

See coerce_c_locale Field.
coerce_c_locale_warn

(bool or None)

See coerce_c_locale_warn Field.

development_mode
(bool or None)

See development_mode Field.

isolated
(bool or None)

See isolated Field.

legacy_windows_fs_encoding
(bool or None)

See legacy_windows_fs_encoding Field.

parse_argv
(bool or None)

See parse_argv Field.

use_environment
(bool or None)

See use_environment Field.

utf8_mode
(bool or None)

See utfS_mode Field.

base_exec_prefix
(string or None)

See base_exec_prefix Field.

base_executable

(string or None)
See base_executable Field.

base_prefix
(string or None)

See base_prefix Field.
buffered_stdio
(bool or None)

See buffered_stdio Field.

144 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

bytes_warning

(string or None)

See bytes_warning Field.
check_hash_pycs_mode

(string or None)

See check_hash_pycs_mode Field.

configure_c_stdio

(bool or None)
See configure_c_stdio Field.

dump_refs

(bool or None)

See dump_refs Field.
exec_prefix

(string or None)

See exec_prefix Field.
executable

(string or None)

See executable Field.

fault_handler

(bool or None)
See fault_handler Field.

filesystem_encoding

(string or None)

See filesystem_encoding Field.
filesystem_errors

(string or None)

See filesystem_errors Field.

hash_seed

(int or None)

See hash_seed Field.

PyConfig.use_hash_seed will automatically be set if this attribute is defined.

home

(string or None)
See home Field.

import_time

See import_time Field.

1.4. PyOxidizer

145

PyOxidizer, Release 0.21.0

inspect
(bool or None)

See inspect Field.

install_signal_handlers

(bool or None)
See install_signal_handlers Field.

interactive

(bool or None)
See interactive Field.

legacy_windows_stdio
(bool or None)

See legacy_windows_stdio Field.

malloc_stats

(bool or None)
See malloc_stats Field.

module_search_paths
(list[string] or None)

See module_search_paths Field.
Setting this to a non-empty value also has the side-effect of setting filesystem_importer = True

optimization_level
(int or None)

See optimization_level Field.

parser_debug

(bool or None)
See parser_debug Field.

pathconfig_warnings
(bool or None)

See pathconfig_warnings Field.

prefix
(string or None)

See prefix Field.

program_name
(string or None)

See program_name Field.

pycache_prefix
(string or None)

See pycache_prefix Field.

146 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

python_path_env
(string or None)

See python_path_env Field.
quiet

(bool or None)

See quiet Field.

run_command
(string or None)

See run_command Field.

run_filename
(string or None)

See run_filename Field.

run_module
(string or None)

See run_module Field.

show_ref_count
(bool or None)

See show_ref_count Field.

site_import
(bool or None)

See site_import Field.
The site module is typically not needed for standalone/isolated Python applications.

skip_first_source_line

(bool or None)
See skip_first_source_line Field.

stdio_encoding
(string or None)

See stdio_encoding Field.

stdio_errors
(string or None)

See stdio_errors Field.

tracemalloc

(bool or None)
See tracemalloc Field.

user_site_directory
(bool or None)

See user_site_directory Field.

1.4. PyOxidizer 147

PyOxidizer, Release 0.21.0

verbose
(bool or None)

See verbose Field.

warn_options
(list[string] or None)

See warn_options Field.

write_bytecode
(bool or None)

See write_bytecode Field.

X_options
(list[string] or None)

See x_options Field.

Starlark Caveats

The PythonInterpreterConfig Starlark type is backed by a Rust data structure. And when attributes are retrieved,
a copy of the underlying Rust struct field is returned.

This means that if you attempt to mutate a Starlark value (as opposed to assigning an attribute), the mutation won’t be
reflected on the underlying Rust data structure.

For example:

config = dist.make_python_interpreter_config()

assigns vec!["foo", "bar"].
config.module_search_paths = ["foo", "bar"]

Creates a copy of the underlying list and appends to that copy.
The stored value of ‘module_search_paths' is still “["foo", "bar"] .
config.module_search_paths.append('baz")

To append to a list, do something like the following:

value = config.module_search_paths
value.append('baz")
config.module_search_paths = value

PythonModuleSource

class starlark_pyoxidizer.PythonModuleSource
This type represents Python source modules, agnostic of location.

Instances can be constructed via PythonExecutable.make_python_module_source () or by calling methods
that emit Python resources.

name
(string)

Fully qualified name of the module. e.g. foo.bar.

148 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

source
(string)

The Python source code for this module.

is_package
(bool)

Whether this module is also a Python package (or sub-package).

is_stdlib
(bool)

Whether this module is part of the Python standard library (part of the Python distribution).
add_*

(various)

See Resource Attributes Influencing Adding.

PythonPackageResource

class starlark_pyoxidizer.PythonPackageResource

This type represents a resource _file_ in a Python package. It is effectively a named blob associated with a Python
package. It is typically accessed using the importlib.resources APL

package
(string)

Python package this resource is associated with.

name
(string)

Name of this resource.

is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the Python distribution).
add_*

(various)

See Resource Attributes Influencing Adding.

PythonPackageDistributionResource

class starlark_pyoxidizer.PythonPackageDistributionResource

This type represents a named resource to make available as Python package distribution metadata. These files
are typically accessed using the importlib.metadata APIL

Each instance represents a logical file in a <package>-<version>.dist-info or <package>-<version>.
egg-info directory. There are specifically named files that contain certain data. For example, a *.dist-info/
METADATA file describes high-level metadata about a Python package.

1.4. PyOxidizer 149

PyOxidizer, Release 0.21.0

package

name

(string)

Python package this resource is associated with.

(string)

Name of this resource.

is_stdlib

(bool)

Whether this module is part of the Python standard library (part of the Python distribution).
add_*

(various)

See Resource Attributes Influencing Adding.

PythonPackagingPolicy

class starlark_pyoxidizer.PythonPackagingPolicy

When building a Python binary, there are various settings that control which Python resources are added, where
they are imported from, and other various settings. This collection of settings is referred to as a Python Packaging
Policy. These settings are represented by the PythonPackagingPolicy type.

allow_files

(bool)
Whether to allow the collection of generic file resources.

If false, all collected/packaged resources must be instances of concrete resource types
(PythonModuleSource, PythonPackageResource, etc).

If true, File instances can be added to resource collectors.

allow_in_memory_shared_library_loading

(bool)
Whether to allow loading of Python extension modules and shared libraries from memory at run-time.

Some platforms (notably Windows) allow opening shared libraries from a memory address. This mode of
opening shared libraries allows libraries to be embedded in binaries without having to statically link them.
However, not every library works correctly when loaded this way.

This flag defines whether to enable this feature where supported. Its true value can be ignored if the target
platform doesn’t support loading shared library from memory.

bytecode_optimize_level_zero

(bool)

Whether to add Python bytecode at optimization level O (the default optimization level the Python interpreter
compiles bytecode for).

bytecode_optimize_level_one

(bool)

Whether to add Python bytecode at optimization level 1.

150

Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

bytecode_optimize_level_two
(bool)

Whether to add Python bytecode at optimization level 2.

extension_module_filter
(string)

The filter to apply to determine which extension modules to add. The following values are recognized:

all
Every named extension module will be included.

minimal
Return only extension modules that are required to initialize a Python interpreter. This is a very small
set and various functionality from the Python standard library will not work with this value.

no-libraries
Return only extension modules that don’t require any additional libraries.

Most common Python extension modules are included. Extension modules like _ss1 (links against
OpenSSL) and z1ib are not included.

no-copyleft
Return only extension modules that do not link against copyleft licensed libraries.

Not all Python distributions may annotate license info for all extensions or the libraries they link against.
If license info is missing, the extension is not included because it could be copyleft licensed. Similarly,
the mechanism for determining whether a license is copyleft is based on the SPDX license annotations,
which could be wrong or out of date.

Default is all.

file_scanner_classify_files
(bool)

Whether file scanning should attempt to classify files and emit typed resources corresponding to the detected
file type.

If True, operations that emit resource objects (such as PythonExecutable.pip_install()) will emit
specific types for each resource flavor. e.g. PythonModuleSource, PythonExtensionlodule, etc.

If False, the file scanner does not attempt to classify the type of a file and this rich resource types are not
emitted.

Can be used in conjunction with PythonPackagingPolicy.file_scanner_emit_files. If both are
True, there will be a File and an optional non-file resource for each source file.

Default is True.

file_scanner_emit_files
(bool)

Whether file scanning should emit file resources for each seen file.

If True, operations that emit resource objects (such as PythonExecutable.pip_install()) will emit
File instances for each encountered file.

If False, File instances will not be emitted.
Can be used in conjunction with PythonPackagingPolicy.file_scanner_classify_files.

Default is False.

1.4. PyOxidizer 151

PyOxidizer, Release 0.21.0

include_classified_resources
(bool)

Whether strongly typed, classified non-File resources have their add_include attribute set to True by
default.

Default is True.

include_distribution_sources
(bool)

Whether to add source code for Python modules in the Python distribution.
Default is True.

include_distribution_resources
(bool)

Whether to add Python package resources for Python packages in the Python distribution.
Default is False.

include_file_resources
(bool)

Whether File resources have their add_include attribute set to True by default.
Default is False.

include_non_distribution_sources
(bool)

Whether to add source code for Python modules not in the Python distribution.

include_test
(bool)

Whether to add Python resources related to tests.
Not all files associated with tests may be properly flagged as such. This is a best effort setting.
Default is False.

resources_location
(string)

The location that resources should be added to by default.
Default is in-memory.

resources_location_fallback

(string or None)
The fallback location that resources should be added to if resources_location fails.
Default is None.

preferred_extension_module_variants
(dict<string, string>) (readonly)

Mapping of extension module name to variant name.

This mapping defines which preferred named variant of an extension module to use. Some Python distri-
butions offer multiple variants of the same extension module. This mapping allows defining which variant
of which extension to use when choosing among them.

152

Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Keys set on this dict are not reflected in the underlying policy. To set a key, call the
set_preferred_extension_module_variant () method.

register_resource_callback(f: Callable)

This method registers a Starlark function to be called when resource objects are created. The
passed function receives 2 arguments: this PythonPackagingPolicy instance and the resource (e.g.
PythonModuleSource) that was created.

The purpose of the callback is to enable Starlark configuration files to mutate resources upon creation so
they can globally influence how those resources are packaged.

set_preferred_extension_module_variant (extension: str, variant: str)

This method will set a preferred Python extension module variant to use. See the documentation for
preferred_extension_module_variants above for more.

It accepts 2 string arguments defining the extension module name and its preferred variant.

set_resource_handling_mode (mode: str)

This method takes a string argument denoting the resource handling mode to apply to the policy. This
string can have the following values:

classify
Files are classified as typed resources and handled as such.

Only classified resources can be added by default.

files
Files are handled as raw files (as opposed to typed resources).

Only files can be added by default.

This method is effectively a convenience method for bulk-setting multiple attributes on the instance given
a behavior mode.

classify will configure the file scanner to emit classified resources, configure the add_include attribute
to only be True on classified resources, and will disable the addition of File resources on resource col-
lectors.

files will configure the file scanner to only emit FiIe resources, configure the add_include attribute to
True on File and classified resources, and will allow resource collectors to add File instances.

Packaging User Guide

So you want to package a Python application using PyOxidizer? You’ve come to the right place to learn how! Read
on for all the details on how to oxidize your Python application!

First, you’ll need to install PyOxidizer. See Installing for instructions.

Creating a PyOxidizer Project

The process for oxidizing every Python application looks the same: you start by creating a new PyOxidizer configu-
ration file via the pyoxidizer init-config-file command:

Create a new configuration file in the directory "pyapp"
$ pyoxidizer init-config-file pyapp

1.4. PyOxidizer 153

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

PyOxidizer, Release 0.21.0

Behind the scenes, PyOxidizer works by leveraging a Rust project to build binaries embedding Python. The auto-
generated project simply instantiates and runs an embedded Python interpreter. If you would like your built binaries
to offer more functionality, you can create a minimal Rust project to embed a Python interpreter and customize from
there:

Create a new Rust project for your application in ~/src/myapp.
$ pyoxidizer init-rust-project ~/src/myapp

The auto-generated configuration file and Rust project will launch a Python REPL by default. And the pyoxidizer
executable will look in the current directory for a pyoxidizer.bzl configuration file. Let’s test that the new config-
uration file or project works:

$ pyoxidizer run

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)

Finished dev [unoptimized + debuginfo] target(s) in 53.14s
writing executable to /home/gps/src/pyapp/build/x86_64-unknown-1linux-gnu/debug/exe/pyapp
>>>

If all goes according to plan, you just built a Rust executable which contains an embedded copy of Python. That
executable started an interactive Python debugger on startup. Try typing in some Python code:

>>> print("hello, world")
hello, world

It works!

(To exit the REPL, press CTRL+d or CTRL+z or import sys; sys.exit(®) from the REPL.)

Note: If you have built a Rust project before, the output from building a PyOxidizer application may look familiar
to you. That’s because under the hood Cargo - Rust’s package manager and build system - is doing a lot of the work to
build the application. If you are familiar with Rust development, you can use cargo build and cargo run directly.
However, Rust’s build system is only responsible for build binaries and some of the higher-level functionality from
PyOxidizer’s configuration files (such as application packaging) will likely not be performed unless tweaks are made
to the Rust project’s build.rs.

Now that we’ve got a new project, let’s customize it to do something useful.

154 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Packaging Primitives in pyoxidizer.bzl Files

PyOxidizer’s run-time behavior is controlled by pyoxidizer.bzl Starlark (a Python-like language) configuration
files. See Configuration Files for documentation on these files, including low-level API documentation.

This document gives a medium-level overview of the important Starlark types and functions and how they all interact.

Targets Define Actions

As detailed at Targets, a PyOxidizer configuration file is composed of named zargets, which are functions returning an
object that may have a build or run action attached. Commands like pyoxidizer build identify a target to evaluate
then effectively walk the dependency graph evaluating dependent targets until the requested target is built.

Defining an Executable Embedding Python

In this example, we create an executable embedding Python:

def make_exe():
dist = default_python_distribution()

return dist.to_python_executable("myapp")

register_target("exe", make_exe)
resolve_targets()

PythonDistribution. to_python_executable () accepts an optional PythonPackagingPolicy instance thatin-
fluences how the executable is built and what resources are added where. See the type documentation for the list
of parameters that can be influenced. Some of this behavior is described in the sections below. Other examples are
provided throughout the Packaging User Guide documentation.

Configuring the Python Interpreter Run-Time Behavior

The PythonInterpreterConfig Starlark type configures the default behavior of the Python interpreter embedded in
built binaries.

A PythonInterpreterConfig instance is associated with PythonExecutable instances when they are created. A
custom instance can be passed into PythonDistribution. to_python_executable() to use non-default settings.

In this example (similar to above), we construct a custom PythonInterpreterConfig instance using non-defaults
and then pass this instance into the constructed PythonExecutable:

def make_exe():
dist = default_python_distribution()

config = dist.make_python_interpreter_config()
config.run_command = "print('hello, world')"

return dist.to_python_executable("'myapp", config=config)

register_target("exe", make_exe)
resolve_targets()

1.4. PyOxidizer 155

PyOxidizer, Release 0.21.0

The PythonInterpreterConfig type exposes a lot of modifiable settings. See the API documentation for the
complete list. These settings include but are not limited to:

* Control of low-level Python interpreter settings, such as whether environment variables (like PYTHONPATH)
should influence run-time behavior, whether stdio should be buftered, and the filesystem encoding to use.

* Whether to enable the importing of Python modules from the filesystem and what the initial value of sys.path
should be.

* The memory allocator that the Python interpreter should use.
* What Python code to run when the interpreter is started.
* How the terminfo database should be located.

