
PyOxidizer
Release 0.14.1

Apr 30, 2021

Contents

1 Overview 3
1.1 Benefits of PyOxidizer . 3
1.2 Components . 4
1.3 How It Works . 4

2 Getting Started 7
2.1 Python Requirements . 7
2.2 Operating System Requirements . 7
2.3 Installing . 8
2.4 High-Level Project Lifecycle . 10
2.5 Your First PyOxidizer Project . 10
2.6 The pyoxidizer.bzl Configuration File . 10
2.7 Customizing Python and Packaging Behavior . 11

3 The pyoxidizer Command Line Tool 13
3.1 Settings . 13
3.2 Creating New Projects with init-config-file . 14
3.3 Creating New Rust Projects with init-rust-project . 14
3.4 Adding PyOxidizer to an Existing Project with add . 14
3.5 Building PyObject Projects with build . 15
3.6 Running the Result of Building with run . 15
3.7 Analyzing Produced Binaries with analyze . 15
3.8 Inspecting Python Distributions . 16
3.9 Debugging Resource Scanning and Identification with find-resources 16
3.10 Defining Extra Variables in Starlark Environment . 17

4 Configuration Files 19
4.1 Automatic File Location Strategy . 19
4.2 Concepts . 19
4.3 Resource Attributes Influencing Adding . 21
4.4 Global Symbols . 23
4.5 Functions for Manipulating Global State . 24
4.6 Functions for Managing Targets . 25
4.7 Extensions to Tugger’s Starlark Dialect . 26
4.8 File . 26
4.9 PythonDistribution . 27
4.10 PythonEmbeddedResources . 29

i

4.11 PythonExecutable . 29
4.12 PythonExtensionModule . 34
4.13 PythonInterpreterConfig . 35
4.14 PythonModuleSource . 46
4.15 PythonPackageResource . 47
4.16 PythonPackageDistributionResource . 47
4.17 PythonPackagingPolicy . 48

5 Packaging User Guide 53
5.1 Creating a PyOxidizer Project . 53
5.2 Packaging Primitives in pyoxidizer.bzl Files . 54
5.3 Understanding Python Distributions . 56
5.4 Managing How Resources are Added . 58
5.5 Packaging Python Files . 64
5.6 Packaging Files Instead of In-Memory Resources . 69
5.7 Working with Python Extension Modules . 74
5.8 Managing Packed Resources Data . 76
5.9 Trimming Unused Resources . 78
5.10 Performance of Built Binaries . 78
5.11 Packaging Pitfalls . 80
5.12 Masquerading As Other Packaging Tools . 81
5.13 Standalone / Single File Applications with Static Linking . 82
5.14 Licensing Considerations . 84
5.15 Terminfo Database . 85
5.16 Using the tkinter Python Module . 86
5.17 Building an Executable that Behaves Like python . 87

6 Distributing User Guide 89
6.1 Overview . 89
6.2 Portability of Binaries Built with PyOxidizer . 90
6.3 Building Windows Installers with the WiX Toolset . 90
6.4 Distribution Considerations for Linux . 91
6.5 Distribution Considerations for macOS . 93
6.6 Distribution Considerations for Windows . 95

7 oxidized_importer Python Extension 99
7.1 Getting Started . 99
7.2 Python Meta Path Finders . 100
7.3 OxidizedFinder Meta Path Finder . 101
7.4 OxidizedFinder Behavior and Compliance . 102
7.5 oxidized_importer Python Resource Types . 106
7.6 Resource Scanning APIs . 108
7.7 Loading Resource Files . 108
7.8 Freezing Applications with oxidized_importer . 114
7.9 Common Issues . 116
7.10 Security Implications of Loading Resources . 117
7.11 API Reference . 117

8 Python Packed Resources 127
8.1 Implementation . 127
8.2 Specification . 127
8.3 Design Considerations . 132
8.4 Potential Future Features . 132

9 The pyembed Rust Crate 133

ii

9.1 Crate Configuration . 133
9.2 Controlling Python from Rust Code . 135
9.3 Adding Extension Modules At Run-Time . 136

10 PyOxidizer for Rust Developers 137
10.1 Using Cargo with PyOxidizer Source Checkouts . 137
10.2 PyOxidizer Rust Projects . 138
10.3 Controlling Python From Rust Code . 140
10.4 Porting a Python Application to Rust . 142

11 Shipping Applications with tugger 147
11.1 Overview . 147
11.2 Tugger Starlark Dialect . 148
11.3 Code Signing . 165
11.4 Using the WiX Toolset to Produce Windows Installers . 173
11.5 Project History . 174

12 Frequently Asked Questions 177
12.1 Where Can I Report Bugs / Send Feedback / Request Features? . 177
12.2 Why Build Another Python Application Packaging Tool? . 177
12.3 Can Python 2.7 Be Supported? . 178
12.4 Why is Python 3.8 Required? . 178
12.5 No python interpreter found of version 3.* Error When Building 178
12.6 Why Rust? . 178
12.7 Why is the Rust Code. . . Not Great? . 179
12.8 What is the Magic Sauce That Makes PyOxidizer Special? . 179
12.9 Can Applications Import Python Modules from the Filesystem? . 179
12.10 error while loading shared libraries: libcrypt.so.1: cannot open

shared object file: No such file or directory When Building 180
12.11 vcruntime140.dll was not found Error on Windows . 180
12.12 ld: unsupported tapi file type '!tapi-tbd' in YAML file on macOS

When Building . 180

13 Project Status 181
13.1 What’s Working . 181
13.2 Major Missing Features . 181
13.3 Lesser Missing Features . 183
13.4 Eventual Features . 183

14 Comparisons to Other Tools 187
14.1 PyInstaller . 187
14.2 py2exe . 188
14.3 py2app . 188
14.4 cx_Freeze . 188
14.5 Shiv . 188
14.6 PEX . 189
14.7 XAR . 189
14.8 Docker / Running a Container . 189
14.9 Nuitka . 189
14.10 PyRun . 189
14.11 pynsist . 190
14.12 Bazel . 190

15 Contributing to PyOxidizer 191
15.1 As a User . 191

iii

15.2 As a Developer . 191
15.3 Financial Contributions . 192

16 Project History 193
16.1 Blog Posts . 193
16.2 Version History . 193

17 Technical Notes 221
17.1 CPython Initialization . 221
17.2 CPython Importing Mechanism . 222
17.3 sys.modules After Interpreter Init . 224
17.4 Modules Imported by site.py . 224
17.5 Random Notes . 224
17.6 Desired Changes from Python to Aid PyOxidizer . 225

Index 231

iv

PyOxidizer, Release 0.14.1

PyOxidizer is a utility that aims to solve the problem of how to distribute Python applications. See Overview for
more or dive into Getting Started to learn how to start using PyOxidizer.

The official home of the PyOxidizer project is https://github.com/indygreg/PyOxidizer. Official documentation
lives at Read The Docs (unreleased/latest commit, last release).

The pyoxidizer-users mailing list is a forum for users to discuss all things PyOxidizer.

If you want to financially contribute to PyOxidizer, do so on Patreon or via PayPal.

The creator and maintainer of PyOxidizer is Gregory Szorc.

Contents 1

https://github.com/indygreg/PyOxidizer
https://pyoxidizer.readthedocs.io/en/latest/index.html
https://pyoxidizer.readthedocs.io/en/stable/index.html
https://groups.google.com/forum/#!forum/pyoxidizer-users
https://www.patreon.com/indygreg
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=gregory%2eszorc%40gmail%2ecom&lc=US&item_name=PyOxidizer¤cy_code=USD&bn=PP%2dDonationsBF%3abtn_donate_LG%2egif%3aNonHosted
https://gregoryszorc.com/

PyOxidizer, Release 0.14.1

2 Contents

CHAPTER 1

Overview

From a very high level, PyOxidizer is a tool for packaging and distributing Python applications. The over-arching
goal of PyOxidizer is to make this (often complex) problem space simple so application maintainers can focus on
building quality applications instead of toiling with build systems and packaging tools.

On a lower, more technical level, PyOxidizer has a command line tool - pyoxidizer - that is capable of building
binaries (executables or libraries) that embed a fully-functional Python interpreter plus Python extensions and modules
in a single binary. Binaries produced with PyOxidizer are highly portable and can work on nearly every system
without any special requirements like containers, FUSE filesystems, or even temporary directory access. On Linux,
PyOxidizer can produce executables that are fully statically linked and don’t even support dynamic loading.

The Oxidizer part of the name comes from Rust: binaries built with PyOxidizer are compiled from Rust and Rust
code is responsible for managing the embedded Python interpreter and all its operations. But the existence of Rust
should be invisible to many users, much like the fact that CPython (the official Python distribution available from
www.python.org) is implemented in C. Rust is simply a tool to achieve an end goal (albeit a rather effective and
powerful tool).

1.1 Benefits of PyOxidizer

You may be wondering why you should use or care about PyOxidizer. Great question!

Python application distribution is generally considered an unsolved problem. At PyCon 2019, Russel Keith-Magee
identified code distribution as a potential black swan for Python during a keynote talk. In their words, Python hasn’t
ever had a consistent story for how I give my code to someone else, especially if that someone else isn’t a developer
and just wants to use my application. The over-arching goal of PyOxidizer is to solve this problem. If we’re
successful, we help Python become a more attractive option in more domains and eliminate this potential black swan
that is an existential threat for Python’s longevity.

On a less existential level, there are several benefits to PyOxidizer.

1.1.1 Ease of Application Installation

Installing Python applications can be hard, especially if you aren’t a developer.

3

https://youtu.be/ftP5BQh1-YM?t=2033

PyOxidizer, Release 0.14.1

Applications produced with PyOxidizer are self-contained - as small as a single file executable. From the per-
spective of the end-user, they get an executable containing an application that just works. There’s no need to install
a Python distribution on their system. There’s no need to muck with installing Python packages. There’s no need to
configure a container runtime like Docker. There’s just an executable containing an embedded Python interpreter and
associated Python application code and running that executable just works. From the perspective of the end-user, your
application is just another platform native executable.

1.1.2 Ease of Packaging and Distribution

Python application developers can spend a large amount of time managing how their applications are packaged and
distributed. There’s no universal standard for distributing Python applications. Instead, there’s a hodgepodge of
random tools, typically different tools per operating system.

Python application developers typically need to solve the packaging and distribution problem N times. This is thankless
work and sucks valuable time away from what could otherwise be spent improving the application itself. Furthermore,
each distinct Python application tends to solve this problem redundantly.

Again, the over-arching goal of PyOxidizer is to provide a comprehensive solution to the Python application
packaging and distribution problem space. We want to make it as turn-key as possible for application maintainers to
make their applications usable by novice computer users. If we’re successful, Python developers can spend less time
solving packaging and distribution problems and more time improving Python applications themselves. That’s good
for the Python ecosystem.

1.2 Components

The most visible component of PyOxidizer is the pyoxidizer command line tool. This tool contains function-
ality for creating new projects using PyOxidizer, adding PyOxidizer to existing projects, producing binaries
containing a Python interpreter, and various related functionality.

The pyoxidizer executable is written in Rust. Behind that tool is a pile of Rust code performing all the functionality
exposed by the tool. That code is conveniently also made available as a library, so anyone wanting to integrate
PyOxidizer’s core functionality without using our pyoxidizer tool is able to do so.

The pyoxidizer crate and command line tool are effectively glorified build tools: they simply help with various
project management, build, and packaging.