Many of these settings are not needed for most programs and the defaults are meant to be reasonable for most programs.
However, some settings - such as the run_* arguments defining what Python code to run by default - are required by
most configuration files.

Adding Python Packages to Executables

A just-created PythonExecutable Starlark type contains just the Python interpreter and standard library derived from
the PythonDistribution from which it came. While you can use PyOxidizer to produce an executable containing
just a normal Python distribution with nothing else, many people will want to add their own Python packages/code.

The Starlark environment defines various types for representing Python package resources. These include
PythonModuleSource, PythonExtensionModule, PythonPackageDistributionResource, and more.

Instances of these types can be created dynamically or by performing common Python packaging operations (such
as invoking pip install) via various methods on PythonExecutable instances. These Python package resource
instances can then be added to PythonExecutable instances so they are part of the built binary.

See Managing How Resources are Added and Packaging Python Files for more on this topic, including many examples.

Install Manifests Copy Files Next to Your Application

The starlark_tugger.FileManifest Starlark type represents a collection of files and their content. When
starlark_tugger.FilelManifest instances are returned from a target function, their build action results in their
contents being manifested in a directory having the name of the build target.

starlark_tugger.FilelManifest instances can be used to construct custom file install layouts.

Say you have an existing directory tree of files you want to copy next to your built executable defined by the
PythonExecutable type.

The starlark_tugger.glob() function can be used to discover existing files on the filesystem and turn them into a
starlark_tugger.FileManifest. You can then return this starlark_tugger.FilelManifest directory or over-
lay it onto another instance using starlark_tugger.FileManifest.add_manifest (). Here’s an example:

def make_exe():
dist = default_python_distribution()

return dist.to_python_executable("myapp")

def make_install(exe):
m = FileManifest()

(continues on next page)

156 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

(continued from previous page)

m.add_python_resource(".", exe)

templates = glob(["/path/to/project/templates/**/*"], strip_prefix="/path/to/project/
R

m.add_manifest(templates)
return m
register_target("exe", make_exe)

register_target("install"”, make_install, depends=["exe"], default=True)
resolve_targets()

We introduce a new install target and make_install() function which returns a starlark_tugger.
FileManifest. It adds the PythonExecutable (represented by the exe argument/variable) to that manifest in the
root directory, signified by ..

Next, it calls glob() to find all files in the /path/to/project/templates/ directory tree, strips the path prefix
/path/to/project/ from them, and then merges all of these files into the final manifest.

When the InstallManifest is built, the final layout should look something like the following:
e install/myapp (or install/myapp.exe on Windows)
e install/templates/foo
e install/templates/...

See Packaging Files Instead of In-Memory Resources for more on this topic.

Understanding Python Distributions

The PythonDistribution Starlark type represents a Python distribution, an entity providing a Python installation
and build files which PyOxidizer uses to build your applications. See Python Distributions Provide Python for more.

Available Python Distributions

PyOxidizer ships with its own list of available Python distributions. These are constructed via the
default_python_distribution() Starlark function. Under most circumstances, you’ll want to use one of these
distributions instead of providing your own because these distributions are tested and should have maximum compati-
bility.

Here are the built-in Python distributions:

1.4. PyOxidizer 157

PyOxidizer, Release 0.21.0

Source | Version | Flavor Build Target

CPython | 3.9.13 standalone_dynamic | aarch64-unknown-linux-gnu
CPython | 3.10.4 standalone_dynamic | aarch64-unknown-linux-gnu
CPython | 3.8.13 standalone_dynamic | x86_64-unknown-linux-gnu
CPython | 3.9.13 standalone_dynamic | x86_64-unknown-linux-gnu
CPython | 3.10.4 standalone_dynamic | x86_64-unknown-linux-gnu
CPython | 3.8.13 standalone_static x86_64-unknown-linux-musl
CPython | 3.9.13 standalone_static x86_64-unknown-linux-musl
CPython | 3.10.4 standalone_static x86_64-unknown-linux-musl
CPython | 3.8.13 standalone_dynamic | i686-pc-windows-msvc
CPython | 3.9.13 standalone_dynamic | i686-pc-windows-msvc
CPython | 3.10.4 standalone_dynamic | i686-pc-windows-msvc
CPython | 3.8.13 standalone_static 1686-pc-windows-msve
CPython | 3.9.13 standalone_static i686-pc-windows-msve
CPython | 3.10.4 standalone_static 1686-pc-windows-msvc
CPython | 3.8.13 standalone_dynamic | x86_64-pc-windows-msvc
CPython | 3.9.13 standalone_dynamic | x86_64-pc-windows-msvc
CPython | 3.10.4 standalone_dynamic | x86_64-pc-windows-msvc
CPython | 3.8.13 standalone_static x86_64-pc-windows-msvc
CPython | 3.9.13 standalone_static x86_64-pc-windows-msvc
CPython | 3.10.4 standalone_ static x86_64-pc-windows-msvc
CPython | 3.8.13 standalone_dynamic | aarch64-apple-darwin
CPython | 3.9.13 standalone_dynamic | aarch64-apple-darwin
CPython | 3.10.4 standalone_dynamic | aarch64-apple-darwin
CPython | 3.8.13 standalone_dynamic | x86_64-apple-darwin
CPython | 3.9.13 standalone_dynamic | x86_64-apple-darwin
CPython | 3.10.4 standalone_dynamic | x86_64-apple-darwin

All of these distributions are provided by the python-build-standalone, and are maintained by the maintainer of PyOx-

idizer.

Here is what those target triple values translate to:

aarch64-apple-darwin

64-bit ARM compiled for macOS.

1686-pc-windows-msvc

x86-64-pc-windows-msvc
64-bit Windows using the Microsoft Visual C++ Compiler.

32-bit Windows using the Microsoft Visual C++ Compiler.

x86_64-apple-darwin
64-bit Intel processors compiled for macOS.

x86_64-pc-unknown-linux-gnu
64-bit x86 (typically Intel or AMD) targeting Linux, with a dependency on GNU libc (glibc / 1ibc. so).

x86_64-pc-unknown-linux-musl
64-bit x86 (typically Intel or AMD) targeting Linux using musl libc. (Musl libc uses static linking for libc, unlike

glibc.)

158

Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/python-build-standalone

PyOxidizer, Release 0.21.0

Python Version Compatibility

PyOxidizer is capable of working with Python 3.8 and 3.9.
Python 3.9 is the default Python version because it has been around for a while and is relatively stable.

PyOxidizer’s tests are run primarily against the default Python version. So adopting a non-default version may risk
running into subtle bugs.

Choosing a Python Distribution

The Python 3.9 distributions are the default and are better tested than the Python 3.8 distributions. 3.8 was the default
in previous releases and is known to work.

The standalone_dynamic distributions behave much more similarly to traditional Python build configurations than
do their standalone_static counterparts. The standalone_dynamic distributions are capable of loading Python
extension modules that exist as shared library files. So when working with standalone_dynamic distributions, Python
wheels containing pre-built Python extension modules often just work.

The downside to standalone_dynamic distributions is that you cannot produce a single file, statically-linked ex-
ecutable containing your application in most circumstances: you will need a standalone_static distribution to
produce a single file executable.

But as soon as you encounter a third party extension module with a standalone_static distribution, you will need
to recompile it. And this is often unreliable.

Binary Portability of Distributions

The built-in Python distributions are built in such a way that they should run on nearly every system for the platform
they target. This means:

e All 3rd party shared libraries are part of the distribution (e.g. 1ibssl and 1ibsqlite3) and don’t need to be
provided by the run-time environment.

* Some distributions are statically linked and have no dependencies on any external shared libraries.

* On the glibc linked Linux distributions, they use an old glibc version for symbol versions, enabling them to run
on Linux distributions created years ago. (The current version is 2.19, which was released in 2014.)

* Any shared libraries not provided by the distribution are available in base operating system installs. On Linux,
example shared libraries include 1ibc.so.6 and 1inux-vdso.so. 1, which are part of the Linux Standard Base
Core Configuration and should be present on all conforming Linux distros. On macOS, referenced dylibs include
1ibSystem, which is part of the macOS core install.

* For Linux, see Distribution Considerations for Linux for portability considerations.
» For macOS, see Distribution Considerations for macOS for portability considerations.

» For Windows, see Distribution Considerations for Windows for portability considerations.

1.4. PyOxidizer 159

PyOxidizer, Release 0.21.0

Known Issues with Distributions

There are various known issues with various distributions. The python-build-standalone project documentation at
https://python-build-standalone.readthedocs.io/en/latest/ attempts to capture many of them.

PyOxidizer contains workaround for many of the limitations. For example, PyOxidizer (specifically the pyembed Rust
crate) can automatically configure the terminfo database at run-time.

The aarch64-apple-darwin Python distributions are considered beta quality because PyOxidizer does not have
continuous CI coverage for this architecture. Releases should be tested before they are released. But there may be
undetected breakage on unreleased commits on the main branch due to lack of CI coverage. This limitation should go
away once GitHub Actions supports running jobs on M1 hardware.

Managing How Resources are Added

An important concept in PyOxidizer packaging is how to manage resources that are added to built applications.

A resource is some entity that will be packaged and distributed. Examples of resources include Python module source
and bytecode, Python extension modules, and arbitrary files on the filesystem.

Resources are represented by a dedicated Starlark type for each resource flavor (see Resource Types).

During evaluation of PyOxidizer’s Starlark configuration files, resources are created and added to another Starlark type
whose job is to collect all desired resources and then do something with them.

Classified Resources Versus Files

All resources in PyOxidizer are ultimately derived from or representable by a file or a file-like primitive. For example,
a PythonModuleSource is derived from or could be manifested as a .py file.

Various PyOxidizer functionality works by scanning existing files and turning those files into resources.

This file scanning functionality has two modes of operation: classified and files. In files mode, PyOxidizer simply
emits resources corresponding to the raw files it encounters. In classified mode, PyOxidizer attempts to classify a file
as a particular resource and emit a strongly-typed resource like PythonModuleSource or PythonExtensionModule.

Classified mode is more powerful because PyOxidizer is able to build an index of typed resources at packaging time and
make this index available to oxidized_importer Python Extension at run-time to facilitate faster loading of resources.

However, the main downside to classified mode is it relies on being able to identify files properly and this is unreliable.
Python file layouts are under-specified and there are many edge cases where PyOxidizer fails to properly classify a file.
See Debugging Resource Scanning and Identification with find-resources for how to identify problems here.

In files mode, PyOxidizer simply indexes and manages a named file and its content. There is far less potential for
PyOxidizer to make mistakes about a file’s type and how it is handled. This means that files mode often just works
when classified mode doesn’t. The main downside to files mode is that oxidized_importer Python Extension doesn’t
have a rich index embedded in the built binary, so you will have to rely on Python’s default filesystem-based importer,
which is slower than oxidized_importer.

160 Chapter 1. Multiple Tools Under One Roof

https://python-build-standalone.readthedocs.io/en/latest/

PyOxidizer, Release 0.21.0

Packaging Policies and Adding Resources

The exact mechanism by which resources are emitted and added to resource collectors is influenced by a packaging
policy (represented by the PythonPackagingPolicy Starlark type) and attributes on each resource object influencing
how they are added.

When resources are created, the packaging policy determines whether emitted resources are classified or simply files.
And the packaging policy is applied to each created resource to populate the initial values for the various add_*
attributes on the Starlark resource types.

When a resource is added (e.g. by calling PythonExecutable.add_python_resource()), these aforementioned
add_* attributes are consulted and used to influence exactly how that resource is added/packaged.

For example, a PythonlModuleSource can set attributes indicating to exclude source code and only generate bytecode
at a specific optimization level. Or a PythonExtensionModule can set attributes saying to prefer to compile it into
the built binary or materialize it as a standalone dynamic extension module (e.g. my_ext.so or my_ext.pyd).

Resource Types

The following Starlark types represent individual resources:

PythonModuleSource
Source code for a Python module. Roughly equivalent to a . py file.

This type can also be converted to Python bytecode (roughly equivalent to a .pyc) when added to a resource
collector.

PythonExtensionModule
A Python module defined through compiled, machine-native code. On Linux, these are typically encountered as
.so files. On Windows, .pyd files.

PythonPackageResource
A non-module resource file loadable by Python resources APIs, such as those in importlib.resources.

PythonPackageDistributionResource
A non-module resource file defining metadata for a Python package. Typically accessed via importlib.
metadata. This is how files in *.dist-info or *.egg-info directories are represented.

File
Represents a filesystem path and its content.

starlark_tugger.FileContent
Represents the content of a filesystem file.

This is different from File in that it only represents file content and doesn’t have an associated path. (It is likely
these 2 types will be merged someday.)

There are also Starlark types that are logically containers for multiple resources:

starlark_tugger.FileManifest
Holds a mapping of relative filesystem paths to starlark_tugger.FileContent instances. This type effec-
tively allows modeling a directory tree.

PythonEmbeddedResources
Holds a collection of Python resources of various types. (This type is often hidden away. e.g. inside a
PythonExecutable instance.)

1.4. PyOxidizer 161

PyOxidizer, Release 0.21.0

Resource Locations

Resources have the concept of a location. A resource’s location determines where the data for that resource is packaged
and how that resource is loaded at run-time.

In-Memory

When a Python resource is placed in the in-memory location, the content behind the resource will be embedded in a
built binary and loaded from there by the Python interpreter.

Python modules imported from memory do not have the __file__ attribute set. This can cause compatibility issues
if Python code is relying on the existence of this module. See __file_ and __cached__ Module Attributes for more.

Filesystem-Relative

When a Python resource is placed in the filesystem-relative location, the resource will be materialized as a file next
to the produced entity. e.g. a filesystem-relative PythonModuleSource for the foo.bar Python module added to a
PythonExecutable will be materialized as the file foo/bar.py or foo/bar/__init__.py in a directory next to
the built executable.

Resources added to filesystem-relative locations should be materialized under paths that preserve semantics with stan-
dard Python file layouts. For e.g. Python source and bytecode modules, it should be possible to point sys.path of any
Python interpreter at the destination directory and the modules will be loadable.

During packaging, PyOxidizer indexes all filesystem-relative resources and embeds metadata about them in the built
binary. While the files on the filesystem may look like a standard Python install layout, loading them is serviced by
PyOxidizer’s custom importer, not the standard importer that Python uses by default.

Customizing Python Packaging Policies

As described in Packaging Policies and Adding Resources,a PythonPackagingPolicy Starlark type instance is bound
to every entity creating resource instances and this packaging policy is used to derive the default add_* attributes which
influence what happens when a resource is added to some entity.

PythonPackagingPolicy instances can be customized to influence what the default values of the add_* attributes
are.

The primary mechanisms for doing this are:

1. Modifying the PythonPackagingPolicy instance’s internal state. See PythonPackagingPolicy for the full
list of object attributes and methods that can be set or called.

2. Registering a function that will be called whenever a resource is created. This enables custom Starlark code to
perform arbitrarily complex logic to influence settings and enables application developers to devise packaging
strategies more advanced than what PyOxidizer provides out-of-the-box.

The following sections give examples of customized packaging policies.

162 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Changing the Resource Handling Mode

As documented in Classified Resources Versus Files, PyOxidizer can operate on classified resources or files-based
resources.

PythonPackagingPolicy.set_resource_handling_mode() exists to change the operating mode of a
PythonPackagingPolicy instance.

def make_exe():
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()
Set policy attributes to only operate on '"classified" resource types.
(This is the default.)

policy.set_resource_handling mode("classify")

Set policy attributes to only operate on ‘File' resource types.
policy.set_resource_handling_mode("files")

PythonPackagingPolicy.set_resource_handling_mode () is just a convenience method for manipulating a col-
lection of attributes on PythonPackagingPolicy instances. If you don’t like the behavior of its pre-defined modes,
feel free to adjust attributes to suit your needs. You can even configure things to emit both classified and files variants
simultaneously!

Customizing Default Resource Locations

The PythonPackagingPolicy.resources_location and PythonPackagingPolicy.
resources_location_fallback attributes define primary and fallback locations that resources should attempt
to be added to. These effectively define the default values for the add_location and add_location_fallback
attributes on individual resource objects.

The accepted values are:

in-memory
Load resources from memory.

filesystem-relative:prefix
Load resources from the filesystem at a path relative to some entity (probably the binary being built).

Additionally, PythonPackagingPolicy.resources_location_fallback can be set to None to remove a fallback
location.

And here is how you would manage these values in Starlark:

def make_exe():
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()
policy.resources_location = "in-memory"
policy.resources_location_fallback = None

Only allow resources to be added to the in-memory location.
exe = dist.to_python_executable(
name = "myapp",

(continues on next page)

1.4. PyOxidizer 163

PyOxidizer, Release 0.21.0

(continued from previous page)

packaging_policy = policy,

Only allow resources to be added to the filesystem-relative location under
a "lib" directory.

policy = dist.make_python_packaging_policy()
policy.resources_location = "filesystem-relative:1lib"
policy.resources_location_fallback = None

exe = dist.to_python_executable(
name = "myapp",
packaging_policy = policy,

Try to add resources to in-memory first. If that fails, add them to a
"1ib" directory relative to the built executable.

policy = dist.make_python_packaging_policy()
policy.resources_location = "in-memory"
policy.resources_location_fallback = "filesystem-relative:1ib"

exe = dist.to_python_executable(

name = "myapp",
packaging_policy = policy,

return exe

Using Callbacks to Influence Resource Attributes

The PythonPackagingPolicy.register_resource_callback() method will register a function to be called
when resources are created. This function receives as arguments the active PythonPackagingPolicy and the newly
created resource.

Functions registered as resource callbacks are called after the add_* attributes are derived for a resource but before
the resource is otherwise made available to other Starlark code. This means that these callbacks provide a hook point
where resources can be modified as soon as they are created.

register_resource_callback() can be called multiple times to register multiple callbacks. Registered functions
will be called in order of registration.

Functions can be leveraged to unify all resource packaging logic in a single place, making your Starlark configuration
files easier to reason about.

Here’s an example showing how to route all resources belonging to a single package to a filesystem-relative
location and everything else to memory:

def resource_callback(policy, resource):

if type(resource) in ("PythonModuleSource", "PythonPackageResource",
- "PythonPackageDistributionResource"):
if resource.package == "my_package":
resource.add_location = "filesystem-relative:1lib"

(continues on next page)

164 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

(continued from previous page)

else:
resource.add_location = "in-memory"

def make_exe():
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()
policy.register_resource_callback(resource_callback)

exe = dist.to_python_executable(
name = "myapp",
packaging_policy = policy,

)

exe.add_python_resources(exe.pip_install(["my_package"]))

PythonExtensionModule Location Compatibility

Many resources just work in any available location. This is not the case for PythonExtensionlfodule instances!

While there only exists a single PythonExtensionlModule type to represent Python extension modules, Python ex-
tension modules come in various flavors. Examples of flavors include:

* A module that is part of a Python distribution and is compiled into 1ibpython (a builtin extension module).

¢ A module that is part of a Python distribution that is compiled as a standalone shared library (e.g. a .so or .pyd
file).

* A non-distribution module that is compiled as a standalone shared library.
* A non-distribution module that is compiled as a static library.

Not all extension module flavors are compatible with all Python distributions. Furthermore, not all flavors are compat-
ible with all build configurations.

Here are some of the rules governing extension modules and their locations:
* A builtin extension module that’s part of a Python distribution will always be statically linked into 1ibpython.

¢ A Windows Python distribution with a statically linked 1ibpython (e.g. the standalone_static distribution
flavor) is not capable of loading extension modules defined as shared libraries and only supports loading builtin
extension modules statically linked into the binary.

* A Windows Python distribution with a dynamically linked 1ibpython (e.g. the standalone_dynamic distri-
bution flavor) is capable of loading shared library backed extension modules from the in-memory location. Other
operating systems do not support the in-memory location for loading shared library extension modules.

If the current build configuration targets Linux MUSL-libc, shared library extension modules are not supported
and all extensions must be statically linked into the binary.

If the object files for the extension module are available, the extension module may be statically linked into the
produced binary.

If loading extension modules from in-memory import is supported, the extension module will have its dynamic
library embedded in the binary.

* The extension module will be materialized as a file next to the produced binary and will be loaded from the
filesystem. (This is how Python extension modules typically work.)

1.4. PyOxidizer 165

PyOxidizer, Release 0.21.0

Note: Extension module handling is one of the more nuanced aspects of PyOxidizer. There are likely many subtle
bugs and room for improvement. If you experience problems handling extension modules, please consider filing an
issue.

Packaging Python Files

The most important packaged resource type are arguably Python files: source modules, bytecode modules, extension
modules, package resources, etc.

For PyOxidizer to recognize these Python resources as Python resources (as opposed to regular files), you will need
to use the methods on the PythonExecutable Starlark type to use the settings from the thing being built to scan for
resources, possibly performing a Python packaging action (such as invoking pip install) along the way.

This documentation covers the available methods and how they can be used.

PythonExecutable Python Resources Methods

The PythonExecutable Starlark type has the following methods that can be called to perform an action and obtain
an iterable of objects representing discovered resources:

PythonExecutable.pip_download()
Invokes pip download with specified arguments and collects resources discovered from downloaded Python
wheels.

PythonExecutable.pip_install()
Invokes pip install with specified arguments and collects all resources installed by that process.

PythonExecutable.read_package_root ()
Recursively scans a filesystem directory for Python resources in a typical Python installation layout.

PythonExecutable.setup_py_install()
Invokes python setup.py install for a given path and collects resources installed by that process.

PythonExecutable.read_virtualenv()
Reads Python resources present in an already populated virtualenv.

Typically, the Starlark types resolved by these method calls are passed into a method that adds the resource to a to-be-
generated entity, such as the PythonExecutable Starlark type.

The following sections demonstrate common use cases.

Packaging an Application from a PyPI Package

In this section, we’ll show how to package the pyflakes program using a published PyPI package. (Pyflakes is a Python
linter.)

First, let’s create an empty project:

$ pyoxidizer init-config-file pyflakes

Next, we need to edit the configuration file to tell PyOxidizer about pyflakes. Open the pyflakes/pyoxidizer.bzl
file in your favorite editor.

Find the make_exe() function. This function returns a PythonExecutable instance which defines a standalone
executable containing Python. This function is a registered rarget, which is a named entity that can be individually

166 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/issues
https://github.com/indygreg/PyOxidizer/issues
https://pypi.org/project/pyflakes/

PyOxidizer, Release 0.21.0

built or run. By returning a PythonExecutable instance, this function/target is saying build an executable containing
Python.

The PythonExecutable type holds all state needed to package and run a Python interpreter. This includes low-level
interpreter configuration settings to which Python resources (like source and bytecode modules) are embedded in that
executable binary. This type exposes an PythonExecutable.add_python_resources() method which adds an
iterable of objects representing Python resources to the set of embedded resources.

Elsewhere in this function, the dist variable holds an instance of PythonDistribution. This type represents a
Python distribution, which is a fancy way of saying an implementation of Python.

Two of the methods exposed by PythonExecutable are PythonExecutable.pip_download() and
PythonExecutable.pip_install(), which invoke pip commands with settings to target the built executable.

To add a new Python package to our executable, we call one of these methods then add t he results to our
PythonExecutable instance. This is done like so:

exe.add_python_resources(exe.pip_download(["pyflakes==2.2.0"]))
or
exe.add_python_resources(exe.pip_install(["pyflakes==2.2.0"]))

When called, these methods will effectively run pip download pyflakes==2.2.0 or pip install
pyflakes==2.2.0, respectively. Actions are performed in a temporary directory and after pip runs, PyOxi-
dizer will collect all the downloaded/installed resources (like module sources and bytecode data) and return them as
an iterable of Starlark values. The exe.add_python_resources() call will then teach the built executable binary
about the existence of these resources. Many resource types will be embedded in the binary and loaded from binary.
But some resource types (notably compiled extension modules) may be installed next to the built binary and loaded
from the filesystem.

Next, we tell PyOxidizer to run pyflakes when the interpreter is executed:

python_config.run_command = "from pyflakes.api import main; main()"

This says to effectively run the Python code eval (from pyflakes.api import main; main()) when the embed-
ded interpreter starts.

The new make_exe () function should look something like the following (with comments removed for brevity):

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.extension_module_filter = "all"
policy.include_distribution_sources = True
policy.include_distribution_resources = True
policy.include_test = False

config = dist.make_python_interpreter_config(Q)
config.run_command = "from pyflakes.api import main; main()"

exe = dist.to_python_executable(
name="pyflakes",
packaging_policy=policy,
config=config,

)
exe.add_python_resources(exe.pip_install(["pyflakes==2.1.1"]))

return exe

1.4. PyOxidizer 167

PyOxidizer, Release 0.21.0

With the configuration changes made, we can build and run a pyflakes native executable:

From outside the " “pyflakes ~ directory
$ pyoxidizer run --path /path/to/pyflakes/project -- /path/to/python/file/to/analyze

From inside the " “pyflakes’ " directory
$ pyoxidizer run -- /path/to/python/file/to/analyze

Or if you prefer the Rust native tools
$ cargo run -- /path/to/python/file/to/analyze

By default, pyflakes analyzes Python source code passed to it via stdin.

Packaging an Application from an Existing Virtualenv

This scenario is very similar to the above example. So we’ll only briefly describe what to do so we don’t repeat
ourselves.:

$ pyoxidizer init-config-file /path/to/myapp

Now edit the pyoxidizer.bzl so the make_exe () function look like the following

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.extension_module_filter = "all"
policy.include_distribution_sources = True
policy.include_distribution_resources = False
policy.include_test = False

config = dist.make_python_interpreter_config()
config.run_command = "from myapp import main; main()"

exe = dist.to_python_executable(
name="myapp",
packaging_policy=policy,
config=config,

)
exe.add_python_resources(exe.read_virtualenv("/path/to/virtualenv"))

return exe

Of course, you need a populated virtualenv!:

$ python3.8 -m venv /path/to/virtualenv
$ /path/to/virtualenv/bin/pip install -r /path/to/requirements.txt

Once all the pieces are in place, simply run pyoxidizer to build and run the application:

$ pyoxidizer run --path /path/to/myapp

168 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Warning: When consuming a pre-populated virtualenv, there may be compatibility differences between the Python
distribution used to populate the virtualenv and the Python distributed used by PyOxidizer at build and application
run time.

For best results, it is recommended to use a packaging method like pip_install(...) or setup_py_install(.
. .) to use PyOxidizer’s Python distribution to invoke Python’s packaging tools.

Packaging an Application from a Local Python Package

Say you have a Python package/application in a local directory. It follows the typical Python package layout and has a
setup.py file and Python files in sub-directories corresponding to the package name. e.g.:

setup.py
mypackage/__init__.py
mypackage/foo.py

You have a number of choices as to how to proceed here. Again, the workflow is very similar to what was explained
above. The main difference is the content of the pyoxidizer.bzl file and the exact method to call to obtain the Python
resources.

You could use pip install <local path> to use pip to process a local filesystem path:

exe.add_python_resources(exe.pip_install(["/path/to/local/package"]))

If the pyoxidizer.bzl file is in the same directory as the directory you want to process, you can derive the absolute
path to this directory via the CWD Starlark variable:

exe.add_python_resources(exe.pip_install([CWD]))

If you don’t want to use pip and want to run setup.py directly, you can do so:

exe.add_python_resources(exe.setup_py_install (package_path=CWD))

Or if you don’t want to run a Python packaging tool at all and just scan a directory tree for Python files:

exe.add_python_resources(exe.read_package_root(CWD, ["mypackage"]))

Note: In this mode, all Python resources must already be in place in their final installation layout for things to work
correctly. Many setup.py files perform additional actions such as compiling Python extension modules, installing
additional files, dynamically generating some files, or changing the final installation layout.

For best results, use a packaging method that invokes a Python packaging tool (like pip_install(...) or
setup_py_install(...).

1.4. PyOxidizer 169

PyOxidizer, Release 0.21.0

Choosing Which Packaging Method to Call

There are a handful of different methods for obtaining Python resources that can be added to a resource collection.
Which one should you use?

The reason there are so many methods is because the answer is: it depends.

Each method for obtaining resources has its niche use cases. That being said, the preferred method for obtaining
Python resources is pip_download(). However, pip_download() may not work in all cases, which is why other
methods exist.

PythonExecutable.pip_download() runs pip download and attempts to fetch Python wheels for specified pack-
ages, requirements files, etc. It then extracts files from inside the wheel and converts them to Python resources which
can be added to resource collectors.

Important: pip_download() will only work if a compatible Python wheel package (.whl file) is available. If
the configured Python package repository doesn’t offer a compatible wheel for the specified package or any of its
dependencies, the operation will fail.

Many Python packages do not yet publish wheels (only .tar.gz archives) or don’t publish at all to Python package
repositories (this is common in corporate environments, where you don’t want to publish your proprietary packages on
PyPI or you don’t run a Python package server).

Important: Not all build targets support pip_download() for all published packages. For example, when targeting
Linux musl libc, built binaries are fully static and aren’t capable of loading Python extension modules (which are shared
libraries). So pip_download() only supports source-only Python wheels in this configuration.

Another advantage of pip_download() is it supports cross-compiling. Unlike pip install, pip download sup-
ports arguments that tell it which Python version, platform, implementation, etc to download packages for. PyOxidizer
automatically tells pip download to download wheels that are compatible with the target environment you are building
for. This means you can do things like download wheels containing Windows binaries when building on Linux.

Note: Cross-compiling is not yet fully supported by PyOxidizer and likely doesn’t work in many cases. However, this
is a planned feature (at least for some configurations) and pip_download() is likely the most future-proof mechanism
to support installing Python packages when cross-compiling.

A potential downside with pip_download() is that it only supports classical Python binary loading/shipping tech-
niques. If you are trying to produce a statically linked executable containing custom Python extension modules,
pip_download() won’t work for you.

After pip_download, PythonExecutable.pip_install() PythonExecutable.setup_py_install() are the
next most-preferred packaging methods.

Both of these work by locally running a Python packaging action (pip install or python setup.py install,
respectively) and then collecting resources installed by that action.

The advantage over pip download is that a pre-built Python wheel does not have to be available and published on a
Python package repository for these commands to work: you can run either against say a local version control checkout
of a Python project and it should work.

The main disadvantage over pip download is that you are running Python packaging operations on the local machine
as part of building an executable. If your package contains just Python code, this should just work. But if you need to
compile extension modules, there’s a good chance your local machine may either not be able to build them properly or

170 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

will build those extension modules in such a way that they aren’t compatible with other machines you want to run them
on.

The final options for obtaining Python resources are PythonExecutable.read_package_root() and
PythonExecutable.read_virtualenv(). Both of these methods rely on traversing a filesystem tree that is
already populated with Python resources. This should just work if only pure Python resources are in play. But if there
are compiled Python extension modules, all bets are off and there is no guarantee that found extension modules
will be compatible with PyOxidizer or will have binary compatibility with other machines. These resource
discovery mechanisms also rely on state not under the control of PyOxidizer and therefore packaging results may be
highly inconsistent and not reproducible across runs. For these reasons, read_package_root() and read_virtualenv()
are the least preferred methods for Python resource discovery.