The run-time component of PyOxidizer is completely separate from the build-time component. The run-time
component of PyOxidizer consists of a Rust crate named pyembed. The role of the pyembed crate is to manage
an embedded Python interpreter. This crate contains all the code needed to interact with the CPython APIs to create
and run a Python interpreter. pyembed also contains the special functionality required to import Python modules
from memory using zero-copy.

1.3 How It Works

The pyoxidizer tool is used to create a new project or add PyOxidizer to an existing (Rust) project. This entails:

• Generating a boilerplate Rust source file to call into the pyembed crate to run a Python interpreter.

• Generating a working pyoxidizer.bzl configuration file.

• Telling the project’s Rust build system about PyOxidizer.

When that project’s pyembed crate is built by Rust’s build system, it calls out to PyOxidizer to process the active
PyOxidizer configuration file. PyOxidizer will obtain a specially-built Python distribution that is optimized for

4 Chapter 1. Overview

PyOxidizer, Release 0.14.1

embedding. It will then use this distribution to finish packaging itself and any other Python dependencies indicated in
the configuration file. For example, you can process a pip requirements file at build time to include additional Python
packages in the produced binary.

At the end of this sausage grinder, PyOxidizer emits an archive library containing Python (which can be linked
into another library or executable) and resource files containing Python data (such as Python module sources and
bytecode). Most importantly, PyOxidizer tells Rust’s build system how to integrate these components into the
binary it is building.

From here, Rust’s build system combines the standard Rust bits with the files produced by PyOxidizer and turns
everything into a binary, typically an executable.

At run time, an instance of the OxidizedPythonInterpreterConfig struct from the pyembed crate is cre-
ated to define how an embedded Python interpreter should behave. (One of the build-time actions performed by
PyOxidizer is to convert the Starlark configuration file into a default instance of this struct.) This struct is used to
instantiate a Python interpreter.

The pyembed crate implements a Python extension module which provides custom module importing functionality.
Light magic is used to coerce the Python interpreter to load this module very early during initialization. This allows the
module to service Python import requests. The custom module importer installed by pyembed supports retrieving
data from a read-only data structure embedded in the executable itself. Essentially, the Python import request calls
into some Rust code provided by pyembed and Rust returns a void * to memory containing data (module source
code, bytecode, etc) that was generated at build time by PyOxidizer and later embedded into the binary by Rust’s
build system.

Once the embedded Python interpreter is initialized, the application works just like any other Python application!
The main differences are that modules are (probably) getting imported from memory and that Rust - not the Python
distribution’s python executable logic - is driving execution of Python.

Read on to Getting Started to learn how to use PyOxidizer.

1.3. How It Works 5

PyOxidizer, Release 0.14.1

6 Chapter 1. Overview

CHAPTER 2

Getting Started

2.1 Python Requirements

PyOxidizer currently targets Python 3.8 or 3.9. Your Python application will need to already be compatible with 1 of
these versions for it to work with PyOxidizer. See Why is Python 3.8 Required? for more on the minimum Python
requirement.

2.2 Operating System Requirements

PyOxidizer is officially supported on the following operating systems:

• Windows x86 (32-bit)

• Windows x86_64/amd64 (64-bit)

• macOS x86_64 (Intel processors)

• macOS aarch64 (ARM/Apple processors)

• Linux i686 (32-bit)

• Linux x86_64 (64-bit)

It is likely possible to run PyOxidizer on unsupported operating systems and architectures. However, PyOxidizer
needs to run Python interpreters on the machine performing build/packaging actions and the built binary needs to run a
Python interpreter for the target architecture and operating system. These Python interpreters need to be built/packaged
in a specific way so PyOxidizer can interact with them.

See Available Python Distributions for the full list of available Python distributions. The supported operating systems
and architectures of the built-in Python distributions are:

• Linux x86_64 (glibc 2.19 or musl linked)

• Windows 8+ / Server 2012+ i686 and x86_64

• macOS 10.9+ Intel x86_64 or 11.0+ ARM

7

PyOxidizer, Release 0.14.1

2.2.1 Other System Dependencies

You will need a working C compiler/toolchain in order to build binaries. If a C compiler cannot be found, you should
see an error message with instructions on how to install one.

On macOS, you will need an Apple SDK that is at least as new as the SDK used to build the Python distribution
embedded in the binary. PyOxidizer will automatically attempt to locate, validate, and use an appropriate SDK. See
Build Machine Requirements for more.

There is a known issue with PyOxidizer on Fedora 30+ that will require you to install the libxcrypt-compat
package to avoid an error due to a missing libcrypt.so.1 file. See https://github.com/indygreg/PyOxidizer/
issues/89 for more info.

While PyOxidizer is implemented in Rust and invokes the Rust compiler and build tooling to build binaries, PyOxidizer
manages a Rust installation for you. This means Rust is not an explicit install dependency for PyOxidizer unless you
are building PyOxidizer from source code.

2.3 Installing

2.3.1 Pre-Built Installers and Executables

PyOxidizer provides pre-built installers and executables as part of its release process. The following should be made
available:

• Windows x86 (32-bit) MSI installer.

• Windows amd64 (64-bit) MSI installer.

• Windows universal (x86+amd64) EXE installer.

These installers can generally be found at https://github.com/indygreg/PyOxidizer/releases/latest.

If this URL does not redirect to a PyOxidizer release, go to https://github.com/indygreg/PyOxidizer/releases and look
for a release with PyOxidizer release artifacts. You should see giant text that reads PyOxidizer <version> that
looks different from other entries in the list. You may have to click through multiple next links at the bottom of the
release list until you find a PyOxidizer release.

If pre-built artifacts are not available for your machine, you will need to compile PyOxidizer from source code.

2.3.2 Installing PyOxidizer from Source

Installing Rust

PyOxidizer is a Rust application and requires Rust (1.46 or newer) to be installed in order to build PyOxidizer.

You can verify your installed version of Rust by running:

$ rustc --version
rustc 1.46.0 (04488afe3 2020-08-24)

If you don’t have Rust installed, https://www.rust-lang.org/ has very detailed instructions on how to install it.

Rust releases a new version every 6 weeks and language development moves faster than other programming languages.
It is common for the Rust packages provided by common package managers to lag behind the latest Rust release by
several releases. For that reason, use of the rustup tool for managing Rust is highly recommended.

8 Chapter 2. Getting Started

https://github.com/indygreg/PyOxidizer/issues/89
https://github.com/indygreg/PyOxidizer/issues/89
https://github.com/indygreg/PyOxidizer/releases/latest
https://github.com/indygreg/PyOxidizer/releases
https://www.rust-lang.org/

PyOxidizer, Release 0.14.1

If you are a security paranoid individual and don’t want to follow the official rustup install instructions involving
a curl | sh (your paranoia is understood), you can find instructions for alternative installation methods at https:
//github.com/rust-lang/rustup.rs/#other-installation-methods.

Installing PyOxidizer

Once Rust is installed, PyOxidizer can be installed from its latest published crate on Rust’s official/default package
repository:

$ cargo install pyoxidizer

From PyOxidizer’s canonical Git repository using cargo:

The latest commit in source control.
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --branch main
→˓pyoxidizer

$ A specific release
$ cargo install --git https://github.com/indygreg/PyOxidizer.git --tag <TAG>
→˓pyoxidizer

Or by cloning the canonical Git repository and building the project locally:

$ git clone https://github.com/indygreg/PyOxidizer.git
$ cd PyOxidizer
$ cargo install --path pyoxidizer

Note: PyOxidizer’s project policy is for the main branch to be stable. So it should always be relatively safe to use
main instead of a released version.

Danger: A cargo build from the repository root directory will likely fail due to how some of the Rust crates
are configured.

See Using Cargo with PyOxidizer Source Checkouts for instructions on how to invoke cargo.

Once the pyoxidizer executable is installed, try to run it:

$ pyoxidizer
PyOxidizer 0.14.0-pre
Gregory Szorc <gregory.szorc@gmail.com>
Build and distribute Python applications

USAGE:
pyoxidizer [FLAGS] [SUBCOMMAND]

...

Congratulations, PyOxidizer is installed! Now let’s move on to using it.

2.3. Installing 9

https://github.com/rust-lang/rustup.rs/#other-installation-methods
https://github.com/rust-lang/rustup.rs/#other-installation-methods

PyOxidizer, Release 0.14.1

2.4 High-Level Project Lifecycle

PyOxidizer exposes various functionality through the interaction of pyoxidizer commands and configuration
files.

The first step of any project is to create it. This is achieved with a pyoxidizer init-* command to create files
required by PyOxidizer.

After that, various pyoxidizer commands can be used to evaluate configuration files and perform actions from the
evaluated file. PyOxidizer provides functionality for building binaries, installing files into a directory tree, and
running the results of build actions.

2.5 Your First PyOxidizer Project

The pyoxidizer init-config-file command will create a new PyOxidizer configuration file in a directory
of your choosing:

$ pyoxidizer init-config-file pyapp

This should have printed out details on what happened and what to do next. If you actually ran this in a terminal,
hopefully you don’t need to continue following the directions here as the printed instructions are sufficient! But if you
aren’t, keep reading.

The default configuration created by pyoxidizer init-config-file will produce an executable that embeds
Python and starts a Python REPL by default. Let’s test that:

$ cd pyapp
$ pyoxidizer run
resolving 1 targets
resolving target exe
...

Compiling pyapp v0.1.0 (/tmp/pyoxidizer.nv7QvpNPRgL5/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 26.07s

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
>>>

If all goes according to plan, you just started a Rust executable which started a Python interpreter, which started an
interactive Python debugger! Try typing in some Python code:

>>> print("hello, world")
hello, world

It works!

(To exit the REPL, press CTRL+d or CTRL+z.)

Continue reading The pyoxidizer Command Line Tool to learn more about the pyoxidizer tool. Or read on for a
preview of how to customize your application’s behavior.

2.6 The pyoxidizer.bzl Configuration File

The most important file for a PyOxidizer project is the pyoxidizer.bzl configuration file. This is a Starlark
file evaluated in a context that provides special functionality for PyOxidizer.

10 Chapter 2. Getting Started

PyOxidizer, Release 0.14.1

Starlark is a Python-like interpreted language and its syntax and semantics should be familiar to any Python program-
mer.

From a high-level, PyOxidizer’s configuration files define named targets, which are callable functions associ-
ated with a name - the target - that resolve to an entity. For example, a configuration file may define a build_exe()
function which returns an object representing a standalone executable file embedding Python. The pyoxidizer
build command can be used to evaluate just that target/function.

Target functions can call out to other target functions. For example, there may be an install target that creates a
set of files composing a full application. Its function may evaluate the exe target to produce an executable file.

See Configuration Files for comprehensive documentation of pyoxidizer.bzl files and their semantics.

2.7 Customizing Python and Packaging Behavior

Embedding Python in a Rust executable and starting a REPL is cool and all. But you probably want to do something
more exciting.

The autogenerated pyoxidizer.bzl file created as part of running pyoxidizer init-config-file de-
fines how your application is configured and built. It controls everything from what Python distribution to use, which
Python packages to install, how the embedded Python interpreter is configured, and what code to run in that interpreter.

Open pyoxidizer.bzl in your favorite editor and find the commented lines assigning to python_config.
run_*. Let’s uncomment or add a line to match the following:

python_config.run_command = "import uuid; print(uuid.uuid4())"

We’re now telling the interpreter to run the Python statement eval(import uuid; print(uuid.uuid4())
when it starts. Test that out:

$ pyoxidizer run
...

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 3.92s
Running `target/debug/pyapp`

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
96f776c8-c32d-48d8-8c1c-aef8a735f535

It works!