Packaging Files Instead of In-Memory Resources

By default, PyOxidizer will classify files into typed resources and attempt to load these resources from memory (with the
exception of compiled extension modules, which require special treatment). Please read Managing How Resources are
Added, specifically Classified Resources Versus Files and Resource Locations for more on the concepts of classification
and resource locations.

This is the ideal packaging method because it keeps the entire application self-contained and can result in performance
wins at run-time.

However, sometimes this approach isn’t desired or flat out doesn’t work. Fear not: PyOxidizer has you covered.

Examples of Packaging Failures

Let’s give some concrete examples of how PyOxidizer’s default packaging settings can fail.

black

Let’s demonstrate a failure attempting to package black, a Python code formatter.

We start by creating a new project:

$ pyoxidizer init-config-file black

Then edit the pyoxidizer.bzl file to have the following:

def make_exe(dist):
config = dist.make_python_interpreter_config()
config.run_module = "black"

exe = dist.to_python_executable(
name = "black",

)
for resource in exe.pip_install(["black==19.3b0"]):
resource.add_location = "in-memory"

exe.add_python_resource(resource)

return exe

Then let’s attempt to build the application:

1.4. PyOxidizer 171

https://github.com/python/black

PyOxidizer, Release 0.21.0

$ pyoxidizer build --path black
processing config file /home/gps/src/black/pyoxidizer.bzl
resolving Python distribution...

Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path black
Traceback (most recent call last):

File "black", line 46, in <module>

File "blib2to3.pygram”, line 15, in <module>
NameError: name '__file__' is not defined
SystemError

Uh oh - that’s didn’t work as expected.

As the error message shows, the blib2to3.pygram module is trying to access __file__, which is not defined. As
explained by _ file. _and __cached__ Module Attributes, PyOxidizer doesn’t set __file__ for modules loaded from
memory. This is perfectly legal as Python doesn’t mandate that __file__ be defined. But black (and many other
Python modules) assume __file__ always exists. So it is a problem we have to deal with.

NumPy

Let’s attempt to package NumPy, a popular Python package used by the scientific computing crowd.
$ pyoxidizer init-config-file numpy

Then edit the pyoxidizer.bzl file to have the following:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.resources_location_fallback = "filesystem-relative:1lib"

exe = dist.to_python_executable(
name = "numpy",
packaging_policy = policy,

)

for resource in exe.pip_download(["numpy==1.19.0"]):
resource.add_location = "filesystem-relative:1ib"

exe.add_python_resource(resource)

return exe

We did things a little differently from the black example above: we’re explicitly adding NumPy’s resources into
the filesystem-relative location so they are materialized as files instead of loaded from memory. This is to
demonstrate a separate failure mode.

Then let’s attempt to build the application:

$ pyoxidizer build --path numpy
processing config file /home/gps/src/numpy/pyoxidizer.bzl

(continues on next page)

172 Chapter 1. Multiple Tools Under One Roof

https://numpy.org/

PyOxidizer, Release 0.21.0

(continued from previous page)

resolving Python distribution...

Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path numpy

Python 3.8.6 (default, Oct 3 2020, 20:48:20)
[Clang 10.0.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
Traceback (most recent call last):
File "numpy.core", line 22, in <module>
File "numpy.core.multiarray", line 12, in <module>
File "numpy.core.overrides", line 7, in <module>
ImportError: libopenblasp-r0-ae94cfde.3.9.dev.so: cannot open shared object file: No.
—such file or directory

During handling of the above exception, another exception occurred:

That’s not good! What happened?

Well, the hint is in the stack trace: 1ibopenblasp-r0-ae94cfde.3.9.dev.so: cannot open shared object
file: No such file or directory. So there’s a file named 1ibopenblasp-r®-ae94cfde.3.9.dev.so that
can’t be found. Let’s look in our install layout:

$ find numpy/build/x86_64-unknown-linux-gnu/debug/install/ | grep libopenblasp
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
—.ae9%4cfde
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
—ae94cfde/3
numpy/build/x86_64-unknown-1linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
—ae9%94cfde/3/9
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
—ae94cfde/3/9/dev.so

Well, we found some files, including a . so file! But the filename has been mangled.

This filename mangling is actually a bug in PyOxidizer’s file/resource classification. See Incorrect Resource Identifi-
cation and Classified Resources Versus Files for more.

Installing Classified Resources on the Filesystem

In the black example above, we saw how black failed to run with modules imported from memory because of
__file__ not being defined.

In scenarios where in-memory resource loading doesn’t work, the ideal mitigation is to fix the offending Python modules
so they can load from memory. But this isn’t always trivial or possible with 3rd party dependencies.

Your next mitigation should be to attempt to place the resource on the filesystem, next to the built binary.

This will require configuration file changes.

1.4. PyOxidizer 173

PyOxidizer, Release 0.21.0

The goal of our new configuration is to materialize Python resources associated with black on the filesystem instead
of in memory.

Change your configuration file so make_exe () looks like the following:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.resources_location_fallback = "filesystem-relative:1lib"

python_config = dist.make_python_interpreter_config()
python_config.run_module = "black"

exe = dist.to_python_executable(
name = "black",
packaging_policy = policy,
config = python_config,

for resource in exe.pip_install(["black==19.3b0"]):
resource.add_location = "filesystem-relative:1ib"
exe.add_python_resource(resource)

return exe

There are a few changes here.

We constructed a new PythonPackagingPolicy via PythonDistribution.
make_python_packaging_policy() and set its PythonPackagingPolicy.resources_location_fallback
attribute to filesystem-relative-1ib. This allows us to install resources on the filesystem, relative to the produced
binary.

Next, in the for resource in exe.pip_install(...) loop, we set resource.add_location =
"filesystem-relative:1lib". What this does is tell the subsequent call to PythonExecutable.
add_python_resource () to add the resource as a filesystem-relative resource in the 1ib directory.

With the new configuration in place, let’s re-build and run the application:

$ pyoxidizer run --path black

adding extra file lib/toml-0.10.1.dist-info/top_level.txt to .
installing files to /home/gps/tmp/myapp/build/x86_64-unknown-linux-gnu/debug/install
No paths given. Nothing to do

That No paths given output is from black: it looks like the new configuration worked!

If you examine the build output, you’ll see a bunch of messages indicating that extra files are being installed to the 1ib/
directory. And if you poke around in the install directory, you will in fact see all these files.

In this configuration file, the Python distribution’s files are all loaded from memory but black resources (collected via
pip install black) are materialized on the filesystem. All of the resources are indexed by PyOxidizer at build time
and that index is embedded into the built binary so oxidized_importer Python Extension can find and load resources
more efficiently.

Because only some of the Python modules used by black have a dependency on __file__, it is probably possible to
cherry pick exactly which resources are materialized on the filesystem and minimize the number of files present. We’ll
leave that as an exercise for the reader.

174 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Installing Unclassified Files on the Filesystem

In Installing Classified Resources on the Filesystem we demonstrated how to move classified resources from memory
to the filesystem in order to work around issues importing a module from memory.

Astute readers may have already realized that this workaround (setting .add_locationto filesystem-relative:.
. .) was attempted in the NumPy failure example above. So this workaround doesn’t always work.

In cases where PyOxidizer’s resource classifier or logic to materialize those classified resources as files is failing
(presumably due to bugs in PyOxidizer), you can fall back to using unclassified, file-based resources. See Classified
Resources Versus Files for more on classified versus files based resources.

Our approach here is to switch from classified to files packaging mode. Using our NumPy example from above, change
the make_exe () in your configuration file to as follows:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.set_resource_handling mode("files")
policy.resources_location_fallback = "filesystem-relative:1lib"

python_config = dist.make_python_interpreter_config()
python_config.module_search_paths = ["$ORIGIN/1ib"]

exe = dist.to_python_executable(
name = "numpy",
packaging_policy = policy,
config = python_config,

for resource in exe.pip_download(["numpy==1.19.0"]1):
resource.add_location = "filesystem-relative:1lib"
exe.add_python_resource(resource)

return exe

There are a few key lines here.

policy.set_resource_handling mode("files") calls a method on the PythonPackagingPolicy to set the
resource handling mode to files. This effectively enables File based resources to work. Without it, resource scanners
won’t emit File and attempts at adding File to a resource collection will fail.

Next, we enable file-based resource installs by setting PythonPackagingPolicy.
resources_location_fallback.

Another new line is python_config.module_search_paths = ["$ORIGIN/1lib"]. This all-important line to set
PythonInterpreterConfig.module_search_paths effectively installs the 1ib directory next to the executable on
sys.path at run-time. And as a side-effect of defining this attribute, Python’s built-in module importer is enabled (to
supplement oxidized_importer). This is important because because when you are operating in files mode, resources
are indexed as files and not classified/typed resources. This means oxidized_importer doesn’t recognize them as
loadable Python modules. But since you enable Python’s standard importer and register 1ib/ as a search path, Python’s
standard importer will be able to find the numpy package at run-time.

Anyway, let’s see if this actually works:

$ pyoxidizer run --path numpy

adding extra file lib/numpy.libs/libgfortran-2e0d59d6.s0.5.0.0 to .

(continues on next page)

1.4. PyOxidizer 175

PyOxidizer, Release 0.21.0

(continued from previous page)

adding extra file lib/numpy.libs/libopenblasp-r0-ae94cfde.3.9.dev.so to .

adding extra file lib/numpy.libs/libquadmath-2d0c479f.s0.0.0.0 to .

adding extra file lib/numpy.libs/libz-eb®9adld.so.1.2.3 to .

installing files to /home/gps/tmp/myapp/build/x86_64-unknown-linux-gnu/debug/install
Python 3.8.6 (default, Oct 3 2020, 20:48:20)

[Clang 10.0.1] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import numpy

>>> numpy.__loader__

<_frozen_importlib_external.SourceFileLoader object at 0x7f063dalc7f0>

It works!

Critically, we see that the formerly missing 1ibopenblasp-r0-ae94cfde.3.9.dev. so file is being installed to the
correct location. And we can confirm from the numpy.__loader__ value that the standard library’s module loader is
being used. Contrast with a standard library module:

>>> import pathlib
>>> pathlib.__loader__
<0xidizedFinder object at 0x7f063dc8f8f®>

Enabling files mode and falling back to Python’s importer is often a good way of working around bugs in PyOxidizer’s
resource handling. But it isn’t bulletproof.

Important: Please file a bug report <https://github.com/indygreg/PyOxidizer/issues> if you encounter any issues
with PyOxidizer’s handling of resources and paths.

Working with Python Extension Modules

Python extension modules are machine native code exposing functionality to a Python interpreter via Python modules.

PyOxidizer has varying levels of support for extension modules. This is because some PyOxidizer configurations break
assumptions about how Python interpreters typically run.

This document attempts to capture all the nuances of working with Python extension modules with PyOxidizer.

Extension Module Flavors

Python extension modules exist as either built-in or standalone. A built-in extension module is statically linked into
libpython and a standalone extension module is a shared library that is dynamically loaded at run-time.

Typically, built-in extension modules only exist in Python distributions (and are part of the Python standard library
by definition) and Python package maintainers only ever produce standalone extension modules (e.g. as .so or .pyd
files).

Python distributions typically contain a mix of built-in and standalone extension modules. e.g. the _ast extension
module is built-in and the _ss1 extension module is standalone.

Important: Because PyOxidizer enables you to build your own binaries embedding Python and because different
Python distributions have different levels of support for extension modules, it is important to familiarize yourself with
the types of extension modules and how they can be used.

176 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Extension Module Restrictions

PyOxidizer imposes a handful of restrictions on how extension modules work. These restrictions are typically a side-
effect of limitations of the Python distribution being used/targeted. These restrictions are documented in the sections
below.

Known Incompatibility with Cython

PyOxidizer currently has a known incompatibility with Cython. Specifically, PyOxidizer fails to find object files that
Cython builds. This can lead to missing symbols and build/link time errors.

This is tracked by https://github.com/indygreg/PyOxidizer/issues/567.

musl libe Linux Distributions Only Support Built-in Extension Modules

The Python distributions built against musl libc (build target *-1inux-musl) only support built-in extension modules.

This is because musl libc binaries are statically linked and statically linked Linux binaries are incapable of calling
dlopen() to load a shared library.

This means Python binaries built in this configuration cannot load standalone Python extension modules existing as
separate files (. so files typically). This means PyOxidizer cannot consume Python wheels or other Python resource
sources containing pre-built Python extension modules.

In order for PyOxidizer to support a Python extension module built for musl libc, it must compile that extension module
from source and link the resulting object files / static library directly into the built binary and expose that extension
module as a built-in. This is done using Building with a Custom Distutils.

Windows Static Distributions Only Support Built-in Extension Modules

The Windows standalone_static distribution flavor only supports built-in extension modules and doesn’t support
loading shared library extension modules.

See the above section for implications on this.

The situation of having to rebuild Python extension modules on Windows is often more complicated than on Linux
because oftentimes building extension modules on Windows isn’t as trivial as on Linux. This is because many Windows
environments don’t have the correct version of Visual Studio or various library dependencies. If you want a turnkey
experience for Windows packaging, it is recommended to use the standalone_dynamic distribution flavor.

Loading Extension Modules from in-memory Location

When you attempt to add a PythonExtensionModule Starlark instance to the in-memory resource location, the
request may or may not work depending on the state of the extension module and support from the Python distribution.

The in-memory resource location is interpreted by PyOxidizer as load this extension from memory, without having a
standalone file. PyOxidizer will try its hardest to satisfy this request.

If the object files / static library of an extension module are known to PyOxidizer, these will be statically linked into
the built binary and the extension module will be exposed as a built-in extension module.

If only a shared library is available for the extension module, PyOxidizer only supports loading shared libraries from
memory on Windows standalone_dynamic distributions: in all other platforms the request to load a shared library
extension module is rejected.

1.4. PyOxidizer 177

https://github.com/indygreg/PyOxidizer/issues/567

PyOxidizer, Release 0.21.0

Some extensions and shared libraries are known to not work when loaded from memory using
the custom shared library loader used by PyOxidizer. For this reason, PythonPackagingPolicy.
allow_in_memory_shared_library_loading exists to control this behavior.

Important: Because the in-memory location for extension modules can be brittle, it is recommended to set a re-
sources policy or add_location_fallback to allow extension modules to exist as standalone files. This will provide
maximum compatibility with built Python extension modules and will reduce the complexity of packaging 3rd party
extension modules.

Extension Module Library Dependencies

PyOxidizer doesn’t currently support resolving additional library dependencies from discovered extension modules
outside of the Python distribution. For example, if your extension module foo.so has a run-time dependency on
bar.so, PyOxidizer doesn’t yet detect this and doesn’t realize that bar. so needs to be handled.

This means that if you add a PythonExtensionModule Starlark type and this extension module depends on an addi-
tional library, PyOxidizer will likely not realize this and fail to distribute that additional library dependency with your
application.

If your Python extensions depend on additional libraries, you may need to manually add these files to your installation
via custom Starlark code.

Note that if your shared library exists as a file in Python package (a directory with __init__.py somewhere in the
hierarchy), PyOxidizer’s resource scanning may detect the shared library as a PythonPackageResource and package
this resource. However, the packaged resource won’t be flagged as a shared library. This means that the run-time
importer won’t identify the shared library dependency and won’t take steps to ensure it is available/loaded before the
extension is loaded. This means that the shared library loading needs to be handled by the operating system’s default
rules. And this means that the shared library file must exist on the filesystem, next to a file-based extension module.

Building with a Custom Distutils

If PyOxidizer is not able to reuse an existing shared library extension module or the build configuration is forcing an
extension to be built as a built-in, PyOxidizer attempts to compile the extension module from source so that it can be
statically linked as a built-in.

The way PyOxidizer achieves this is a bit crude, but often effective.

When PyOxidizer invokes pip or setup.py to build a package, it installs a modified version of distutils into the
invoked Python’s sys.path. This modified distutils changes the behavior of some key build steps (notably how C
extensions are compiled) such that the build emits artifacts that PyOxidizer can statically link into a custom binary.

For example, on Linux, PyOxidizer copies the intermediate object files produced by the build and links them into
the binary containing the generated 1ibpython. PyOxidizer completely ignores the shared library that is or would
typically be produced.

If setup.py scripts are following the traditional pattern of using distutils.core.Extension to define extension modules,
things tend to just work (assuming extension modules are supported by PyOxidizer for the target platform). However, if
setup.py scripts are doing their own monkeypatching of distutils, rely on custom build steps or types to compile
extension modules, or invoke separate Python processes to interact with distutils, things may break.

The easiest way to avoid the pitfalls of a custom distutils build is to not attempt to produce a statically linked binary:
use a standalone_dynamic distribution flavor that supports loading extension modules from files.

178 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension

PyOxidizer, Release 0.21.0

Until PyOxidizer supports telling it additional object files or static libraries to link into a binary, there’s no easy
workaround aside from giving up on a statically linked binary. Better support will hopefully be present in future
versions of PyOxidizer.

Managing Packed Resources Data

PyOxidizer’s custom module importer (see OxidizedFinder Meta Path Finder) reads data in a custom serialization
format (see Python Packed Resources) to facilitate efficient module importing and resource loading. If you are using
this module importer (controlled from the PythonInterpreterConfig.oxidized_importer attribute, which is
enabled by default), the interpreter will need to reference this packed resources data at run-time.

The PythonExecutable.packed_resources_load_mode attribute can be used in config files to control how this
resources data should be read.

Available Resource Data Load Modes
Embedded

The embedded resources load mode (the default) will embed raw resources data into the binary and it will be read from
memory at run-time.

This mode is necessary to achieve self-contained, single-file executables. This mode is also useful for single executable
applications, where only a single executable file embeds a Python interpreter.

This mode is also likely the fastest mode, as no explicit filesystem I/O needs to be performed to reference resources
data at run-time.

Binary Relative Memory Mapped File

The binary relative memory mapped file load mode will write resources data into a standalone file that is installed next
to the built binary. At run-time, that file will be memory mapped and memory mapped I/O will be used.

This mode is useful for multiple executable applications, as it enables the resources data to be shared across executables
without bloating total distribution size.

Here’s an example:

def make_exe():
dist = default_python_distribution()

exe = dist.to_python_executable(
name = "myapp",
)
Write and load resources from a "myapp.pypacked" file next to
the executable.

exe.packed_resources_load_mode = "binary-relative-memory-mapped:myapp.pypacked"

return exe

1.4. PyOxidizer 179

PyOxidizer, Release 0.21.0

None / Disabled

The resources load mode of none will disable the writing and loading of this packed resources data. This effectively
means oxidized_importer.OxidizedFinder can’t load anything by default.

This mode can be useful to produce a binary that behaves like python, without PyOxidizer’s special run-time code.
(See Building an Executable that Behaves Like python for more on this topic.)

If this mode is in use, you will need to enable Python’s filesystem importer (PythonInterpreterConfig.
filesystem_importer) or define custom Rust code to have oxidized_importer.OxidizedFinder index re-
sources or else the embedded Python interpreter will fail to initialize due to missing modules.

Trimming Unused Resources

By default, packaging rules are very aggressive about pulling in resources such as Python modules. For example, the
entire Python standard library is embedded into the binary by default. These extra resources take up space and can
make your binary significantly larger than it could be.

It is often desirable to prune your application of unused resources. For example, you may wish to only include Python
modules that your application uses. This is possible with PyOxidizer.

Essentially, all strategies for managing the set of packaged resources boil down to crafting config file logic that chooses
which resources are packaged.

But maintaining explicit lists of resources can be tedious. PyOxidizer offers a more automated approach to solving
this problem.

The PythonInterpreterConfig type defines a write_modules_directory_env setting, which when en-
abled will instruct the embedded Python interpreter to write the list of all loaded modules into a ran-
domly named file in the directory identified by the environment variable defined by this setting. For ex-
ample, if you set write_modules_directory_env="PYOXIDIZER_MODULES_DIR" and then run your binary
with PYOXIDIZER_MODULES_DIR=~/tmp/dump-modules, each invocation will write a ~/tmp/dump-modules/
modules-* file containing the list of Python modules loaded by the Python interpreter.

One can therefore use write_modules_directory_env to produce files that can be referenced in a different build
target to filter resources through a set of only include names.

TODO this functionality was temporarily dropped as part of the Starlark port.

Performance of Built Binaries

Binaries built with PyOxidizer tend to run faster than those executing via a normal python interpreter. There are a few
reasons for this.

Resources Data Compiled Into Binary

Traditionally, when Python needs to import a module, it traverses the entries on sys.path and queries the filesystem
to see whether a .pyc file, .py file, etc are available until it finds a suitable file to provide the Python module data.
If you trace the system calls of a Python process (e.g. strace -f python3 ...), you will see tons of 1stat(),
open(), and read() calls performing filesystem I/O.

While filesystems cache the data behind these 1/O calls, every time Python looks up data in a file the process needs to
context switch into the kernel and then pass data back to Python. Repeated thousands of times - or even millions of
times across hundreds or thousands of process invocations - the few microseconds of overhead plus the I/O overhead
for a cache miss can add up to significant overhead!

180 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

When binaries are built with PyOxidizer, all available Python resources are discovered at build time. An index of
these resources along with the raw resource data is packed - often into the executable itself - and made available to
PyOxidizer’s custom importer. When PyOxidizer services an import statement, looking up a module is effectively
looking up a key in a dictionary: there is no explicit filesystem I/O to discover the location of a resource.

PyOxidizer’s packed resources data supports storing raw resource data inline or as a reference via a filesystem path.

If inline storage is used, resources are effectively loaded from memory, often using 0-copy. There is no explicit filesys-
tem I/O. The only filesystem I/O that can occur is indirect, as the operating system pages a memory page on first access.
But this all happens in the kernel memory subsystem and is typically faster than going through a functionally equivalent
system call to access the filesystem.

If filesystem paths are stored, the only filesystem I/O we require is to open() the file and read() its file descriptor:
all filesystem I/O to locate the backing file is skipped, along with the overhead of any Python code performing this
discovery.

We can attempt to isolate the effect of in-memory module imports by running a Python script that attempts to import the
entirety of the Python standard library. This test is a bit contrived. But it is effective at demonstrating the performance
difference.

Using a stock python3. 7 executable and 2 PyOxidizer executables - one configured to load the standard library from
the filesystem using Python’s default importer and another from memory:

$ hyperfine -m 50 -- '/usr/local/bin/python3.7 -S import_stdlib.py' import-stdlib-
—filesystem import-stdlib-memory
Benchmark #1: /usr/local/bin/python3.7 -S import_stdlib.py
Time (mean +): 258.8 ms + 8.9 ms [User: 220.2 ms, System: 34.4 ms]
Range (min ... max): 247.7 ms ... 310.5 ms 50 runs

Benchmark #2: import-stdlib-filesystem
Time (mean =+): 249.4 ms + 3.7 ms [User: 216.3 ms, System: 29.8 ms]

Range (min ... max): 243.5 ms ... 258.5 ms 50 runs

Benchmark #3: import-stdlib-memory

Time (mean =+): 217.6 ms + 6.4 ms [User: 200.4 ms, System: 13.7 ms]
Range (min ... max): 207.9 ms ... 243.1 ms 50 runs
Summary

"import-stdlib-memory' ran
1.15 £ 0.04 times faster than 'import-stdlib-filesystem'
1.19 £ 0.05 times faster than '/usr/local/bin/python3.7 -S import_stdlib.py'

We see that the PyOxidizer executable using the standard Python importer has very similar performance to python3.
7. But the PyOxidizer executable importing from memory is clearly faster. These measurements were obtained on
macOS and the import_stdlib.py script imports 506 modules.

A less contrived example is running the test harness for the Mercurial version control tool. Mercurial’s test harness
creates tens of thousands of new processes that start Python interpreters. So a few milliseconds of overhead starting
interpreters or loading modules can translate to several seconds.

We run the full Mercurial test harness on Linux on a Ryzen 3950X CPU using the following variants:
* hg script with a #! /path/to/python3.7 line (traditional)
* hg PyOxidizer executable using Python’s standard filesystem import (oxidized)
* hg PyOxidizer executable using filesystem-relative resource loading (filesystem)

* hg PyOxidizer executable using in-memory resource loading (in-memory)

1.4. PyOxidizer 181

PyOxidizer, Release 0.21.0

The results are quite clear:

Variant CPU Time (s) | Delta (s) | % Orig
traditional 11,287 0 100
oxidized 10,735 -552 95.1
filesystem 10,186 -1,101 90.2
in-memory | 9,883 -1,404 87.6

These results help us isolate specific areas of speedups:

* oxidized over traditional is a rough proxy for the benefits of python -S over python. Although there are other
factors at play that may be influencing the numbers.

* filesystem over oxidized isolates the benefits of using PyOxidizer’s importer instead of Python’s default importer.
The performance wins here are due to a) avoiding excessive I/O system calls to locate the paths to resources and
b) functionality being implemented in Rust instead of Python.

* in-memory over filesystem isolates the benefits of avoiding explicit filesystem I/O to load Python resources. The
Rust code backing these 2 variants is very similar. The only meaningful difference is that in-memory constructs
a Python object from a memory address and filesystem must open and read a file using standard OS mechanisms
before doing so.

From this data, one could draw a few conclusions:
* Processing of the site module during Python interpreter initialization can add substantial overhead.

* Maintaining an index of Python resources such that you can avoid discovery via filesystem I/O provides a mean-
ingful speedup.

* Loading Python resources from an in-memory data structure is faster than incurring explicit filesystem I/O to do
sO.

Ignoring site

In its default configuration, binaries produced with PyOxidizer configure the embedded Python interpreter differently
from how a python is typically configured.

Notably, PyOxidizer disables the importing of the site module by default (making it roughly equivalent to python
-S). The site module does a number of things, such as look for . pth files, looks for site-packages directories, etc.
These activities can contribute substantial overhead, as measured through a normal python3. 7 executable on macOS:

$ hyperfine -m 500 -- '/usr/local/bin/python3.7 -c 1' '/usr/local/bin/python3.7 -S -c 1'
Benchmark #1: /usr/local/bin/python3.7 -c 1

Time (mean =+): 22.7 ms =+ 2.0 ms [User: 16.7 ms, System: 4.2 ms]

Range (min ... max): 18.4 ms ... 32.7 ms 500 runs

Benchmark #2: /usr/local/bin/python3.7 -S -c 1

Time (mean =+): 12.7 ms + 1.1 ms [User: 8.2 ms, System: 2.9 ms]
Range (min ... max): 9.8 ms ... 16.9 ms 500 runs
Summary

'/usr/local/bin/python3.7 -S -c 1' ran
1.78 £ 0.22 times faster than '/usr/local/bin/python3.7 -c 1'

Shaving ~10ms off of startup overhead is not trivial!

182 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

Packaging Pitfalls

While PyOxidizer is capable of building fully self-contained binaries containing a Python application, many Python
packages and applications make assumptions that don’t hold inside PyOxidizer. This section talks about all the things
that can go wrong when attempting to package a Python application.

C and Other Native Extension Modules

Many Python packages compile extension modules to native code. (Typically C is used to implement extension mod-
ules.)

PyOxidizer has varying levels of support for Python extension modules. In many cases, everything just works. But
there are known incompatibilities and corner cases. See Working with Python Extension Modules for details.

Identifying PyOxidizer

Python code may want to know whether it is running in the context of PyOxidizer.

At packaging time, pip and setup.py invocations made by PyOxidizer should set a PYOXIDIZER=1 environment
variable. setup.py scripts, etc can look for this environment variable to determine if they are being packaged by
PyOxidizer.

At run-time, PyOxidizer will always set a sys.oxidized attribute with value True. So, Python code can test whether
it is running in PyOxidizer like so:

import sys

if getattr(sys, 'oxidized', False):
print('running in PyOxidizer!'")

Incorrect Resource Identification

PyOxidizer has custom code for scanning for and indexing files as specific Python resource types. This code is some-
what complex and nuanced and there are known bugs that will cause PyOxidizer to fail to identify or classify a file
appropriately.

To help debug problems with this code, the pyoxidizer find-resources command can be employed. See Debug-
ging Resource Scanning and Identification with find-resources for more.

Important: Please file a bug to report problems!

See Classified Resources Versus Files for more on this topic.

1.4. PyOxidizer 183

https://github.com/indygreg/PyOxidizer/issues/new

PyOxidizer, Release 0.21.0

Masquerading As Other Packaging Tools

Tools to package and distribute Python applications existed several years before PyOxidizer. Many Python packages
have learned to perform special behavior when the _fingerprint* of these tools is detected at run-time.

First, PyOxidizer has its own fingerprint: sys.oxidized = True. The presence of this attribute can indicate an
application running with PyOxidizer. Other applications are discouraged from defining this attribute.

Since PyOxidizer’s run-time behavior is similar to other packaging tools, PyOxidizer supports falsely identifying
itself as these other tools by emulating their fingerprints.

PythonInterpreterConfig.sys_frozen controls whether sys.frozen = True is set. This can allow
PyOxidizer to advertise itself as a frozen application.

In addition, the PythonInterpreterConfig.sys_meipass boolean flag controls whether a sys._MEIPASS =
<exe directory> attribute is set. This allows PyOxidizer to masquerade as having been built with PylInstaller.

Warning: Masquerading as other packaging tools is effectively lying and can be dangerous, as code relying on
these attributes won’t know if it is interacting with PyOxidizer or some other tool. It is recommended to only
set these attributes to unblock enabling packages to work with PyOxidizer until other packages learn to check for
sys.oxidized = True. Setting sys._MEIPASS is definitely the more risky option, as a case can be made that
PyOxidizer should set sys. frozen = True by default.

Standalone / Single File Applications with Static Linking

This document describes how to produce standalone, single file application binaries embedding Python using static
linking.

See also Working with Python Extension Modules for extensive documentation about extension modules, which are
often a pain point when it comes to static linking.

Building Fully Statically Linked Binaries on Linux

It is possible to produce a fully statically linked executable embedding Python on Linux. The produced binary will
have no external library dependencies nor will it even support loading dynamic libraries. In theory, the executable can
be copied between Linux machines and it will just work.

Building such binaries requires using the x86_64-unknown-1linux-musl Rust toolchain target. Using pyoxidizer:

$ pyoxidizer build --target x86_64-unknown-linux-musl

Specifying --target x86_64-unknown-linux-musl will cause PyOxidizer to use a Python distribution built
against musl libc as well as tell Rust to target musl on Linux.

Targeting musl requires that Rust have the musl target installed. Standard Rust on Linux installs typically do not have
this installed! To install it:

$ rustup target add x86_64-unknown-linux-musl
info: downloading component 'rust-std' for 'x86_64-unknown-linux-musl’'
info: installing component 'rust-std' for 'x86_64-unknown-linux-musl'

If you don’t have the musl target installed, you get a build time error similar to the following:

184 Chapter 1. Multiple Tools Under One Roof

https://www.musl-libc.org/

PyOxidizer, Release 0.21.0

error[E0463]: can't find crate for “std’

= note: the "x86_64-unknown-linux-musl’ target may not be installed

But even installing the target may not be sufficient! The standalone Python builds are using a modern version of musl
and the Rust musl target must also be using this newer version or else you will see linking errors due to missing symbols.
For example:

/build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to "getrandom'
/usr/bin/1ld: /build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to.
-, getrandom'

/usr/bin/1d: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to.
— getrandom'

/usr/bin/1ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to.
-, getrandom'

Rust 1.37 or newer is required for the modern musl version compatibility. And newer versions of Rust may change
which version of musl they use, introducing failures similar to above. If you run into problems with a modern version
of Rust, consider reporting an issue against PyOxidizer!