This is still pretty trivial. But it demonstrates how the pyoxidizer.bzl is used to influence the behavior of built
executables.

Let’s do something a little bit more complicated, like package an existing Python application!

Find the exe = dist.to_python_executable(line in the pyoxidizer.bzl file. Let’s add a new line to
make_exe() just below where exe is assigned:

for resource in exe.pip_install(["pyflakes==2.2.0"]):
resource.add_location = "in-memory"
exe.add_python_resource(resource)

In addition, set the python_config.run_command attribute to execute pyflakes:

python_config.run_command = "from pyflakes.api import main; main()"

Now let’s try building and running the new configuration:

2.7. Customizing Python and Packaging Behavior 11

PyOxidizer, Release 0.14.1

$ pyoxidizer run -- --help
...

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 5.49s

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
Usage: pyapp [options]

Options:
--version show program's version number and exit
-h, --help show this help message and exit

You’ve just produced an executable for pyflakes!

Note: pyflakes with no command arguments will read from stdin and will effectively hang until stdin is closed
(typically via CTRL + D). So the -- --help in the above example is important, as it forces the command to
produce output.

There are far more powerful packaging and configuration settings available. Read all about them at Configuration
Files and Packaging User Guide. Or continue on to The pyoxidizer Command Line Tool to learn more about the
pyoxidizer tool.

12 Chapter 2. Getting Started

CHAPTER 3

The pyoxidizer Command Line Tool

The pyoxidizer command line tool is a frontend to the various functionality of PyOxidizer. See Components
for more on the various components of PyOxidizer.

3.1 Settings

3.1.1 Cache Directory

pyoxidizer may need to download resources such as Python distributions and Rust toolchains from the Internet.
These resources are cached in a per-user directory.

PyOxidizer chooses the first available directory from the following list to use as the cache:

• The value of the environment variable PYOXIDIZER_CACHE_DIR.

• $XDG_CACHE_HOME/pyoxidizer on Linux if XDG_CACHE_HOME is set.

• $HOME/.cache/pyoxidizer on Linux if HOME is set.

• $HOME/Library/Caches/pyoxidizer on macOS if HOME is set.

• {FOLDERID_LocalAppData}/pyoxidizer on Windows.

• ~/.pyoxidizer/cache

The pyoxidizer cache-clear command can be used to delete the contents of the cache.

3.1.2 Managed Rust Toolchain

PyOxidizer leverages the Rust programming language and its tooling for building binaries embedding Python.

By default, PyOxidizer will automatically download and use Rust toolchains (the Rust compiler, standard library, and
Cargo) when their functionality is needed. PyOxidizer will store these Rust toolchains in the configured cache.

13

PyOxidizer, Release 0.14.1

If you already have Rust installed on your machine and want PyOxidizer to use the existing Rust installation, either
pass the --system-rust flag to pyoxidizer invocations or define the PYOXIDIZER_SYSTEM_RUST envi-
ronment variable to any value. When the system Rust is being used, pyoxidizer will automatically use the cargo
executable found on the current search path (typically the PATH environment variable).

3.2 Creating New Projects with init-config-file

The pyoxidizer init-config-file command will create a new pyoxidizer.bzl configuration file in
the target directory:

$ pyoxidizer init-config-file pyapp

This should have printed out details on what happened and what to do next.

3.3 Creating New Rust Projects with init-rust-project

The pyoxidizer init-rust-project command creates a minimal Rust project configured to build an appli-
cation that runs an embedded Python interpreter from a configuration defined in a pyoxidizer.bzl configuration
file. Run it by specifying the directory to contain the new project:

$ pyoxidizer init-rust-project pyapp

This should have printed out details on what happened and what to do next.

The explicit creation of Rust projects to use PyOxidizer is not required. If your produced binaries only need to
perform actions configurable via PyOxidizer configuration files (like running some Python code), an explicit Rust
project isn’t required, as PyOxidizer can auto-generate a temporary Rust project at build time.

But if you want to supplement the behavior of the binaries built with Rust, an explicit and persisted Rust project can
facilitate that. For example, you may want to run custom Rust code before, during, and after a Python interpreter runs
in the process.

See PyOxidizer Rust Projects for more on the composition of Rust projects.

3.4 Adding PyOxidizer to an Existing Project with add

Do you have an existing Rust project that you want to add an embedded Python interpreter to? PyOxidizer can help
with that too! The pyoxidizer add command can be used to add an embedded Python interpreter to an existing
Rust project. Simply give the directory to a project containing a Cargo.toml file:

$ cargo init myrustapp
Created binary (application) package

$ pyoxidizer add myrustapp

This will add required files and make required modifications to add an embedded Python interpreter to the target
project.

Important: It is highly recommended to have the destination project under version control so you can see what
changes are made by pyoxidizer add and so you can undo any unwanted changes.

14 Chapter 3. The pyoxidizer Command Line Tool

PyOxidizer, Release 0.14.1

Danger: This command isn’t very well tested. And results have been known to be wrong. If it doesn’t just work,
you may want to run pyoxidizer init and incorporate relevant files into your project manually. Sorry for the
inconvenience.

3.5 Building PyObject Projects with build

The pyoxidizer build command is probably the most important and used pyoxidizer command. This com-
mand evaluates a pyoxidizer.bzl configuration file by resolving targets in it.

By default, the default target in the configuration file is resolved. However, callers can specify a list of explicit targets
to resolve. e.g.:

Resolve the default target.
$ pyoxidizer build

Resolve the "exe" and "install" targets, in that order.
$ pyoxidizer build exe install

PyOxidizer configuration files are effectively defining a build system, hence the name build for the command to
resolve targets within.

3.6 Running the Result of Building with run

Target functions in PyOxidizer configuration files return objects that may be runnable. For example, a
PythonExecutable returned by a target function that defines a Python executable binary can be run by executing
a new process.

The pyoxidizer run command is used to attempt to run an object returned by a build target. It is effectively
pyoxidizer build followed by running the returned object. e.g.:

Run the default target.
$ pyoxidizer run

Run the "install" target.
$ pyoxidizer run --target install

3.7 Analyzing Produced Binaries with analyze

The pyoxidizer analyze command is a generic command for analyzing the contents of executables and li-
braries. While it is generic, its output is specifically tailored for PyOxidizer.

Run the command with the path to an executable. For example:

$ pyoxidizer analyze build/apps/myapp/x86_64-unknown-linux-gnu/debug/myapp

Behavior is dependent on the format of the file being analyzed. But the general theme is that the command attempts
to identify the run-time requirements for that binary. For example, for ELF binaries it will list all shared library
dependencies and analyze glibc symbol versions and print out which Linux distributions it thinks the binary is
compatible with.

3.5. Building PyObject Projects with build 15

PyOxidizer, Release 0.14.1

Note: pyoxidizer analyze is not yet implemented for all executable file types that PyOxidizer supports.

3.8 Inspecting Python Distributions

PyOxidizer uses special pre-built Python distributions to build binaries containing Python.

These Python distributions are zstandard compressed tar files. Zstandard is a modern compression format that is really,
really, really good. (PyOxidizer’s maintainer also maintains Python bindings to zstandard and has written about the
benefits of zstandard on his blog. You should read that blog post so you are enlightened on how amazing zstandard
is.) But because zstandard is relatively new, not all systems have utilities for decompressing that format yet. So, the
pyoxidizer python-distribution-extract command can be used to extract the zstandard compressed
tar archive to a local filesystem path.

Python distributions contain software governed by a number of licenses. This of course has implications for application
distribution. See Licensing Considerations for more.

The pyoxidizer python-distribution-licenses command can be used to inspect a Python distribution
archive for information about its licenses. The command will print information about the licensing of the Python
distribution itself along with a per-extension breakdown of which libraries are used by which extensions and which
licenses apply to what. This command can be super useful to audit for license usage and only allow extensions with
licenses that you are legally comfortable with.

For example, the entry for the readline extension shows that the extension links against the ncurses and
readline libraries, which are governed by the X11, and GPL-3.0 licenses:

readline

Dependency: ncurses
Link Type: library

Dependency: readline
Link Type: library

Licenses: GPL-3.0, X11
License Info: https://spdx.org/licenses/GPL-3.0.html
License Info: https://spdx.org/licenses/X11.html

Note: The license annotations in Python distributions are best effort and can be wrong. They do not constitute a
legal promise. Paranoid individuals may want to double check the license annotations by verifying with source code
distributions, for example.

3.9 Debugging Resource Scanning and Identification with
find-resources

The pyoxidizer find-resources command can be used to scan for resources in a given source and then print
information on what’s found.

PyOxidizer’s packaging functionality scans directories and files and classifies them as Python resources which can be
operated on. See Resource Types. PyOxidizer’s run-time importer/loader (oxidized_importer Python Extension) works

16 Chapter 3. The pyoxidizer Command Line Tool

https://github.com/indygreg/python-zstandard
https://gregoryszorc.com/blog/2017/03/07/better-compression-with-zstandard/
https://gregoryszorc.com/blog/2017/03/07/better-compression-with-zstandard/

PyOxidizer, Release 0.14.1

by reading a pre-built index of known resources. This all works in contrast to how Python typically works, which is to
put a bunch of files in directories and let the built-in importer/loader figure it out by dynamically probing for various
files.

Because PyOxidizer has introduced structure where it doesn’t exist in Python and because there are many subtle
nuances with how files are classified, there can be bugs in PyOxidizer’s resource scanning code.

The pyoxidizer find-resources command exists to facilitate debugging PyOxidizer’s resource scanning
code.

Simply give the command a path to a directory or Python wheel archive and it will tell you what it discovers. e.g.:

$ pyoxidizer find-resources dist/oxidized_importer-0.1-cp38-cp38-manylinux1_x86_64.whl
parsing dist/oxidized_importer-0.1-cp38-cp38-manylinux1_x86_64.whl as a wheel archive
PythonExtensionModule { name: oxidized_importer }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:
→˓LICENSE }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:
→˓WHEEL }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:
→˓top_level.txt }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:
→˓METADATA }
PythonPackageDistributionResource { package: oxidized-importer, version: 0.1, name:
→˓RECORD }

Or give it the path to a site-packages directory:

$ pyoxidizer find-resources ~/.pyenv/versions/3.8.6/lib/python3.8/site-packages
...

This command needs to use a Python distribution so it knows what file extensions correspond to Python extensions,
etc. By default, it will download one of the built-in distributions that is compatible with the current machine and use
that. You can specify a --distributions-dir to use to cache downloaded distributions:

$ pyoxidizer find-resources --distributions-dir distributions /usr/lib/python3.8
...

3.10 Defining Extra Variables in Starlark Environment

Various pyoxidizer commands (like build and run) accept arguments to define extra variables in the Starlark
environment in the VARS global dict. This feature can be used to parameterize and conditionalize the evaluation of
configuration files.

Note: While we could inject global variables into the Starlark environment, since it is illegal to access an undefined
symbol (there’s not even a way to test if a symbol is defined) and since we have no hook point to inject variables after
the symbol has been defined, we resort to populating a global VARS dict with variables.

For example, let’s make the name of the built executable dynamic:

DEFAULT_APP_NAME = "default"

def make_exe(dist):
dist = default_python_distribution()

(continues on next page)

3.10. Defining Extra Variables in Starlark Environment 17

PyOxidizer, Release 0.14.1

(continued from previous page)

return dist.to_python_executable(name = VARS.get("app_name", DEFAULT_APP_NAME))

register_target("exe", make_exe)

resolve_targets()

Then let’s build it:

Uses `default` as the application name.
$ pyoxidizer build

Uses `my_app` as the application name.
$ pyoxidizer build --var app_name my_app

Uses `env_name` as the application name via an environment variable.
$ APP_NAME=env_name pyoxidizer build --var-env app_name APP_NAME

18 Chapter 3. The pyoxidizer Command Line Tool

CHAPTER 4

Configuration Files

PyOxidizer uses Starlark files to configure run-time behavior.

Starlark is a dialect of Python intended to be used as a configuration language and the syntax should be familiar to any
Python programmer.

This documentation section contains both a high-level overview of the configuration files and their semantics as well
as low-level documentation for every type and function in the Starlark dialect.

4.1 Automatic File Location Strategy

If the PYOXIDIZER_CONFIG environment variable is set, the path specified by this environment variable will be
used as the location of the Starlark configuration file.

If the OUT_DIR environment variable is set (we’re building from the context of a Rust project), the ancestor directories
will be searched for a pyoxidizer.bzl file and the first one found will be used.

Otherwise, PyOxidizer will look for a pyoxidizer.bzl file starting in either the current working directory or
from the directory containing the pyembed crate and then will traverse ancestor directories until a file is found.

If no configuration file is found, an error occurs.

4.2 Concepts

4.2.1 Processing

A configuration file is evaluated in a custom Starlark dialect which provides primitives used by PyOxidizer. This
dialect provides some well-defined global variables (defined in UPPERCASE) as well as some types and functions
that can be constructed and called. See Global Symbols for a full list of what’s available to the Starlark environment.

Since Starlark is effectively a subset of Python, executing a PyOxidizer configuration file is effectively running
a sandboxed Python script. It is conceptually similar to running python setup.py to build a Python package.

19

https://github.com/bazelbuild/starlark

PyOxidizer, Release 0.14.1

As functions within the Starlark environment are called, PyOxidizer will perform actions as described by those
functions.

4.2.2 Targets

PyOxidizer configuration files are composed of functions registered as named targets. You define a function that
does something then register it as a target by calling the register_target() global function provided by our Starlark
dialect. e.g.:

def get_python_distribution():
return default_python_distribution()

register_target("dist", get_python_distribution)

When a configuration file is evaluated, PyOxidizer attempts to resolve an ordered list of targets This list of targets
is either specified by the end-user or is derived from the configuration file. The first register_target() target
or the last register_target() call passing default=True is the default target.

When evaluated in Rust build script mode (typically via pyoxidizer run-build-script), the default target
will be the one specified by the last register_target() call passing default_build_script=True, or
the default target if no target defines itself as the default build script target.

PyOxidizer calls the registered target functions in order to resolve the requested set of targets.

Target functions can depend on other targets and dependent target functions will automatically be called and have their
return value passed as an argument to the target function depending on it. See register_target() for more.

The value returned by a target function is special. Some types defined by our Starlark dialect have special build or run
behavior associated with them. If you run pyoxidizer build or pyoxidizer run against a target that returns
one of these types, that behavior will be performed.

For example, if you return a PythonExecutable, the build behavior is to produce that executable file and the run
behavior is to run that built executable.

See Types with Target Behavior for the full list of types with registered target behaviors.

4.2.3 Python Distributions Provide Python

The PythonDistribution Starlark type defines a Python distribution. A Python distribution is an entity which
contains a Python interpreter, Python standard library, and which PyOxidizer knows how to consume and integrate
into a new binary.

PythonDistribution instances are arguably the most important type in configuration files because without them
you can’t perform Python packaging actions or construct binaries with Python embedded.

Instances of PythonDistribution are typically constructed from default_python_distribution()
and are registered as their own target, since multiple targets may want to reference the distribution instance:

def make_dist():
return default_python_distribution()

register_target("dist", make_dist)

20 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

4.2.4 Python Executables Run Python

The PythonExecutable Starlark type defines an executable file embedding Python. Instances of this type are used
to build an executable file (and possibly other files needed by it) that contains an embedded Python interpreter and
other resources required by it.

Instances of PythonExecutable are derived from a PythonDistribution instance via
PythonDistribution.to_python_executable(). There is typically a standalone function/target in
config files for doing this.

4.2.5 Python Resources

At run-time, Python interpreters need to consult resources like Python module source and bytecode as well as re-
source/data files. We refer to all of these as Python Resources.

Configuration files represent Python Resources via the following types:

• PythonModuleSource

• PythonPackageResource

• PythonPackageDistributionResource

• PythonExtensionModule

4.2.6 Specifying Resource Locations

Various functionality relates to the concept of a resource location, or where a resource should be loaded from at
run-time. See Managing How Resources are Added for more.

Resource locations are represented as strings in Starlark. The mapping of strings to resource locations is as follows:

in-memory Load the resource from memory.

filesystem-relative:<prefix> Install and load the resource from a filesystem relative path to the build
binary. e.g. filesystem-relative:lib will place resources in the lib/ directory next to the build
binary.

4.3 Resource Attributes Influencing Adding

Individual Starlark values representing resources expose various attributes prefixed with add_ which influence
what happens when that resource is added to a resource collector. These attributes are derived from the
PythonPackagingPolicy attached to the entity creating the resource. But they can be modified by Starlark
code before the resource is added to a collection.

The following sections describe each attribute that influences how the resource is added to a collection.

4.3.1 add_include

This bool attribute defines a yes/no filter for whether to actually add this resource to a collection. If a resource with
.add_include = False is added to a collection, that add is processed as a no-op and no change is made.

4.3. Resource Attributes Influencing Adding 21

PyOxidizer, Release 0.14.1

4.3.2 add_location

This string attributes defines the primary location this resource should be added to and loaded from at run-time.

It can be set to the following values:

in-memory The resource should be loaded from memory.

For Python modules and resource files, the module is loaded from memory using 0-copy by the custom module
importer.

For Python extension modules, the extension module may be statically linked into the built binary or loaded as
a shared library from memory (the latter is not supported on all platforms).

filesystem-relative:<prefix> The resource is materialized on the filesystem relative to the built entity
and loaded from the filesystem at run-time.

<prefix> here is a directory prefix to place the resource in. . (e.g. filesystem-relative:.) can be
used to denote the same directory as the built entity.

4.3.3 add_location_fallback

This string or None value attribute is equivalent to add_location except it only comes into play if the location
specified by add_location could not be satisfied.

Some resources (namely Python extension modules) cannot exist in all locations. Setting this attribute to a different
location gives more flexibility for packaging resources with location constraints.

4.3.4 add_source

This bool attribute defines whether to add source code for a Python module.

For Python modules, typically only bytecode is required at run-time. For some applications, the presence of source
code doesn’t provide sufficient value or isn’t desired since the application developer may want to obfuscate the source
code. Setting this attribute to False prevents Python module source code from being added.

4.3.5 add_bytecode_optimization_level_zero

This bool attributes defines whether to add Python bytecode for optimization level 0 (the default optimization level).

If True, Python source code will be compiled to bytecode at build time.

The default value is whatever PythonPackagingPolicy.bytecode_optimize_level_zero is set to.

4.3.6 add_bytecode_optimization_level_one

This bool attributes defines whether to add Python bytecode for optimization level 1.

The default value is whatever PythonPackagingPolicy.bytecode_optimize_level_one is set to.

4.3.7 add_bytecode_optimization_level_two

This bool attributes defines whether to add Python bytecode for optimization level 2.

The default value is whatever PythonPackagingPolicy.bytecode_optimize_level_two is set to.

22 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

4.4 Global Symbols

This document lists every single global type, variable, and function available in PyOxidizer’s Starlark execution envi-
ronment.

The Starlark environment contains symbols from the following:

• Starlark built-ins

• Tugger’s Starlark Dialect

• PyOxidizer’s Dialect (documented below)

In addition, extra global variables can be injected into the execution environment on a per-invocation basis. This is
commonly encountered with use of the --var and –var-env‘ arguments to various pyoxidizer sub-commands.

4.4.1 Global Types

PyOxidizer’s Starlark dialect defines the following custom types:

File Represents a filesystem path and content.

starlark_tugger.FileContent Represents the content of a file on the filesystem.

(Unlike File, this does not track the filename internally.)

starlark_tugger.FileManifest Represents a mapping of filenames to file content.

PythonDistribution Represents an implementation of Python.

Used for embedding into binaries and running Python code.

PythonEmbeddedResources Represents resources made available to a Python interpreter.

PythonExecutable Represents an executable file containing a Python interpreter.

PythonExtensionModule Represents a compiled Python extension module.

PythonInterpreterConfig Represents the configuration of a Python interpreter.

PythonPackageDistributionResource Represents a file containing Python package distribution metadata.

PythonPackageResource Represents a non-module resource data file.

PythonPackagingPolicy Represents a policy controlling how Python resources are added to a binary.

PythonModuleSource Represents a .py file containing Python source code.

4.4.2 Global Constants

The Starlark execution environment defines various variables in the global scope which are intended to be used as
read-only constants. The following sections describe these variables.

BUILD_TARGET_TRIPLE

The string Rust target triple that we’re currently building for. Will be a value like x86_64-unknown-linux-gnu
or x86_64-pc-windows-msvc. Run rustup target list to see a list of targets.

4.4. Global Symbols 23

https://github.com/bazelbuild/starlark/blob/master/spec.md#built-in-constants-and-functions

PyOxidizer, Release 0.14.1

CONFIG_PATH

The string path to the configuration file currently being evaluated.

CONTEXT

Holds build context. This is an internal variable and accessing it will not provide any value.

CWD

The current working directory. Also the directory containing the active configuration file.

4.4.3 Global Functions

PyOxidizer’s Starlark dialect defines the following global functions:

default_python_distribution() Obtain the default PythonDistribution for the active build config-
uration.

register_target() Register a named target that can be built.

resolve_target() Build/resolve a specific named target.

resolve_targets() Triggers resolution of requested build targets.

set_build_path() Set the filesystem path to use for writing files during evaluation.

4.4.4 Types with Target Behavior

As described in Targets, a function registered as a named target can return a type that has special build or run behavior.

The following types have special behavior registered:

starlark_tugger.FileManifest Build behavior is to materialize all files in the file manifest.

Run behavior is to run the last added PythonExecutable if available, falling back to an executable file
installed by the manifest if there is exactly 1 executable file.

PythonEmbeddedResources Build behavior is to write out files this type represents.

There is no run behavior.

PythonExecutable Build behavior is to build the executable file.

Run behavior is to run that built executable.

4.5 Functions for Manipulating Global State

starlark_pyoxidizer.set_build_path(path: str)
Configure the directory where build artifacts will be written.

Build artifacts include Rust build state, files generated by PyOxidizer, staging areas for built binaries, etc.

If a relative path is passed, it is interpreted as relative to the directory containing the configuration file.

The default value is $CWD/build.

24 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

Important: This needs to be called before functionality that utilizes the build path, otherwise the default value
will be used.

4.6 Functions for Managing Targets

4.6.1 register_target()

Registers a named target that can be resolved by the configuration file.

A target consists of a string name, callable function, and an optional list of targets it depends on.

The callable may return one of the types defined by this Starlark dialect to facilitate additional behavior, such as how
to build and run it.

Arguments:

name (string) The name of the target being register.

fn (function) A function to call when the target is resolved.

depends (list of string or None) List of target strings this target depends on. If specified, each dependency
will be evaluated in order and its returned value (possibly cached from prior evaluation) will be passed as a
positional argument to this target’s callable.

default (bool) Indicates whether this should be the default target to evaluate. The last registered target setting
this to True will be the default. If no target sets this to True, the first registered target is the default.

default_build_script (bool) indicates whether this should be the default target to evaluate when run from
the context of a Rust build script (e.g. from pyoxidizer run-build-script. It has the same semantics
as default.