Once Rust’s musl target is installed, you can build away:

$ pyoxidizer build --target x86_64-unknown-linux-musl
$ 1dd build/apps/myapp/x86_64-unknown-1linux-musl/debug/myapp
not a dynamic executable

Congratulations, you’ve produced a fully statically linked executable containing a Python application!

Important: There are reported performance problems with Python linked against musl libc. Application maintainers
are therefore highly encouraged to evaluate potential performance issues before distributing binaries linked against
musl libc.

It’s worth noting that in the default configuration PyOxidizer binaries will use jemalloc for memory allocations,
bypassing musl’s apparently slower memory allocator implementation. This may help mitigate reported performance
issues.

Building Statically Linked Binaries on Windows

It is possibly to produce a mostly self-contained . exe on Windows. We say mostly self-contained here because currently
the built binary has some external .d11 dependencies. However, these DLLs are core Windows / system DLLs and
should be present on any Windows installation supported by the Python distribution being used.

The main trick to build a statically linked Windows binary is to switch the Python distribution from the default
standalone_dynamic flavor to standalone_static. This can be done via the following in your config file:

dist = default_python_distribution(flavor = "standalone_static")

Important: The standalone_static Windows distributions build Python in a way that is incompatible with com-
piled Python extensions (. pyd files). So if you use this distribution flavor, you will need to compile all Python extensions
from source and cannot use pre-built wheels packages. This can make building applications with many dependencies
difficult, as many Python packages don’t compile on Windows without installing many dependencies first.

1.4. PyOxidizer 185

https://github.com/indygreg/PyOxidizer/issues
https://superuser.com/questions/1219609/why-is-the-alpine-docker-image-over-50-slower-than-the-ubuntu-image

PyOxidizer, Release 0.21.0

See also Windows Static Distributions Only Support Built-in Extension Modules.

See also Understanding Python Distributions for more details on the differences between standalone_dynamic and
standalone_static Python distributions.

Implications of Static Linking

Most Python distributions rely heavily on dynamic linking. In addition to python frequently loading a dynamic
libpython, many C extensions are compiled as standalone shared libraries. This includes the modules _ctypes,
_Jjson, _sqlite3, _ssl, and _uuid, which provide the native code interfaces for the respective non-_ prefixed mod-
ules which you may be familiar with.

These C extensions frequently link to other libraries, such as 1libffi, libsqlite3, libssl, and libcrypto.
And more often than not, that linking is dynamic. And the libraries being linked to are provided by the sys-
tem/environment Python runs in. As a concrete example, on Linux, the _ssl module can be provided by _ssl.
cpython-37m-x86_64-1inux-gnu.so, which can have a shared library dependency against 1ibssl.so.1.1 and
libcrypto.so.1.1, which can be located in /usr/1ib/x86_64-1inux-gnu or a similar location under /usr.

When Python extensions are statically linked into a binary, the Python extension code is part of the binary instead of
in a standalone file.

If the extension code is linked against a static library, then the code for that dependency library is part of the exten-
sion/binary instead of dynamically loaded from a standalone file.

When PyOxidizer produces a fully statically linked binary, the code for these 3rd party libraries is part of the produced
binary and not loaded from external files at load/import time.

There are a few important implications to this.

One is related to security and bug fixes. When 3rd party libraries are provided by an external source (typically the
operating system) and are dynamically loaded, once the external library is updated, your binary can use the latest
version of the code. When that external library is statically linked, you need to rebuild your binary to pick up the latest
version of that 3rd party library. So if e.g. there is an important security update to OpenSSL, you would need to ship a
new version of your application with the new OpenSSL in order for users of your application to be secure. This shifts
the security onus from e.g. your operating system vendor to you. This is less than ideal because security updates are
one of those problems that tend to benefit from greater centralization, not less.

It’s worth noting that PyOxidizer’s library security story is very similar to that of containers (e.g. Docker images).
If you are OK distributing and running Docker images, you should be OK with distributing executables built with
PyOxidizer.

Another implication of static linking is licensing considerations. Static linking can trigger stronger licensing protections
and requirements. Read more at Licensing Considerations.

Licensing Considerations

Any time you link libraries together or distribute software, you need to be concerned with the licenses of the underlying
code. Some software licenses - like the GPL - can require that any code linked with them be subject to the license and
therefore be made open source. In addition, many licenses require a license and/or copyright notice be attached to works
that use or are derived from the project using that license. So when building or distributing any software, you need
to be cognizant about all the software going into the final work and any licensing terms that apply. Binaries produced
with PyOxidizer are no different!

PyOxidizer and the code it uses in produced binaries is licensed under the Mozilla Public License version 2.0. The
licensing terms are generally pretty favorable. (If the requirements are too strong, the code that ships with binaries
could potentially use a weaker license. Get in touch with the project author.)

186 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

The Rust code PyOxidizer produces relies on a handful of 3rd party Rust crates. These crates have various licenses. We
recommend using the cargo-license, cargo-tree, and cargo-lichking tools to examine the Rust crate dependency tree and
their respective licenses. The cargo-1lichking tool can even assemble licenses of Rust dependencies automatically
so you can more easily distribute those texts with your application!

As cool as these Rust tools are, they don’t include licenses for the Python distribution, the libraries its extensions link
against, nor any 3rd party Python packages you may have packaged.

Python and its various dependencies are governed by a handful of licenses. These licenses have various requirements
and restrictions.

At the very minimum, the binary produced with PyOxidizer will have a Python distribution which is governed by a
license. You will almost certainly need to distribute a copy of this license with your application.

Various C-based extension modules part of Python’s standard library link against other C libraries. For self-contained
Python binaries, these libraries will be statically linked if they are present. That can trigger stronger license protections.
For example, if all extension modules are present, the produced binary may contain a copy of the GPL 3.0 licensed
readline and gdbm libraries, thus triggering strong copyleft protections in the GPL license.

Important: It is critical to audit which Python extensions and packages are being packaged because of licensing
requirements of various extensions.

Consider using a package such as pip-licenses to generate a license report for your Python packages.

Showing Python Distribution Licenses

The special Python distributions that PyOxidizer consumes can annotate licenses of software within.

The pyoxidizer python-distribution-licenses command can display the licenses for the Python distribution
and libraries it may link against. This command can be used to evaluate which extensions meet licensing requirements
and what licensing requirements apply if a given extension or library is used.

Terminfo Database

Note: This content is not relevant to Windows.

If your application interacts with terminals (e.g. command line tools), your application may require the availability of a
terminfo database so your application can properly interact with the terminal. The absence of a terminal database can
result in the inability to properly colorize text, the backspace and arrow keys not working as expected, weird behavior
on window resizing, etc. A terminfo database is also required to use curses or readline module functionality
without issue.

UNIX like systems almost always provide a terminfo database which says which features and properties various
terminals have. Essentially, the TERM environment variable defines the current terminal [emulator] in use and the
terminfo database converts that value to various settings.

From Python, the ncurses library is responsible for consulting the terminfo database and determining how to
interact with the terminal. This interaction with the ncurses library is typically performed from the _curses,
_curses_panel, and _readline C extensions. These C extensions are wrapped by the user-facing curses and
readline Python modules. And these Python modules can be used from various functionality in the Python standard
library. For example, the readline module is used to power pdb.

1.4. PyOxidizer 187

https://github.com/onur/cargo-license
https://github.com/sfackler/cargo-tree
https://github.com/Nemo157/cargo-lichking
https://github.com/raimon49/pip-licenses

PyOxidizer, Release 0.21.0

PyOxidizer applications do not ship a terminfo database. Instead, applications rely on the terminfo database on the
executing machine. (Of course, individual applications could ship a terminfo database if they want: the functionality
justisn’t included in PyOxidizer by default.) The reason PyOxidizer doesn’t ship a terminfo database is that terminal
configurations are very system and user specific: PyOxidizer wants to respect the configuration of the environment in
which applications run. The best way to do this is to use the terminfo database on the executing machine instead of
providing a static database that may not be properly configured for the run-time environment.

PyOxidizer applications have the choice of various modes for resolving the terminfo database location. This is
facilitated mainly via the PythonInterpreterConfig. terminfo_resolution config setting.

By default, when Python is initialized PyOxidizer will try to identify the current operating system and choose an
appropriate set of well-known paths for that operating system. If the operating system is well-known (such as a Debian-
based Linux distribution), this set of paths is fixed. If the operating system is not well-known, PyOxidizer will look for
terminfo databases at common paths and use whatever paths are present.

If all goes according to plan, the default behavior just works. On common operating systems, the cost to the default
behavior is reading a single file from the filesystem (in order to resolve the operating system). The overhead should
be negligible. For unknown operating systems, PyOxidizer may need to stat() ~10 paths looking for the terminfo
database. This should also complete fairly quickly. If the overhead is a concern for you, it is recommended to build
applications with a fixed path to the terminfo database.

Under the hood, when PyOxidizer resolves the terminfo database location, it communicates these paths to ncurses
by setting the TERMINFO_DIRS environment variable. If the TERMINFO_DIRS environment variable is already set at
application run-time, PyOxidizer will never overwrite it.

The ncurses library that PyOxidizer applications ship with is also configured to look for a terminfo database in the
current user’s home directory (HOME environment variable) by default, specifically $HOME/ . terminfo). Support for
termcap databases is not enabled.

Note: terminfo database behavior is intrinsically complicated because various operating systems do things differ-
ently. If you notice oddities in the interaction of PyOxidizer applications with terminals, there’s a good chance you
found a deficiency in PyOxidizer’s terminal detection logic (which is located in the pyembed: : osutils Rust module).

Please report terminal interaction issues at https://github.com/indygreg/PyOxidizer/issues.

Using the multiprocessing Python Module

The multiprocessing Python module has special behavior and interactions with PyOxidizer.

In general, multiprocessing just works with PyOxidizer if the default settings are used: you do not need to call any
functions in multiprocessing to enable multiprocessing to work with your executable.

Worker Process Spawn Method

The multiprocessing module works by spawning work in additional processes. It has multiple mech-
anisms for spawning processes and the default mechanism can be specified by calling multiprocessing.
set_start_method().

PyOxidizer has support for automatically calling multiprocessing.set_start_method() when the
multiprocessing module is imported by oxidized_importer.OxidizedFinder. This behavior is config-
ured via PythonInterpreterConfig.multiprocessing_start_method.

The default value is auto, which means that if the multiprocessing module is serviced by PyOxidizer’s custom im-
porter (as opposed to Python’s default filesystem importer), your application does not need to callmultiprocessing.
set_start_method() early in its __main__ routine, as the Python documentation says to do.

188 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/issues
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method

PyOxidizer, Release 0.21.0

To make the embedded Python interpreter behave as python would, set PythonInterpreterConfig.
multiprocessing_start_method to none in your configuration file. This will disable the automatic calling of
multiprocessing.set_start_method().

Ifmultiprocessing.set_start_method() is called twice, it will raise RuntimeError("context has already
been set"). This error can be suppressed by passing the force=True keyword argument to the function.

Buggy fork When Using Framework Python on macOS

The multiprocessing spawn methods of fork and forkserver are known to be buggy when Python is built as a
framework.

Python by default will use the spawn method because of this bug.

Since PyOxidizer does not use framework builds of Python, auto mode will use fork on macOS, since it is more
efficient than spawn.

spawn Only Works on Windows with PyOxidizer

The spawn start method is known to be buggy with PyOxidizer except on Windows. It is recommended to only use
fork or forkserver on non-Windows platforms.

Important: If oxidized_importer.OxidizedFinder doesn’t service the multiprocessing import, the default
start method on macOS will be spawn, and this won’t work correctly.

In this scenario, your application code should callmultiprocessing.set_start_method("fork", force=True)
before multiprocessing functionality is used.

Automatic Detection and Dispatch of multiprocessing Processes

When the spawn start method is used, multiprocessing effectively launches a new sys.executable process with
arguments --multiprocessing-fork [key=value]

Executables built with PyOxidizer using the default settings recognize when processes are invoked this way and will
automatically call into multiprocessing.spawn.spawn_main(), just asmultiprocessing. freeze_support()
would.

Whenmultiprocessing.spawn.spawn_main() is called automatically, this replaces any other run-time settings for
that process. i.e. your custom code will not run in this process, as this is a multiprocessing process.

This behavior means that multiprocessing should just work and your application code doesn’t need to call into the
multiprocessing module in order for multiprocessing to work.

If you want your code to be compatible with non-PyOxidizer running methods, you should still callmultiprocessing.
freeze_support() earlyin __main__, per themultiprocessing documentation. This function should no-op unless
the process is supposed to be a multiprocessing process.

If you want to disable the automatic detection and dispatching into multiprocessing.spawn. spawn_method(), set
PythonInterpreterConfig.multiprocessing_auto_dispatch to False.

1.4. PyOxidizer 189

https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_start_method
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://bugs.python.org/issue33725
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.freeze_support
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing

PyOxidizer, Release 0.21.0

Dependence on sys. frozen

multiprocessing changes its behavior based on whether sys. frozen is set.

In order for multiprocessing to just work with PyOxidizer, sys.frozen needs to be set to True (or some other
truthy value). This is the default behavior. However, this setting is configurable via PythonInterpreterConfig.
sys_frozen and via the Rust struct that configures the Python interpreter, so sys.frozen may not always be set,
causing multiprocessing to not work.

Sensitivity to sys.executable

When in spawn mode, multiprocessing will execute new sys.executable processes to create a worker process.

If sys.frozen == True, the first argument to the new process will be --multiprocessing-fork. Otherwise, the
arguments are python arguments to define code to execute.

This means that sys.executable must be capable of responding to process arguments to dispatch to
multiprocessing upon process start.

In the default configuration, sys.executable should be the PyOxidizer built executable, sys. frozen == True, and
everything should just work.

However, if sys.executable isn’t the PyOxidizer built executable, this could cause multiprocessing to break.

If you want sys.executable to be an executable that is separate from the one that multiprocessing invokes, call
multiprocessing.set_executable() from your application code to explicitly install an executable that responds
tomultiprocessing’s process arguments.

Debugging multiprocessing Problems

If you run into problems with multiprocessing in a PyOxidizer application, here’s what you should do.

1. Verify you are running a modern PyOxidizer. Only versions 0.17 and newer have multiprocessing support
that just works.

2. Verify the start method. Call multiprocessing.get_start_method() from your application / executable.
On Windows, the value should be spawn. On non-Windows, fork. Other values are known to cause issues. See
the documentation above.

3. Verify sys. frozen is set. If missing or set to a non-truthy value, mul tiprocessing may not work correctly.

4. When using spawn mode (default on Windows), verify multiprocessing.spawn.get_executable() returns
an executable that exists and is capable of handling --multiprocessing-fork as its first argument. In most
cases, the returned path should be the path of the PyOxidizer built executable and should also be the same value
as sys.executable.

SSL Certificate Loading

If using the ss1 Python module (e.g. as part of making connections to https:// URLs), Python in its default config-
uration will want to obtain a list of frusted X.509 / SSL certificates for verifying connections.

If a list of trusted certificates cannot be found, you may encounter errors like ss1.SSLCertVerificationError:
[SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: wunable to get local issuer
certificate.

190 Chapter 1. Multiple Tools Under One Roof

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.set_executable
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing
https://docs.python.org/3/library/ssl.html#module-ssl

PyOxidizer, Release 0.21.0

How Python Looks for Certificates

By default, Python will likely call ss1.SSLContext.load_default_certs() to load the default certificates.

On Windows, Python automatically loads certificates from the Windows certificate store. This should just work with
PyOxidizer.