Note: It would be easier for target functions to call resolve_target() within their implementation. However,
Starlark doesn’t allow recursive function calls. So invocation of target callables must be handled specially to avoid
this recursion.

4.6.2 resolve_target()

Triggers resolution of a requested build target.

This function resolves a target registered with register_target() by calling the target’s registered function or
returning the previously resolved value from calling it.

This function should be used in cases where 1 target depends on the resolved value of another target. For example,
a target to create a starlark_tugger.FileManifest may wish to add a PythonExecutable that was
resolved from another target.

4.6.3 resolve_targets()

Triggers resolution of requested build targets.

This is usually the last meaningful line in a config file. It triggers the building of targets which have been requested to
resolve by whatever is invoking the config file.

4.6. Functions for Managing Targets 25

PyOxidizer, Release 0.14.1

4.7 Extensions to Tugger’s Starlark Dialect

PyOxidizer extends Tugger’s Starlark dialect with addition methods.

4.7.1 FileManifest.add_python_resource()

This method adds a Python resource to a starlark_tugger.FileManifest instance in a specified directory
prefix.

Arguments:

prefix (string) Directory prefix to add resource to.

value (various) A Python resource instance to add. e.g. PythonModuleSource or
PythonPackageResource.

This method can be used to place the Python resources derived from another type or action in the filesystem next to an
application binary.

4.7.2 FileManifest.add_python_resources()

This method adds an iterable of Python resources to a starlark_tugger.FileManifest instance
in a specified directory prefix. This is effectively a wrapper for for value in values: self.
add_python_resource(prefix, value).

For example, to place the Python distribution’s standard library Python source modules in a directory named lib:

m = FileManifest()
dist = default_python_distribution()
for resource in dist.python_resources():

if type(resource) == "PythonModuleSource":
m.add_python_resource("lib", resource)

4.8 File

class starlark_pyoxidizer.File
This type represents a concrete file in an abstract filesystem. The file has a path and content.

Instances can be constructed by calling methods that emit resources with a PythonPackagingPolicy
having PythonPackagingPolicy.file_scanner_emit_files set to True.

path
(string)

The filesystem path represented. Typically relative. Doesn’t have to correspond to a valid, existing file on
the filesystem.

is_executable
(bool)

Whether the file is executable.

is_*
(various)

See Resource Attributes Influencing Adding.

26 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

4.9 PythonDistribution

class starlark_pyoxidizer.PythonDistribution
The PythonDistribution type defines a Python distribution. A Python distribution is an entity that defines
an implementation of Python. This entity can be used to create a binary embedding or running Python and can
be used to execute Python code.

Instances of PythonDistribution can be constructed via a constructor function or via
default_python_distribution().

__init__(sha256: str, local_path: Optional[string] = None, url: Optional[string], flavor: Op-
tional[string] = None)→ PythonDistribution

Construct an instance from arguments.

The following arguments are accepted:

sha256 The SHA-256 of the distribution archive file.

local_path Local filesystem path to the distribution archive.

url URL from which a distribution archive can be obtained using an HTTP GET request.

flavor The distribution flavor. Must be standalone.

A Python distribution is a zstandard-compressed tar archive containing a specially produced build of
Python. These distributions are typically produced by the python-build-standalone project. Pre-built dis-
tributions are available at https://github.com/indygreg/python-build-standalone/releases.

A distribution is defined by a location and a hash.

One of local_path or url MUST be defined.

Examples:

linux = PythonDistribution(
sha256="11a53f5755773f91111a04f6070a6bc00518a0e8e64d90f58584abf02ca79081",
local_path="/var/python-distributions/cpython-linux64.tar.zst"

)

macos = PythonDistribution(
sha256="b46a861c05cb74b5b668d2ce44dcb65a449b9fef98ba5d9ec6ff6937829d5eec

→˓",
url="https://github.com/indygreg/python-build-standalone/releases/

→˓download/20190505/cpython-3.7.3-macos-20190506T0054.tar.zst"
)

python_resources() → list[Union[PythonModuleSource, PythonExtensionModule, PythonPack-
ageResource]]

Returns objects representing Python resources in this distribution. Returned values can be
PythonModuleSource, PythonExtensionModule, PythonPackageResource, etc.

There may be multiple PythonExtensionModule with the same name.

make_python_interpreter_config()→ PythonInterpreterConfig
Obtain a PythonInterpreterConfig derived from the distribution.

The interpreter configuration automatically uses settings appropriate for the distribution.

make_python_packaging_policy()→ PythonPackagingPolicy
Obtain a PythonPackagingPolicy derived from the distribution.

The policy automatically uses settings globally appropriate for the distribution.

4.9. PythonDistribution 27

https://github.com/indygreg/python-build-standalone
https://github.com/indygreg/python-build-standalone/releases

PyOxidizer, Release 0.14.1

to_python_executable(name: str, packaging_policy: PythonPackagingPolicy, config: PythonIn-
terpreterConfig)→ PythonExecutable

This method constructs a PythonExecutable instance. It essentially says build an executable embed-
ding Python from this distribution.

The accepted arguments are:

name The name of the application being built. This will be used to construct the default filename of the
executable.

packaging_policy The packaging policy to apply to the executable builder.

This influences how Python resources from the distribution are added. It also influences future re-
source adds to the executable.

config The default configuration of the embedded Python interpreter.

Default is what make_python_interpreter_config() returns.

Important: Libraries that extension modules link against have various software licenses, including GPL
version 3. Adding these extension modules will also include the library. This typically exposes your
program to additional licensing requirements, including making your application subject to that license
and therefore open source. See Licensing Considerations for more.

4.9.1 default_python_distribution()

starlark_pyoxidizer.default_python_distribution(flavor: str = "standalone",
build_target: str = BUILD_TARGET,
python_version: str = "3.9") →
PythonDistribution

Resolves the default PythonDistribution.

The following named arguments are accepted:

flavor Denotes the distribution flavor. See the section below on allowed values.

build_target Denotes the machine target triple that we’re building for.

Defaults to the value of the BUILD_TARGET global constant.

python_version X.Y major.minor string denoting the Python release version to use.

Supported values are 3.8 and 3.9.

flavor is a string denoting the distribution flavor. Values can be one of the following:

standalone A distribution produced by the python-build-standalone project. The distribution may
be statically or dynamically linked, depending on the build_target and availability. This option
effectively chooses the best available standalone_dynamic or standalone_static option.

This option is effectively standalone_dynamic for all targets except musl libc, where it is effectively
standalone_static.

standalone_dynamic This is like standalone but guarantees the distribution is dynamically linked
against various system libraries, notably libc. Despite the dependence on system libraries, binaries built
with these distributions can generally be run in most environments.

This flavor is available for all supported targets except musl libc.

28 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

standalone_static This is like standalone but guarantees the distribution is statically linked and has
minimal - possibly none - dependencies on system libraries.

On Windows, the Python distribution does not export Python’s symbols, meaning that it is impossible to
load dynamically linked Python extensions with it.

On musl libc, statically linked distributions do not support loading extension modules existing as shared
libraries.

This flavor is only available for Windows and musl libc targets.

Note: The static versus dynamic terminology refers to the linking of the overall distribution, not libpython
or the final produced binaries.

The pyoxidizer binary has a set of known distributions built-in which are automatically available and used
by this function. Typically you don’t need to build your own distribution or change the distribution manually.

4.10 PythonEmbeddedResources

class starlark_pyoxidizer.PythonEmbeddedResources
The PythonEmbeddedResources type represents resources made available to a Python interpreter. The
resources tracked by this type are consumed by the pyembed crate at build and run time. The tracked resources
include:

• Python module source and bytecode

• Python package resources

• Shared library dependencies

While the type’s name has embedded in it, resources referred to by this type may or may not actually be embed-
ded in a Python binary or loaded directly from the binary. Rather, the term embedded comes from the fact that
the data structure describing the resources is typically embedded in the binary or made available to an embedded
Python interpreter.

Instances of this type are constructed by transforming a type representing a Python binary. e.g.
PythonExecutable.to_embedded_resources().

If this type is returned by a target function, its build action will write out files that represent the various resources
encapsulated by this type. There is no run action associated with this type.

4.11 PythonExecutable

class starlark_pyoxidizer.PythonExecutable
The PythonExecutable type represents an executable file containing the Python interpreter, Python re-
sources to make available to the interpreter, and a default run-time configuration for that interpreter.

Instances are constructed from PythonDistribution instances using PythonDistribution.
to_python_executable().

packed_resources_load_mode
(str)

Defines how the packed Python resources data (see Python Packed Resources) is written and loaded at
run-time by the embedded Python interpreter.

4.10. PythonEmbeddedResources 29

PyOxidizer, Release 0.14.1

The following values/patterns can be defined:

none No resources data will be serialized or loaded at run-time. (Use this if you are using Python’s
filesystem based module importer and don’t want to use PyOxidizer’s custom importer.)

embedded:<filename> The packed resources data will be embedded in the binary and loaded from
a memory address at run-time.

filename denotes the path of the on-disk file used at build time. This file is written to the artifacts
directory that PyOxidizer writes required build files to.

binary-relative-memory-mapped:<filename> The packed resources data will be written to
a file relative to the built binary and loaded from there at run-time using memory mapped I/O.

The default is embedded:packed-resources.

tcl_files_path
(Optional[str])

Defines a directory relative to that of the built executable in which to install tcl/tk files.

If set to a value, tcl/tk files present in the Python distribution being used will be installed next to the build
executable and the embedded Python interpreter will automatically set the TCL_LIBRARY environment
variable to load tcl files from this directory.

If None (the default), no tcl/tk files will be installed.

windows_runtime_dlls_mode
(str)

Controls how Windows runtime DLLs should be managed when building the binary.

Windows binaries often have a dependency on various runtime DLLs, such as vcruntime140.dll.
The built executable will need access to these DLLs or it won’t work.

This setting controls whether to install required Windows runtime DLLs next to the built binary at
build time. For example, if you are producing a myapp.exe, this setting can automatically install a
vcruntime140.dll next to that binary.

The following values are recognized:

never Never install Windows runtime DLLs.

when-present Install Windows runtime DLLs when they can be located. Do nothing if they can’t be
found.

always Install Windows runtime DLLs and fail if they can’t be located.

This setting is ignored when the built binary does not have a dependency on Windows runtime DLLs.

See Distribution Considerations for Windows for more on runtime DLL requirements.

windows_subsystem
(str)

Controls the value to use for the Rust #![windows_subsystem = "..."] attribute added to the
autogenerated Rust program to build the executable.

This attribute only has meaning on Windows. It effectively controls the value passed to the linker’s /
SUBSYSTEM flag.

Rust only supports certain values but PyOxidizer does not impose limitations on what values are used.
Common values include:

30 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

console Win32 character-mode application. A console window will be opened when the application
runs.

This value is suitable for command-line executables.

windows Application does not require a console and may provide its own windows.

This value is suitable for GUI applications that do not wish to launch a console window on start.

Default is console.

make_python_module_source(name: str, source: str, is_package: bool)→ PythonModuleSource
This method creates a PythonModuleSource instance suitable for use with the executable being built.

Arguments are as follows:

name The name of the Python module. This is the fully qualified module name. e.g. foo or foo.bar.

source Python source code comprising the module.

is_package Whether the Python module is also a package. (e.g. the equivalent of a __init__.py
file or a module without a . in its name.

pip_download(args: list[str])→ list[Any]
This method runs pip download <args> with settings appropriate to target the executable being
built.

This always uses --only-binary=:all:, forcing pip to only download wheel based packages.

This method accepts the following arguments:

args (list of str) Command line arguments to pass to pip download. Arguments will be added
after default arguments added internally.

Returns a list of objects representing Python resources collected from wheels obtained via pip
download.

pip_install(args: list[str], extra_envs: Optional[dict[str, str]])→ list[Any]
This method runs pip install <args> with settings appropriate to target the executable being built.

args List of strings defining raw process arguments to pass to pip install.

extra_envs Optional dict of string key-value pairs constituting extra environment variables to set in
the invoked pip process.

Returns a list of objects representing Python resources installed as part of the operation. The types of
these objects can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

read_package_root(path: str, packages: list[str])→ list[Any]
This method discovers resources from a directory on the filesystem.

The specified directory will be scanned for resource files. However, only specific named packages will
be found. e.g. if the directory contains sub-directories foo/ and bar, you must explicitly state that you
want the foo and/or bar package to be included so files from these directories will be read.

This rule is frequently used to pull in packages from local source directories (e.g. directories containing
a setup.py file). This rule doesn’t involve any packaging tools and is a purely driven by filesystem
walking. It is primitive, yet effective.

This rule has the following arguments:

path The filesystem path to the directory to scan.

4.11. PythonExecutable 31

PyOxidizer, Release 0.14.1

packages List of package names to include.

Filesystem walking will find files in a directory <path>/<value>/ or in a file <path>/
<value>.py.

Returns a list of objects representing Python resources found in the virtualenv. The types of these
objects can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

read_virtualenv(path: str)→ list[Any]
This method attempts to read Python resources from an already built virtualenv.

Important: PyOxidizer only supports finding modules and resources populated via traditional means
(e.g. pip install or python setup.py install). If .pth or similar mechanisms are used for
installing modules, files may not be discovered properly.

It accepts the following arguments:

path The filesystem path to the root of the virtualenv.

Python modules are typically in a lib/pythonX.Y/site-packages directory (on UNIX) or
Lib/site-packages directory (on Windows) under this path.

Returns a list of objects representing Python resources found in the virtualenv. The types of these
objects can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

setup_py_install(package_path: str, extra_envs: dict[str, str] = {}, extra_global_arguments:
dict[str, str] = {})→ list[Any]

This method runs python setup.py install against a package at the specified path.

It accepts the following arguments:

package_path String filesystem path to directory containing a setup.py to invoke.

extra_envs={} Optional dict of string key-value pairs constituting extra environment variables to set
in the invoked python process.

extra_global_arguments=[] Optional list of strings of extra command line arguments to pass to
python setup.py. These will be added before the install argument.

Returns a list of objects representing Python resources installed as part of the operation. The types of
these objects can be PythonModuleSource, PythonPackageResource, etc.

The returned resources are typically added to a starlark_tugger.FileManifest or
PythonExecutable to make them available to a packaged application.

add_python_resource(resource: Union[PythonModuleSource, PythonPackageResource,
PythonExtensionModule])

This method registers a Python resource of various types with the instance.

It accepts a resource argument which can be a PythonModuleSource,
PythonPackageResource, or PythonExtensionModule and registers that resource with
this instance.

The following arguments are accepted:

resource The resource to add to the embedded Python environment.

32 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

This method is a glorified proxy to the various add_python_* methods. Unlike those methods, this one
accepts all types that are known Python resources.

add_python_resources(resources: list[Union[PythonModuleSource, PythonPackageResource,
PythonExtensionModule])

This method registers an iterable of Python resources of various types. This method is identical to
add_python_resource() except the argument is an iterable of resources. All other arguments are
identical.

filter_from_files(files: list[str], glob_files: list[str])
This method filters all embedded resources (source modules, bytecode modules, and resource names)
currently present on the instance through a set of resource names resolved from files.

This method accepts the following arguments:

files List of filesystem paths to files containing resource names. The file must be valid UTF-8 and
consist of a \n delimited list of resource names. Empty lines and lines beginning with # are ignored.

glob_files List of glob matching patterns of filter files to read. * denotes all files in a directory. **
denotes recursive directories. This uses the Rust glob crate under the hood and the documentation
for that crate contains more pattern matching info.

The files read by this argument must be the same format as documented by the files argument.

All defined files are first read and the resource names encountered are unioned into a set. This set is then
used to filter entities currently registered with the instance.

to_embedded_resources()
Obtains a PythonEmbeddedResources instance representing resources to be made available to the
Python interpreter.

See the PythonEmbeddedResources type documentation for more.

to_file_manifest(prefix: str)→ starlark_tugger.FileManifest
This method transforms the PythonExecutable instance to a starlark_tugger.
FileManifest. The starlark_tugger.FileManifest is populated with the build executable
and any file-based resources that are registered with the resource collector. A libpython shared library
will also be present depending on build settings.

This method accepts the following arguments:

prefix The directory prefix of files in the starlark_tugger.FileManifest. Use . to denote
no prefix.

to_wix_bundle_builder(id_prefix: str, product_name: str, product_version: str, prod-
uct_manufacturer: str, msi_builder_callback: Callable) → star-
lark_tugger.WiXBundleBuilder

This method transforms the PythonExecutable instance into a starlark_tugger.
WiXBundleBuilder instance. The returned value can be used to generate a Windows .exe
installer. This installer will install the Visual C++ Redistributable as well as an MSI for the build
application.

This method accepts the following arguments:

id_prefix See starlark_tugger.WiXMSIBuilder.__init__() for usage.

product_name See starlark_tugger.WiXMSIBuilder.__init__() for usage.

product_version See starlark_tugger.WiXMSIBuilder.__init__() for usage.

product_manufacturer See starlark_tugger.WiXMSIBuilder.__init__() for usage.

msi_builder_callback (function) A callable function that can be used to modify the
starlark_tugger.WiXMSIBuilder constructed for the application.

4.11. PythonExecutable 33

PyOxidizer, Release 0.14.1

The function will receive the starlark_tugger.WiXMSIBuilder as its single argument. The
return value is ignored.

The returned value can be further customized before it is built. See starlark_tugger.
WiXBundleBuilder type documentation for more.

Important: PythonExecutable.windows_runtime_dlls_mode can result in DLLs being in-
stalled next to the binary in addition to being installed as part of the installer. When using this method,
you probably want to set .windows_runtime_dlls_mode = "never" to prevent the redundant
installation.

to_wix_msi_builder(id_prefix: str, product_name: str, product_version: str, prod-
uct_manufacturer: str)→ starlark_tugger.WiXMSIBuilder

This method transforms the PythonExecutable instance into a starlark_tugger.
WiXMSIBuilder instance. The returned value can be used to generate a Windows MSI installer.

This method accepts the following arguments:

id_prefix See starlark_tugger.WiXMSIBuilder.__init__() for usage.

product_name See starlark_tugger.WiXMSIBuilder.__init__() for usage.

product_version See starlark_tugger.WiXMSIBuilder.__init__() for usage.

product_manufacturer See starlark_tugger.WiXMSIBuilder.__init__() for usage.

The MSI installer configuration can be customized. See the starlark_tugger.WiXMSIBuilder
type documentation for more.

The MSI installer will not materialize the Visual C++ Runtime DLL(s).

build(target: str)→ starlark_tugger.ResolvedTarget
Produces a binary executable embedding Python using the settings configured on this instance.

target The name of the target being built.

Under the covers, this will generate a temporary Rust project and invoke cargo, Rust’s build tool, for
generating an executable. The end result of this process is a single executable embedding a Python inter-
preter.

Upon successful generation of a binary, the produced binary will be assessed for code signing with the
python-executable-creation action.

4.12 PythonExtensionModule

class starlark_pyoxidizer.PythonExtensionModule
This type represents a compiled Python extension module.

name
(string)

Unique name of the module being provided.

is_stdlib
(bool)

Whether this module is part of the Python standard library (part of the Python distribution).

34 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

add_*
(various)

See Resource Attributes Influencing Adding.

4.13 PythonInterpreterConfig

class starlark_pyoxidizer.PythonInterpreterConfig
This type configures the default behavior of the embedded Python interpreter.

Embedded Python interpreters are configured and instantiated using a Rust
pyembed::OxidizedPythonInterpreterConfig data structure. The pyembed crate defines a
default instance of this data structure with parameters defined by the settings in this type.

Note: If you are writing custom Rust code and constructing a custom
pyembed::OxidizedPythonInterpreterConfig instance and don’t use the default instance,
this config type is not relevant to you and can be omitted from your config file.

Danger: Some of the settings exposed by Python’s initialization APIs are extremely low level and brittle.
Various combinations can cause the process to crash/exit ungracefully. Be very cautious when setting these
low-level settings.

Instances are constructed by calling PythonDistribution.make_python_interpreter_config().

Instance state is managed via attributes.

There are a ton of attributes and most attributes are not relevant to most applications. The bulk of the attributes
exist to give full control over Python interpreter initialization.

The following attributes control features provided by the pyembed Rust crate, which manages the embedded
Python interpreter in generated executables. These attributes provide features and level of control over embedded
Python interpreters beyond what is possible with Python’s initialization C API.

• allocator_backend

• allocator_raw

• allocator_mem

• allocator_obj

• allocator_pymalloc_arena

• allocator_debug

• oxidized_importer

• filesystem_importer

• argvb

• sys_frozen

• sys_meipass

• terminfo_resolution

• write_modules_directory_env

4.13. PythonInterpreterConfig 35

https://docs.python.org/3/c-api/init_config.html

PyOxidizer, Release 0.14.1

The following attributes correspond to fields of the PyPreConfig C struct used to initialize the Python interpreter.

• config_profile

• allocator

• configure_locale

• coerce_c_locale

• coerce_c_locale_warn

• development_mode

• isolated

• legacy_windows_fs_encoding

• parse_argv

• use_environment

• utf8_mode

The following attributes correspond to fields of the PyConfig C struct used to initialize the Python interpreter.

• base_exec_prefix

• base_executable

• base_prefix

• buffered_stdio

• bytes_warning

• check_hash_pycs_mode

• configure_c_stdio

• dump_refs

• exec_prefix

• executable

• fault_handler

• filesystem_encoding

• hash_seed

• home

• import_time

• inspect

• install_signal_handlers

• interactive

• legacy_windows_stdio

• malloc_stats

• module_search_paths

• optimization_level

• parser_debug

36 Chapter 4. Configuration Files

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig
https://docs.python.org/3/c-api/init_config.html#c.PyConfig

PyOxidizer, Release 0.14.1

• pathconfig_warnings

• prefix

• program_name

• pycache_prefix

• python_path_env

• quiet

• run_command

• run_filename

• run_module

• show_ref_count

• site_import

• skip_first_source_line

• stdio_encoding

• stdio_errors

• tracemalloc

• user_site_directory

• verbose

• warn_options

• write_bytecode

• x_options

allocator_backend
(string)

Configures a custom memory allocator to be used by Python.

Accepted values are:

default Let Python choose how to configure the allocator.

This will likely use the malloc(), free(), etc functions linked to the binary.

jemalloc Use the jemalloc allocator.

(Not available on Windows.)

mimalloc Use the mimalloc allocator (https://github.com/microsoft/mimalloc).

rust Use Rust’s global allocator (whatever that may be).

snmalloc Use the snmalloc allocator (https://github.com/microsoft/snmalloc).