On all platforms, Python attempts to load certificates from the default locations compiled into the OpenSSL library that
is being used. With PyOxidizer, the OpenSSL (or LibreSSL) library is part of the Python distribution used to produce
a binary.

The OpenSSL library hard codes default certificate search paths. For PyOxidizer’s Python distributions, the paths are:

¢ (Windows) C:\Program Files\Common Files\SSL\cert.pem (file) and C:\Program Files\Common
Files\SSL\certs (directory).

* (non-Windows) /etc/ssl/cert.pem (file) and /etc/ssl/certs (directory).

In addition, OpenSSL (but not LibreSSL) will look for path overrides in the SSL_CERT_FILE and SSL_CERT_DIR
environment variables.

You can verify all of this behavior by calling ss1.get_default_verify_paths():

$ python3.9

Python 3.9.5 (default, Apr 16 2021, 08:56:35)

[GCC 10.2.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import ssl

>>> ssl.get_default_verify_paths()

DefaultVerifyPaths(cafile=None, capath='/etc/ssl/certs', openssl_cafile_env="SSL_CERT_
~FILE', openssl_cafile='"/etc/ssl/cert.pem', openssl_capath_env='SSL_CERT_DIR', openssl_
—»capath="'/etc/ssl/certs')

On macOS, /etc/ssl should exist, as it is part of the standard macOS install. So OpenSSL / Python should find
certificates automatically.

On Windows, the default certificate path won’t exist unless something that isn’t PyOxidizer materializes the afore-
mentioned files/directories. However, since Python loads certificates from the Windows certificate store automatically,
OpenSSL / Python should be able to load certificates from PyOxidizer applications without issue.

On Linux, things are more complicated. The /etc/ssl directory is common, but not ubiquitous. This directory likely
exists on all Debian based distributions, like Ubuntu. If the directory does not exist, OpenSSL / Python will likely fail
to find certificates and summarily fail to verify connections against them.

Using Alternative Certificate Paths

PyOxidizer doesn’t yet have a built-in mechanism for automatically registering additional certificates or certificate paths
at run-time. Therefore, if OpenSSL / Python is unable to locate certificates, you will need to add custom logic to your
application to have it look for additional certificates.

1.4. PyOxidizer 191

https://docs.python.org/3/library/ssl.html#ssl.SSLContext.load_default_certs
https://docs.python.org/3/library/ssl.html#ssl.get_default_verify_paths

PyOxidizer, Release 0.21.0

Certifi

The certifi Python package provides access to a copy of Mozilla’s trusted certificates list. Using certifi enables you to
have access to a known trusted certificates list without dependence on certificates present in the run-time environment
/ operating system.

Because certifi and its certificate list is distributed with your application, it is guaranteed to be present and certificate
loading should just work.

To use certifi with PyOxidizer, you can install it as an additional package. From your Starlark configuration file:

def make_exe():
dist = default_python_distribution()
exe = dist.to_python_executable(name="myapp")

Check for newer versions at https://pypi.org/project/certifi/.
exe.add_python_resources(exe.pip_install(["certifi==2020.12.5"]))

return exe

Then from your application’s Python code:

import certifi
import ssl

Obtain a default ssl.SSLContext but with certifi's certificate data loaded.
ctx = ssl.create_default_context(cadata=certifi.contents())

Or if you already have an ssl.SSLContext instance and want to load
certifi's data in it:
ctx.load_verify_locations(cadata=certifi.contents())

Various APIs that create connections also accept a ‘cadata argument.

Under the hood they pass this argument to construct the ssl.SSLContext.
e.g. urllib.request.urlopen().

import urllib.request

urllib.request.urlopen(url, cadata=certifi.contents())

Manually Specifying Paths to Certificates

If you know the paths to certificates to use, you can specify those paths via various ss1 APIs, often through the cafile
and capath arguments. e.g.

import ssl
ctx = ssl.create_default_context(capath="/path/to/ssl/certs")

import urllib.request
urllib.request.urlopen(url, capath="/path/to/ssl/certs")

192 Chapter 1. Multiple Tools Under One Roof

https://pypi.org/project/certifi/
https://docs.python.org/3/library/ssl.html#module-ssl

PyOxidizer, Release 0.21.0

Using Environment Variables

OpenSSL (but not LibreSSL) will look for the SSL_CERT_FILE and SSL_CERT_DIR environment variables to auto-
matically set the CA file and directory, respectively.

You can set these within your process to point to alternative paths. e.g.

import os

os.environ["SSL_CERT_DIR"] = "/path/to/ssl/certs"”

Using the tkinter Python Module

The tkinter Python standard library module/package provides a Python interface to tcl/tk/tkinter. This interface allows
you to create GUI applications.

PyOxidizer has partial support for using tkinter. Since tkinter isn’t a commonly used Python feature, you must
opt in to enabling it.

Installing tcl Files

tkinter requires both a Python extension module compiled against tcl/tk and tcl support files to be loaded at run-time.

All the built-in Python distributions shipping with PyOxidizer provide tkinter support with the exception of the
Windows standalone_static distributions.

However, the tcl support files aren’t installed by default.

To install tcl support files, you will need to set the PythonExecutable.tcl_files_path attribute of a
PythonExecutable instance to the directory you want to install these files into. e.g.

def make_exe(dist):
exe = dist.to_python_executable(name="myapp")
exe.tcl_files_path = "1lib"

return exe

When tcl_files_path is set to a non-None value, the tcl files required by tkinter are installed in that directory
and the built executable will automatically set the TCL_LIBRARY environment variable at run-time so the tcl interpreter
uses those files.

tcl Files Prevent Self-Contained Executables

The tcl interpreter needs to load various files off the filesystem at run-time. PyOxidizer does not (yet) support embed-
ding these files in the binary and loading them from memory or extracting them at run-time.

So if you need to use tkinter, you cannot have a single-file executable that works without a dependency on tcl files
elsewhere on the filesystem.

1.4. PyOxidizer 193

https://docs.python.org/3/library/tkinter.html

PyOxidizer, Release 0.21.0

Building an Executable that Behaves Like python

It is possible to use PyOxidizer to build an executable that would behave like a typical python executable would.

To start, initialize a new config file:

$ pyoxidizer init-config-file python

Then, we’ll want to modify the pyoxidizer.bzl configuration file to look something like the following:

def make_exe(dist):
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()
policy.extension_module_filter = "all"
policy.include_distribution_resources = True

Add resources to the filesystem, next to the built executable.
You can add resources to memory too. But this makes the install
layout somewhat consistent with what Python expects.
policy.resources_location = "filesystem-relative:1lib"

python_config = dist.make_python_interpreter_config()

This is the all-important line to make the embedded Python interpreter
behave like “python .
python_config.config_profile = "python"

Enable the stdlib path-based importer.
python_config.filesystem_importer = True

You could also disable the Rust importer if you really want your
executable to behave like ‘python’.
python_config.oxidized _importer = False

exe = dist.to_python_executable(
name="python3",
packaging_policy = policy,
config = python_config,

return exe

def make_embedded_resources(exe):
return exe.to_embedded_resources()

def make_install(exe):
files = FileManifest()
files.add_python_resource(".", exe)

return files

register_target("exe", make_exe)
register_target("'resources", make_embedded_resources, depends=["exe"], default_build_

—script=True) (continues on next page)

194 Chapter 1. Multiple Tools Under One Roof

PyOxidizer, Release 0.21.0

(continued from previous page)

register_target("install"”, make_install, depends=["exe"], default=True)

resolve_targets()

(The above code is dedicated to the public domain and can be used without attribution.)

From there, build/run from the config:

$ cd python
$ pyoxidizer build

$ pyoxidizer run

Python 3.8.6 (default, Oct 3 2020, 20:48:20)

[Clang 10.0.1] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>>

Resource Loading Caveats

PyOxidizer’s configuration defaults are opinionated about how resources are loaded by default. In the default configu-
ration, the Python distribution’s resources are indexed and loaded via oxidized_importer at run-time. This behavior
is obviously different from what a standard python executable would do.

If you want the built executable to behave like python would and use the standard library importers, you can disable
oxidized_importer by setting PythonInterpreterConfig.oxidized_importer to False.

Another caveat is that indexed resources are embedded in the built executable by default. This will bloat the size of
the executable for no benefit. To disable this functionality, set PythonExecutable.packed_resources_load_mode
none.

Binary Portability

A python-like executable built with PyOxidizer may not just work when copied to another machine. See Portability
of Binaries Built with PyOxidizer to learn more about the portability of binaries built with PyOxidizer.

Distributing User Guide

This documentation covers how to distribute or ship applications with PyOxidizer.

Overview

Application distribution in PyOxidizer is fundamentally a separate domain from building or packaging applications.
One way to think about this is building is concerned with producing files constituting your application - the executables
and support files needed at run-time - and distribution is concerned with installing those files on other machines.

PyOxidizer uses the Tiugger tool to handle most distribution functionality. Tugger is a Rust crate and Starlark dialect
developed alongside PyOxidizer that specializes in functionality required to distribute applications. Tugger is techni-
cally a separate project. But PyOxidizer provides full access to Tugger’s Starlark functionality and even extends it to
make distributing Python applications simpler.

1.4. PyOxidizer 195

PyOxidizer, Release 0.21.0

Using Tugger Starlark

Tugger defines a Starlark dialect that enables you to produce distributable artifacts. See Tugger Starlark Dialect for the
documentation of this dialect.

The full Tugger Starlark dialect is available to PyOxidizer configuration files.

PyOxidizer configuration files have the option of using the generic Tugger Starlark primitives and using supplemen-
tal/extended functionality provided by PyOxidizer’s Starlark dialect. The Tugger-provided primitives are generally
low-level and generic. The PyOxidizer-provided extensions are Python specific and may allow simpler configuration
files.

See other documentation in Distributing User Guide for details on PyOxidizer’s extensions to Tugger’s Starlark dialect
and how to perform common distribution actions.

Portability of Binaries Built with PyOxidizer

Binary portability refers to the property that a binary built in machine/environment X is able to run on ma-
chine/environment Y. In other words, you’ve achieved binary portability if you are able to copy a binary to another
machine and run it without modifications.

It is exceptionally difficult to achieve high levels of binary portability for various reasons.

PyOxidizer is capable of building binaries that are highly portable. However, the steps for doing so can be nuanced
and vary substantially by operating system and target platform.

This document outlines some general strategies for tackling binary portability. Please also consult the various platform-
specific documentation on this topic:

e Distribution Considerations for Linux
* Distribution Considerations for macOS

* Distribution Considerations for Windows

Important: Please create issues at https://github.com/indygreg/PyOxidizer/issues when documentation on this sub-
ject is inaccurate or lacks critical details.

Using pyoxidizer analyze For Assessing Binary Portability

The pyoxidizer analyze command can be used to analyze the contents of executables and libraries. It can be used
as a PyOxidizer-specific tool for assessing the portability of built binaries.

For example, for ELF binaries (the binary format used on Linux), this command will list all shared library dependencies
and analyze glibc symbol versions and print out which Linux distribution versions it thinks the binary is compatible
with.

Note: pyoxidizer analyze is not yet feature complete on all platforms.

196 Chapter 1. Multiple Tools Under One Roof

https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.21.0

Building Windows Installers with the WiX Toolset

PyOxidizer supports building Windows installers (e.g. .msi and .exe installer files) using the WiX Toolset. PyOx-
idizer leverages the Tugger shipping tool for integrating with WiX. See Using the WiX Toolset to Produce Windows
Installers for the full Tugger WiX documentation.

Tugger - and PyOxidizer by extension - are able to automatically create XML files used by WiX to define installers
with common features as well as use pre-existing WiX files. This enables Tugger/PyOxidizer to facilitate both simple
and arbitrarily complex use cases.

Extensions to Tugger Starlark Dialect

PyOxidizer supplements Tugger’s Starlark dialect with additional functionality that makes building Python application
installers simpler. For example, instead of manually constructing a WiX installer, you can call a method on a Python
Starlark type to convert it into an installer.

PyOxidizer provides the following extensions and integrations with Tugger’s Starlark dialect:

FileManifest.add_python_resource()
Adds a Python resource type to Tugger’s starlark_tugger.Filelanifest.

FileManifest.add_python_resources()
Adds an iterable of Python resource types to Tugger’s starlark_tugger.FileManifest type.

PythonExecutable. to_file_manifest()
Converts a PythonExecutable to a starlark_tugger.FileManifest. Enables materializing an exe-
cutable/application as a set of files, which Tugger can easily operate against.

PythonExecutable. to_wix_bundle_builder()
Converts a PythonExecutable to a starlark_tugger.WiXBundleBuilder.

This method will produce a starlark_tugger.WiXBundleBuilder. that is pre-configured with appropriate
settings and state for a Python application. The produced . exe installer should just work.

PythonExecutable. to_wix_msi_builder()
Converts a PythonExecutable to a starlark_tugger.WiXMSIBuilder.

This method will produce a starlark_tugger.WiXMSIBuilder that is pre-configured to install a Python ap-
plication and all its support files. The MSI will install all files composing the Python application, excluding
system-level dependencies.

Choosing an Installer Creation Method

Tugger provides multiple Starlark primitives for defining Windows installers built with the WiX Toolset. Which one
should you use?

See Tugger’s WiX APIs for a generic overview of this topic. The remainder of this documentation will be specific to
Python applications.

It is is important to call out that unless you are using the static Python distributions, binaries built with PyOxidizer
will have a run-time dependency on the Visual C++ Redistributable runtime DLLs (e.g. vcruntime140.d11). Many
Windows applications have a dependency on these DLLs and most Windows machines have installed an application
that has installed the required DLLs. So not distributing vcruntimeXXX.d11 with your application may just work
most of the time. However, on a fresh Windows installation, these required files may not exist. So it is important that
they be installed with your application.

When using PythonExecutable. to_wix_msi_builder() or PythonExecutable. to_wix_bundle_builder(),
PyOxidizer will automatically add the Visual C++ Redistributable to the installer if it is required. However, the method

1.4. PyOxidizer 197

https://wixtoolset.org/

PyOxidizer, Release 0.21.0

varies. For bundle installers, the installer will contain the official VC_Redist*.exe installer and this installer will
be executed as part of running your application’s installer. For MSI installers, Tugger will attempt to locate the
vcruntimeXXX.dl1 files on your system (this requires an installation of Visual Studio) and copy these files next
to your built/installed executable.s

If you are not using one of the aforementioned APIs to create your installer, you will need
to explicitly add the Visual C++ Redistributable to your installer. The starlark_tugger.
WiXMSIBuilder.add _visual_cpp_redistributable() and starlark_tugger.WiXBundleBuilder.
add_vc_redistributable() Starlark methods can be called to do this. (PyOxidizer’s Starlark methods for
creating WiX installers effectively call these methods.)

Distribution Considerations for Linux

This document describes some of the considerations when you want to install/run a PyOxidizer-built application on a
separate Linux machine from the one that built it.

Exception for musl libc Binaries

Linux binaries built against musl libc (e.g. the x86_64-unknown-linux-musl target triple) generally work on any
Linux machine supporting the target architecture. This is because musl libc linked binaries are fully statically linked
and therefore self-contained.

If yourun 1dd /path/to/binary and it prints not a dynamic executable, that binary is likely highly portable.
See Building Fully Statically Linked Binaries on Linux for instructions on building binaries with musl libc.

The rest of this document likely doesn’t apply if using musl libc.

Python Distribution Dependencies

The default Python distributions used by PyOxidizer have dependencies on shared libraries outside of the Python
distribution.

However, the python-build-standalone project - the entity building the default Python distributions - has gone to great
lengths to ensure that all dependencies are common to nearly every Linux system and that the Python distribution
binaries should be highly portable across machines.