The jemalloc, mimalloc, and snmalloc allocators require the presence of additional Rust crates.
A run-time error will occur if these allocators are configured but the binary was built without these crates.
(This should not occur when using pyoxidizer to build the binary.)

When a custom allocator is configured, the autogenerated Rust crate used to build the binary will configure
the Rust global allocator (#[global_allocator] attribute) to use the specified allocator.

4.13. PythonInterpreterConfig 37

https://github.com/microsoft/mimalloc
https://github.com/microsoft/snmalloc

PyOxidizer, Release 0.14.1

Important: The rust allocator is not recommended because it introduces performance overhead. But it
may help with debugging in some situations.

Note: Both mimalloc and snmalloc require the cmake build tool to compile code as part of
their build process. If this tool is not available in the build environment, you will encounter a build er-
ror with a message similar to failed to execute command: The system cannot find
the file specified. (os error 2) is `cmake` not installed?.

The workaround is to install cmake or use a different allocator.

Note: snmalloc only supports targeting to macOS 10.14 or newer. You will likely see build errors
when building a binary targeting macOS 10.13 or older.

Default is jemalloc on non-Windows targets and default on Windows. (The jemalloc-sys crate
doesn’t work on Windows MSVC targets.)

allocator_raw
(bool)

Controls whether to install a custom allocator (defined by allocator_backend) into Python’s raw
allocator domain (PYMEM_DOMAIN_RAW in Python C API speak).

Setting this to True will replace the system allocator (e.g. malloc(), free()) for this domain.

A value of True only has an effect if allocator_backend is some value other than default.

Defaults to True.

allocator_mem
(bool)

Controls whether to install a custom allocator (defined by allocator_backend) into Python’s mem
allocator domain (PYMEM_DOMAIN_MEM in Python C API speak).

Setting this to True will replace pymalloc as the allocator for this domain.

A value of True only has an effect if allocator_backend is some value other than default.

Defaults to False.

allocator_obj
(bool)

Controls whether to install a custom allocator (defined by allocator_backend) into Python’s obj
allocator domain (PYMEM_DOMAIN_OBJ in Python C API speak).

Setting this to True will replace pymalloc as the allocator for this domain.

A value of True only has an effect if allocator_backend is some value other than default.

Defaults to False.

allocator_pymalloc_arena
(bool)

Controls whether to install a custom allocator (defined by allocator_backend) into Python’s
pymalloc to be used as its arena allocator.

38 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

The pymalloc allocator is used by Python by default and will use the system’s allocator functions
(malloc(), VirtualAlloc(), etc) by default.

Setting this to True will have no effect if pymalloc is not being used (the allocator_mem and
allocator_obj settings are True and have replaced pymalloc as the allocator backend for these
domains).

A value of True only has an effect if allocator_backend is some value other than default.

Defaults to False.

allocator_debug
(bool)

Whether to enable debug hooks for Python’s memory allocators.

Enabling debug hooks enables debugging of memory-related issues in the Python interpreter. This setting
effectively controls whether to call PyMem_SetupDebugHooks() during interpreter initialization. See the
linked documentation for more.

Defaults to False.

oxidized_importer
(bool)

Whether to install the oxidized_importer meta path importer (oxidized_importer Python Extension)
on sys.meta_path and sys.path_hooks during interpreter initialization. If installed, we will al-
ways occupy the first element in these lists.

Defaults to True.

filesystem_importer
(bool)

Whether to install the standard library path-based importer for loading Python modules from the filesystem.

If disabled, sys.meta_path and sys.path_hooks will not have entries provided by the standard
library’s path-based importer.

Due to quirks in how the Python interpreter is initialized, the standard library’s path-based importer
will be registered on sys.meta_path and sys.path_hooks for a brief moment when the inter-
preter is initialized. If sys.path contains valid entries that would be serviced by this importer and
oxidized_importer isn’t able to service imports, it is possible for the path-based importer to be used
to import some Python modules needed to initialize the Python interpreter. In many cases, this behavior is
harmless. In all cases, the path-based importer is disabled after Python interpreter initialization, so future
imports won’t be serviced by the path-based importer if it is disabled by this flag.

The filesystem importer is enabled automatically if PythonInterpreterConfig.
module_search_paths is non-empty.

argvb
(bool)

Whether to expose a sys.argvb attribute containing bytes versions of process arguments.

On platforms where the process receives char * arguments, Python normalizes these values to unicode
and makes them available via sys.argv. On platforms where the process receives wchar_t * argu-
ments, Python may interpret the bytes as a certain encoding. This encoding normalization can be lossy.

Enabling this feature will give Python applications access to the raw bytes values of arguments that are
actually used. The single or double width bytes nature of the data is preserved.

4.13. PythonInterpreterConfig 39

https://docs.python.org/3/c-api/memory.html#c.PyMem_SetupDebugHooks

PyOxidizer, Release 0.14.1

Unlike sys.argv which may chomp off leading arguments depending on the Python execution mode,
sys.argvb has all the arguments used to initialize the process. The first argument is always the exe-
cutable.

sys_frozen
(bool)

Controls whether to set the sys.frozen attribute to True. If false, sys.frozen is not set.

Default is False.

sys_meipass
(bool)

Controls whether to set the sys._MEIPASS attribute to the path of the executable.

Setting this and sys_frozen to True will emulate the behavior of PyInstaller and could possibly help
self-contained applications that are aware of PyInstaller also work with PyOxidizer.

Default is False.

terminfo_resolution
(string)

Defines how the terminal information database (terminfo) should be configured.

See Terminfo Database for more about terminal databases.

Accepted values are:

dynamic Looks at the currently running operating system and attempts to do something reasonable.

For example, on Debian based distributions, it will look for the terminfo database in /etc/
terminfo, /lib/terminfo, and /usr/share/terminfo, which is how Debian configures
ncurses to behave normally. Similar behavior exists for other recognized operating systems.

If the operating system is unknown, PyOxidizer falls back to looking for the terminfo database in
well-known directories that often contain the database (like /usr/share/terminfo).

none The value none indicates that no configuration of the terminfo database path should be per-
formed. This is useful for applications that don’t interact with terminals. Using none can prevent
some filesystem I/O at application startup.

static:<path> Indicates that a static path should be used for the path to the terminfo database.

This values consists of a : delimited list of filesystem paths that ncurses should be configured to
use. This value will be used to populate the TERMINFO_DIRS environment variable at application
run time.

terminfo is not used on Windows and this setting is ignored on that platform.

write_modules_directory_env
(string or None)

Environment variable that defines a directory where modules-<UUID> files containing a \n delimited
list of loaded Python modules (from sys.modules) will be written upon interpreter shutdown.

If this setting is not defined or if the environment variable specified by its value is not present at run-time,
no special behavior will occur. Otherwise, the environment variable’s value is interpreted as a directory,
that directory and any of its parents will be created, and a modules-<UUID> file will be written to the
directory.

This setting is useful for determining which Python modules are loaded when running Python code.

40 Chapter 4. Configuration Files

https://pyinstaller.readthedocs.io/en/v3.3.1/runtime-information.html

PyOxidizer, Release 0.14.1

config_profile
(string)

This attribute controls which set of default values to use for attributes that aren’t explicitly defined. It
effectively controls which C API to use to initialize the PyPreConfig instance.

Accepted values are:

isolated Use the isolated configuration.

This configuration is appropriate for applications existing in isolation and not behaving like python
executables.

python Use the Python configuration.

This configuration is appropriate for applications attempting to behave like a python executable
would.

allocator
(string or None)

Controls the value of PyPreConfig.allocator.

Accepted values are:

None Use the default.

not-set PYMEM_ALLOCATOR_NOT_SET

default PYMEM_ALLOCATOR_DEFAULT

debug PYMEM_ALLOCATOR_DEBUG

malloc PYMEM_ALLOCATOR_MALLOC

malloc-debug PYMEM_ALLOCATOR_MALLOC_DEBUG

py-malloc PYMEM_ALLOCATOR_PYMALLOC

py-malloc-debug PYMEM_ALLOCATOR_PYMALLOC_DEBUG

configure_locale
(bool or None)

Controls the value of PyPreConfig.configure_locale.

coerce_c_locale
(string or None)

Controls the value of PyPreConfig.coerce_c_locale.

Accepted values are:

LC_CTYPE Read LC_CTYPE

C Coerce the C locale.

coerce_c_locale_warn
(bool or None)

Controls the value of PyPreConfig.coerce_c_locale_warn.

development_mode
(bool or None)

Controls the value of PyPreConfig.development_mode.

4.13. PythonInterpreterConfig 41

https://docs.python.org/3/c-api/init_config.html#isolated-configuration
https://docs.python.org/3/c-api/init_config.html#python-configuration
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.allocator
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.configure_locale
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.coerce_c_locale_warn
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.development_mode

PyOxidizer, Release 0.14.1

isolated
(bool or None)

Controls the value of PyPreConfig.isolated.

legacy_windows_fs_encoding
(bool or None)

Controls the value of PyPreConfig.legacy_windows_fs_encoding.

parse_argv
(bool or None)

Controls the value of PyPreConfig.parse_argv.

use_environment
(bool or None)

Controls the value of PyPreConfig.use_environment.

utf8_mode
(bool or None)

Controls the value of PyPreConfig.utf8_mode.

base_exec_prefix
(string or None)

Controls the value of PyConfig.base_exec_prefix.

base_executable
(string or None)

Controls the value of PyConfig.base_exectuable.

base_prefix
(string or None)

Controls the value of PyConfig.base_prefix.

buffered_stdio
(bool or None)

Controls the value of PyConfig.buffered_stdio.

bytes_warning
(string or None)

Controls the value of PyConfig.bytes_warning.

Accepted values are:

• None

• none

• warn

• raise

check_hash_pycs_mode
(string or None)

Controls the value of PyConfig.check_hash_pycs_mode.

Accepted values are:

• None

42 Chapter 4. Configuration Files

https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.isolated
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.legacy_windows_fs_encoding
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.parse_argv
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.use_environment
https://docs.python.org/3/c-api/init_config.html#c.PyPreConfig.utf8_mode
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_exec_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_executable
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.base_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.buffered_stdio
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.bytes_warning
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.check_hash_pycs_mode

PyOxidizer, Release 0.14.1

• always

• never

• default

configure_c_stdio
(bool or None)

Controls the value of PyConfig.configure_c_stdio.

dump_refs
(bool or None)

Controls the value of PyConfig.dump_refs.

exec_prefix
(string or None)

Controls the value of PyConfig.exec_prefix.

executable
(string or None)

Controls the value of PyConfig.executable.

fault_handler
(bool or None)

Controls the value of PyConfig.fault_handler.

filesystem_encoding
(string or None)

Controls the value of PyConfig.filesystem_encoding.

filesystem_errors
(string or None)

Controls the value of PyConfig.filesystem_errors.

hash_seed
(int or None)

Controls the value of PyConfig.hash_seed.

PyConfig.use_hash_seed will automatically be set if this attribute is defined.

home
(string or None)

Controls the value of PyConfig.home.

import_time
Controls the value of PyConfig.import_time.

inspect
(bool or None)

Controls the value of PyConfig.inspect.

install_signal_handlers
(bool or None)

Controls the value of PyConfig.install_signal_handlers.