The *-unknown-linux-gnu builds have a dependency against GNU libc (glibc), specifically 1ibc.so.6. However,
the python-build-standalone project has build-time validation that glibc version numbers in referenced symbols aren’t
higher than glibc 19 (released in 2014). This should make binaries compatible with the following common distributions:

e Fedora 21+

RHEL/CentOS 7+
* openSUSE 13.2+

¢ Debian 8+ (Jessie)
* Ubuntu 14.04+

In addition to glibc, Python distributions also link to a handful of other system libraries. Most of the libraries are part
of the Linux Standard Base specification and should be present on any conforming Linux distribution.

Some shared library dependencies are only pulled in by single Python extensions. For example, 1ibcrypto.so.1is
likely only needed by the crypt extension. Distributors wanting to minimize the number of shared library dependencies
can do so by pruning Python extensions from the install set. The PYTHON . json file in the extracted Python distribution
archive can be used to inspect which libraries are required by which extensions.

198 Chapter 1. Multiple Tools Under One Roof

https://python-build-standalone.readthedocs.io/en/latest/
https://refspecs.linuxfoundation.org/lsb.shtml

PyOxidizer, Release 0.21.0

Built Application Dependencies

While the default Python distributions used by PyOxidizer are highly portable, the same cannot be said for binaries
built with PyOxidizer.

Important: The machine and environment you use to run pyoxidizer has critical implications for the portability of
built binaries.

When you use PyOxidizer to produce a new binary (an executable or library), you are compiling new code and linking
it in an environment that is different from the specialized environment used to build the default Python distributions.
This often means that the binary portability of your built binary is effectively defined by the environment pyoxidizer
was run from.

As a concrete example, if you run pyoxidizer build on an Ubuntu 20.10 machine and then pyoxidizer analyze
the resulting ELF binary, you’ll find that it has a dependency on 1ibgcc_s.so.1 and it references glibc 2.32 symbol
versions. This despite the default Python distribution not depending on libgcc_s.so.1 * and only glibc version 2.19.

What’s happening here is the compiler/build settings from the building machine are leaking into new binaries, likely
as part of compiling Rust code.

Managing Binary Portability on Linux

Linux is a difficult platform to tackle for binary portability.

The best way to produce a portable Linux binary is to produce a fully statically-linked binary. There are no shared
libraries to worry about and generally speaking these binaries just work. See Building Fully Statically Linked Binaries
on Linux for more.

If you produce a dynamic binary with library dependencies, things are complicated.

Nearly every binary built on Linux will require linking against 1ibc and will require a symbol provided by glibc.
glibc versions it symbols. And when the linker resolves those symbols at link time, it usually uses the version of
glibc being linked against. For example, if you link on a machine with glibc 2.19, the symbol versions in the
produced binary will be against version 2.19 and the binary will load against glibc versions >=2.19. But if you link
on a machine with glibc 2.29, symbol versions are against version 2.29 and you can only load against versions >=
2.29.

This means that to ensure maximum portability, you want to link against old glibc symbol versions. While it is
possible to use old symbol versions when a more modern glibc is present, the path of least resistance is to build in an
environment that has an older glibc.

A similar story plays out with a dependency on 1libgcc_s.so. 1.

The default Python distributions use Debian 8 (Jessie) as their build environment. So a Debian 8 build environment
is a good candidate to build on. Ubuntu 14.04, OpenSUSE 13.2, OpenSUSE 42.1, RHEL/CentOS 7, and Fedora 21
(glibc 2.20) are also good candidates for build environments.

Of course, if you are producing distribution-specific binaries and/or control installation (so e.g. dependencies are
installed automatically), this matters less to you.

The pyoxidizer analyze command can be very useful for inspecting binaries for portability and alerting you to any
potential issues.

1.4. PyOxidizer 199

PyOxidizer, Release 0.21.0

Distribution Considerations for macOS

This document describes some of the considerations when you want to install/run a PyOxidizer-built application on a
separate macOS machine from the one that built it.

Operating System and Architecture Requirements

PyOxidizer has support for targeting x86_64 (Intel) and aarch64 (ARM) Apple devices. The default Python distribu-
tions target macOS 10.9+ for x86_64 and 11.0+ for aarch64.

Build Machine Requirements

PyOxidizer needs to link new binaries containing Python. Due to the way linking works on Apple platforms, you
must use an Apple SDK no older than the one used to build the Python distributions or linker errors (likely undefined
symbols) can occur.

PyOxidizer will automatically attempt to locate, validate, and use an appropriate Apple SDK given requirements spec-
ified by the Python distribution in use. If you have Xcode or the Xcode Commandline Tools installed, PyOxidizer
should be able to locate Apple SDKs automatically. When building, PyOxidizer will print information about Apple
SDK discovery. More details are printed when running pyoxidizer --verbose.

PyOxidizer will automatically look for SDKs in the directory specified by xcode-select --print-path. This path
is often /Applications/Xcode.app/Contents/Developer. You can specify an alternative directory by setting the
DEVELOPER_DIR environment variable. e.g.:

DEVELOPER_DIR=/Applications/Xcode-beta.app/Contents/Developer pyoxidizer build

You can override PyOxidizer’s automatic SDK discovery by setting SDKROOT to the base directory of an Apple SDK
you want to use. (If you find yourself doing this to work around SDK discovery bugs, please consider creating a GitHub
issue to track the problem.) e.g.:

SDKROOT=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/Developer/
—SDKs/MacOSX. sdk pyoxidizer build

Python Distribution Dependencies

The default Python distributions used by PyOxidizer have dependencies on system libraries outside of the Python
distribution.

The python-build-standalone project has gone to great lengths to ensure that the Python distributions only link against
external libraries and symbols that are present on a default macOS installation.

The default Python distributions are built to target macOS 10.9 on x86_64 and 11.0 on aarch64. So they should just
work on those and any newer versions of macOS.

200 Chapter 1. Multiple Tools Under One Roof

https://python-build-standalone.readthedocs.io/en/latest/

PyOxidizer, Release 0.21.0

Single Architecture Binaries

PyOxidizer currently only emits single architecture binaries.

Multiple architecture binaries (often referred to as universal or fat binaries) can not (yet) be emitted natively by PyOx-
idizer.

This means that if you distribute a binary produced by PyOxidizer and want it to run on both Intel and ARM machines,
you will need to maintain separate artifacts for Intel and ARM machines or you will need to produce a fat binary outside
of PyOxidizer.

https://github.com/indygreg/PyOxidizer/issues/372 tracks implementing support for emitting fat binaries from PyOx-
idizer. Please engage there if this feature is important to you.

Managing Portability of Built Applications

Like Linux, the macOS build environment can leak into the built application and introduce additional dependencies
and degrade the portability of the default Python distributions.

It is common for built binaries to pull in modern macOS SDK features. A common way to prevent this is to set the
MACOSX_DEPLOYMENT_TARGET environment variable during the build to the oldest version of macOS you want to
support.

The default Python distributions target macOS 10.9 on x86_64 and 11.0 on aarch64.

Important: PyOxidizer will automatically set the deployment target to match what the Python distribution was built
with, so in many cases you don’t need to worry about version targeting.

If you wish to override the default deployment targets, set an alternative value using the appropriate environment
variable.:

$ MACOSX_DEPLOYMENT_TARGET=10.15 pyoxidizer build

Apple’s Xcode documentation has various guides useful for further consideration.

Distribution Considerations for Windows

This document describes some of the considerations when you want to install/run a PyOxidizer-built application on a
separate Windows machine from the one that built it.

Important: The restrictions in this document regard the run-time / target environment that a binary will run on: they
do not describe the environment used to build that binary. In many cases, a binary built on Windows 10 or Windows
Server 2019 will work fine on earlier operating system versions.

Readers may also find the Microsoft documentation on deployment considerations for Windows binaries a useful re-
source to supplement this document with more generic considerations.

1.4. PyOxidizer 201

https://github.com/indygreg/PyOxidizer/issues/372
https://developer.apple.com/documentation/xcode
https://docs.microsoft.com/en-us/cpp/windows/deploying-native-desktop-applications-visual-cpp?view=vs-2019

PyOxidizer, Release 0.21.0

Operating System Requirements

The default Python distributions used by PyOxidizer require Windows 8 or Windows 2012 or newer.

The official Python 3.8 Windows distributions available on www.python.org support Windows 7. PyOxidizer has
chosen to drop support for Windows 7 to simplify support.

In addition to the restrictions imposed by the Python distribution in use, Rust may impose its own restrictions. However,
Rust has historically produced binaries that work on Windows 8 and Windows 2012, so this likely is not an issue.

General Runtime / DLL Dependencies

The default Python distributions used by PyOxidizer require the Microsoft Visual C++ Redistributable and Universal
CRT (UCRT).

The standalone_dynamic distributions (the default distribution flavor) have a run-time dependency on various 3rd
party DLLs used by extensions (OpenSSL, SQLite3, etc). However, these 3rd party DLLs are part of the Python
distribution and PyOxidizer should automatically install them if they are required.

All other DLL dependencies required by the default Python distributions should be core Windows operating system
components and always available, even in a freshly installed Windows machine.

Application Specific Dependencies

When adding custom behavior to your application, PyOxidizer makes some effort to ensure additional dependencies
(beyond the operating system, Python distribution, and Microsoft runtimes) are met. However, there are limitations to
this.

When installing custom Python packages, PyOxidizer attempts to identify and install compiled Python extensions and
.d11 dependencies distributed with that package. See Packaging Files Instead of In-Memory Resources for more.
However, there are corner cases and occasional bugs that may prevent this from working correctly.

To ensure are DLL dependencies are properly captured, it is recommend to inspect your binaries for references to
missing DLLs before distributing them. The Dependency Walker tool can be used for this. pyoxidizer analyze
may also provide useful information.

In many cases, installing a missing DLL is a matter of installing the DLL next to your application/binary by treating
the DLL as an additional file from the Starlark configuration. See Packaging Files Instead of In-Memory Resources
for more.

When possible, it is recommended to test your application in a freshly installed Windows environment to ensure it
works. Please note that many Windows virtual machines already contain additional software and may not reflect real
world deployment targets.

Managing the Visual C++ Redistributable Requirement

Binaries built with PyOxidizer often have a run-time dependency on the Microsoft Visual C++ Redistributable. These
are DLLs with filenames like vcruntime140.d11 and vcruntime140_1.d11.

Important: The Visual C++ Redistributable is not a core Windows operating system component and any distributed
Windows application must take measures to ensure the Visual C++ Redistributable is available on the remote
machine or the application may fail to run with a missing DLL error.

See Microsoft’s Redistributing Visual C++ Files documentation for the canonical source on distribution requirements.

202 Chapter 1. Multiple Tools Under One Roof

http://www.dependencywalker.com/
https://docs.microsoft.com/en-us/cpp/windows/redistributing-visual-cpp-files?view=msvc-160

PyOxidizer, Release 0.21.0

PyOxidizer has built-in features to make satisfying these requirements turnkey. Read the sections below for details of
each.

Installing the Visual C++ Redistributable as Part of Your Application Installer

PyOxidizer can produce Windows . exe application installers that embed a copy of the Microsoft Visual C++ Redis-
tributable installer (files named vc_redist<arch>. exe) and automatically run this installer during application install.

The way this works is PyOxidizer contains a reference to the URL and SHA-256 of these vc_redist<arch>.exe
installers. When your application installer is built, these files are downloaded from Microsoft’s servers and embedded
in the new meta-installer. At install time, these embedded installers are executed automatically (if they need to be) and
the Visual C++ files are installed at the system level, where they are available to any application.

If a newer version of the Visual C++ Redistributable files are already present, the installer should no-op instead of
downgrading what’s already installed.

The following Starlark functionality can be used to bundle the Visual C++ Redistributable installer as part of your
application installer:

e PythonExecutable.to_wix_bundle_builder()

e starlark tugger.WiXBundleBuilder.add_vc_redistributable()

Installing the Visual C++ Redistributable Files Locally Next to Your Binary

Another method of installing the Visual C++ Redistributable files is to distribute copies of the DLLs next to the binary
that loads them. e.g. if you produce a myapp . exe, there will be a veruntime140[_1].d11 in the same directory as
myapp.exe. Since Windows attempts to load DLLs next to the executable, if the DLLs are present, this should just
work.

PyOxidizer supports automatically finding and copying the required DLLs in this manner. The Starlark setting con-
trolling this behavior is PythonExecutable.windows_runtime_dl1ls_mode.

This setting effectively instructs the PythonExecutable building code to materialize extra files next to the binary.
The Visual C++ files are treated just like any other supplementary files (like Python resources). This means that
Visual C++ files will be materialized on the filesystem when running pyoxidizer build, pyoxidizer run. The
files will also be present in file lists when using Starlark methods like PythonExecutable. to_file_manifest() or
PythonExecutable.to_wix_msi_builder().

This local files mode relies on locating DLLs on the local system. It does so using vswhere. exe to locate a Visual
Studio installation containing the Microsoft.VisualCPP.Redist.<version>.Latest component (<version> is
14 for vcruntime140.d11). This should just work if you have Visual Studio 2017 or 2019 installed with support for
building C/C++ applications. If the files cannot be found, run the Visual Studio Installer, Modi fy your installation, go
to Individual Components, search for redistributable, and make sure all items are checked.

Important: It is possible to include a copy of the Visual C++ Redistributable in both your application installer and as
files local to the built binary. This behavior is redundant and will likely result in the local files being used.

When including the Visual C++ Redistributable installer as part of your deployment solution, it is recommended to set
PythonExecutable.windows_runtime_dlls_mode to "never" to prevent them from being redundantly installed.

1.4. PyOxidizer 203

PyOxidizer, Release 0.21.0

Managing the Universal CRT (UCRT) Requirement

Binaries built with PyOxidizer may have a run-time dependency on the Universal C Runtime (UCRT).

The UCRT is a Windows operating system component and is always present in installations of Windows 10, Windows
Server 2016, and newer. Combined with PyOxidizer’s Windows version requirements, this means you don’t need to
worry about the UCRT unless you are targeting Windows 8 or Windows Server 2012.

PyOxidizer does not currently support automatically materializing the UCRT. See https://docs.microsoft.com/en-us/
cpp/windows/universal-crt-deployment for instructions on deploying the UCRT with your application.

We are receptive to adding a feature to support more turnkey UCRT management if there is interest in it.

PyOxidizer for Rust Developers

PyOxidizer is implemented in Rust. Binaries built with PyOxidizer are also built with Rust using standard Rust projects.

While the existence of Rust should be abstracted away from most users (aside from the existence of the install depen-
dency and build output), a target audience of PyOxidizer is Rust developers who want to embed Python in a Rust project
or Python developers who want to leverage more Rust in their Python applications.

Follow the links below to learn how PyOxidizer uses Rust and how Rust can be leveraged to build more advanced
applications embedding Python.

Using Cargo with PyOxidizer Source Checkouts

PyOxidizer’s source repository consists of multiple Rust projects/crates. At the root of the repository is a Cargo. toml
defining a workspace consisting of all these crates.

Important: Building various Rust crates from source can be extremely brittle and a top-level cargo build will
likely encounter multiple build failures.

If you want to run cargo from a PyOxidizer source checkout, you will likely want to limit the invocation to a single
crate at a time to ensure things can build.

The following sections detail how to build various crates inside a source checkout.

pyoxidizer Crate

Building the pyoxidizer crate in isolation (e.g. cargo build -p pyoxidizer) should just work, as it is a pretty
typical Rust crate.

Perhaps the only special property of this crate is that it defines both a library and an executable. So you may want to
limit operations to a specific binary. e.g. cargo build --bin pyoxidizer or cargo test --bin pyoxidizer.

204 Chapter 1. Multiple Tools Under One Roof

https://docs.microsoft.com/en-us/cpp/windows/universal-crt-deployment
https://docs.microsoft.com