4.13. PythonInterpreterConfig 43

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.configure_c_stdio
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.dump_refs
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.exec_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.executable
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.fault_handler
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_encoding
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.filesystem_errors
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.hash_seed
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.home
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.import_time
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.inspect
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.install_signal_handlers

PyOxidizer, Release 0.14.1

interactive
(bool or None)

Controls the value of PyConfig.interactive.

legacy_windows_stdio
(bool or None)

Controls the value of PyConfig.legacy_windows_stdio.

malloc_stats
(bool or None)

Controls the value of PyConfig.malloc_stats.

module_search_paths
(list[string] or None)

Controls the value of PyConfig.module_search_paths.

This value effectively controls the initial value of sys.path.

The special string $ORIGIN in values will be expanded to the absolute path of the directory of
the executable at run-time. For example, if the executable is /opt/my-application/pyapp,
$ORIGIN will expand to /opt/my-application and the value $ORIGIN/lib will expand to /
opt/my-application/lib.

Setting this to a non-empty value also has the side-effect of setting filesystem_importer = True

optimization_level
(int or None)

Controls the value of PyConfig.optimization_level.

Allowed values are:

• None

• 0

• 1

• 2

This setting is only relevant if write_bytecode is True and Python modules are being imported from
the filesystem using Python’s standard filesystem importer.

parser_debug
(bool or None)

Controls the value of PyConfig.parser_debug.

pathconfig_warnings
(bool or None)

Controls the value of PyConfig.pathconfig_warnings.

prefix
(string or None)

Controls the value of PyConfig.prefix.

program_name
(string or None)

Controls the value of PyConfig.program_name.

44 Chapter 4. Configuration Files

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.interactive
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.legacy_windows_stdio
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.malloc_stats
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.module_search_paths
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.optimization_level
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.parser_debug
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pathconfig_warnings
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.program_name

PyOxidizer, Release 0.14.1

pycache_prefix
(string or None)

Controls the value of PyConfig.pycache_prefix.

python_path_env
(string or None)

Controls the value of PyConfig.pythonpath_env.

quiet
(bool or None)

Controls the value of PyConfig.quiet.

run_command
(string or None)

Controls the value of PyConfig.run_command.

run_filename
(string or None)

Controls the value of PyConfig.run_filename.

run_module
(string or None)

Controls the value of PyConfig.run_module.

show_ref_count
(bool or None)

Controls the value of PyConfig.show_ref_count.

site_import
(bool or None)

Controls the value of PyConfig.site_import.

The site module is typically not needed for standalone/isolated Python applications.

skip_first_source_line
(bool or None)

Controls the value of PyConfig.skip_first_source_line.

stdio_encoding
(string or None)

Controls the value of PyConfig.stdio_encoding.

stdio_errors
(string or None)

Controls the value of PyConfig.stdio_errors.

tracemalloc
(bool or None)

Controls the value of PyConfig.tracemalloc.

user_site_directory
(bool or None)

Controls the value of PyConfig.user_site_directory.

4.13. PythonInterpreterConfig 45

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pycache_prefix
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.pythonpath_env
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.quiet
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_command
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_filename
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.run_module
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.show_ref_count
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.site_import
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.skip_first_source_line
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_encoding
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.stdio_errors
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.tracemalloc
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.user_site_directory

PyOxidizer, Release 0.14.1

verbose
(bool or None)

Controls the value of PyConfig.verbose.

warn_options
(list[string] or None)

Controls the value of PyConfig.warn_options.

write_bytecode
(bool or None)

Controls the value of PyConfig.write_bytecode.

This only influences the behavior of Python standard path-based importer (controlled via
filesystem_importer).

x_options
(list[string] or None)

Controls the value of PyConfig.xoptions.

4.13.1 Starlark Caveats

The PythonInterpreterConfig Starlark type is backed by a Rust data structure. And when attributes are
retrieved, a copy of the underlying Rust struct field is returned.

This means that if you attempt to mutate a Starlark value (as opposed to assigning an attribute), the mutation won’t be
reflected on the underlying Rust data structure.

For example:

config = dist.make_python_interpreter_config()

assigns vec!["foo", "bar"].
config.module_search_paths = ["foo", "bar"]

Creates a copy of the underlying list and appends to that copy.
The stored value of `module_search_paths` is still `["foo", "bar"]`.
config.module_search_paths.append("baz")

To append to a list, do something like the following:

value = config.module_search_paths
value.append("baz")
config.module_search_paths = value

4.14 PythonModuleSource

class starlark_pyoxidizer.PythonModuleSource
This type represents Python source modules, agnostic of location.

Instances can be constructed via PythonExecutable.make_python_module_source() or by calling
methods that emit Python resources.

name
(string)

46 Chapter 4. Configuration Files

https://docs.python.org/3/c-api/init_config.html#c.PyConfig.verbose
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.warn_options
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.write_bytecode
https://docs.python.org/3/c-api/init_config.html#c.PyConfig.xoptions

PyOxidizer, Release 0.14.1

Fully qualified name of the module. e.g. foo.bar.

source
(string)

The Python source code for this module.

is_package
(bool)

Whether this module is also a Python package (or sub-package).

is_stdlib
(bool)

Whether this module is part of the Python standard library (part of the Python distribution).

add_*
(various)

See Resource Attributes Influencing Adding.

4.15 PythonPackageResource

class starlark_pyoxidizer.PythonPackageResource
This type represents a resource _file_ in a Python package. It is effectively a named blob associated with a
Python package. It is typically accessed using the importlib.resources API.

package
(string)

Python package this resource is associated with.

name
(string)

Name of this resource.

is_stdlib
(bool)

Whether this module is part of the Python standard library (part of the Python distribution).

add_*
(various)

See Resource Attributes Influencing Adding.

4.16 PythonPackageDistributionResource

class starlark_pyoxidizer.PythonPackageDistributionResource
This type represents a named resource to make available as Python package distribution metadata. These files
are typically accessed using the importlib.metadata API.

Each instance represents a logical file in a <package>-<version>.dist-info or
<package>-<version>.egg-info directory. There are specifically named files that contain cer-
tain data. For example, a *.dist-info/METADATA file describes high-level metadata about a Python
package.

4.15. PythonPackageResource 47

PyOxidizer, Release 0.14.1

package
(string)

Python package this resource is associated with.

name
(string)

Name of this resource.

is_stdlib
(bool)

Whether this module is part of the Python standard library (part of the Python distribution).

add_*
(various)

See Resource Attributes Influencing Adding.

4.17 PythonPackagingPolicy

class starlark_pyoxidizer.PythonPackagingPolicy
When building a Python binary, there are various settings that control which Python resources are added, where
they are imported from, and other various settings. This collection of settings is referred to as a Python Packag-
ing Policy. These settings are represented by the PythonPackagingPolicy type.

allow_files
(bool)

Whether to allow the collection of generic file resources.

If false, all collected/packaged resources must be instances of concrete resource types
(PythonModuleSource, PythonPackageResource, etc).

If true, File instances can be added to resource collectors.

allow_in_memory_shared_library_loading
(bool)

Whether to allow loading of Python extension modules and shared libraries from memory at run-time.

Some platforms (notably Windows) allow opening shared libraries from a memory address. This mode of
opening shared libraries allows libraries to be embedded in binaries without having to statically link them.
However, not every library works correctly when loaded this way.

This flag defines whether to enable this feature where supported. Its true value can be ignored if the target
platform doesn’t support loading shared library from memory.

bytecode_optimize_level_zero
(bool)

Whether to add Python bytecode at optimization level 0 (the default optimization level the Python inter-
preter compiles bytecode for).

bytecode_optimize_level_one
(bool)

Whether to add Python bytecode at optimization level 1.

48 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

bytecode_optimize_level_two
(bool)

Whether to add Python bytecode at optimization level 2.

extension_module_filter
(string)

The filter to apply to determine which extension modules to add. The following values are recognized:

all Every named extension module will be included.

minimal Return only extension modules that are required to initialize a Python interpreter. This is a very
small set and various functionality from the Python standard library will not work with this value.

no-libraries Return only extension modules that don’t require any additional libraries.

Most common Python extension modules are included. Extension modules like _ssl (links against
OpenSSL) and zlib are not included.

no-copyleft Return only extension modules that do not link against copyleft licensed libraries.

Not all Python distributions may annotate license info for all extensions or the libraries they link
against. If license info is missing, the extension is not included because it could be copyleft licensed.
Similarly, the mechanism for determining whether a license is copyleft is based on the SPDX license
annotations, which could be wrong or out of date.

Default is all.

file_scanner_classify_files
(bool)

Whether file scanning should attempt to classify files and emit typed resources corresponding to the de-
tected file type.

If True, operations that emit resource objects (such as PythonExecutable.pip_install())
will emit specific types for each resource flavor. e.g. PythonModuleSource,
PythonExtensionModule, etc.

If False, the file scanner does not attempt to classify the type of a file and this rich resource types are not
emitted.

Can be used in conjunction with PythonPackagingPolicy.file_scanner_emit_files. If
both are True, there will be a File and an optional non-file resource for each source file.

Default is True.

file_scanner_emit_files
(bool)

Whether file scanning should emit file resources for each seen file.

If True, operations that emit resource objects (such as PythonExecutable.pip_install()) will
emit File instances for each encountered file.

If False, File instances will not be emitted.

Can be used in conjunction with PythonPackagingPolicy.
file_scanner_classify_files.

Default is False.

include_classified_resources
(bool)

4.17. PythonPackagingPolicy 49

PyOxidizer, Release 0.14.1

Whether strongly typed, classified non-File resources have their add_include attribute set to True
by default.

Default is True.

include_distribution_sources
(bool)

Whether to add source code for Python modules in the Python distribution.

Default is True.

include_distribution_resources
(bool)

Whether to add Python package resources for Python packages in the Python distribution.

Default is False.

include_file_resources
(bool)

Whether File resources have their add_include attribute set to True by default.

Default is False.

include_non_distribution_sources
(bool)

Whether to add source code for Python modules not in the Python distribution.

include_test
(bool)

Whether to add Python resources related to tests.

Not all files associated with tests may be properly flagged as such. This is a best effort setting.

Default is False.

resources_location
(string)

The location that resources should be added to by default.

Default is in-memory.

resources_location_fallback
(string or None)

The fallback location that resources should be added to if resources_location fails.

Default is None.

preferred_extension_module_variants
(dict<string, string>) (readonly)

Mapping of extension module name to variant name.

This mapping defines which preferred named variant of an extension module to use. Some Python distri-
butions offer multiple variants of the same extension module. This mapping allows defining which variant
of which extension to use when choosing among them.

Keys set on this dict are not reflected in the underlying policy. To set a key, call the
set_preferred_extension_module_variant() method.

50 Chapter 4. Configuration Files

PyOxidizer, Release 0.14.1

register_resource_callback(f: Callable)
This method registers a Starlark function to be called when resource objects are created. The passed
function receives 2 arguments: this PythonPackagingPolicy instance and the resource (e.g.
PythonModuleSource) that was created.

The purpose of the callback is to enable Starlark configuration files to mutate resources upon creation so
they can globally influence how those resources are packaged.

set_preferred_extension_module_variant(extension: str, variant: str)
This method will set a preferred Python extension module variant to use. See the documentation for
preferred_extension_module_variants above for more.

It accepts 2 string arguments defining the extension module name and its preferred variant.

set_resource_handling_mode(mode: str)
This method takes a string argument denoting the resource handling mode to apply to the policy. This
string can have the following values:

classify Files are classified as typed resources and handled as such.

Only classified resources can be added by default.

files Files are handled as raw files (as opposed to typed resources).

Only files can be added by default.

This method is effectively a convenience method for bulk-setting multiple attributes on the instance given
a behavior mode.

classify will configure the file scanner to emit classified resources, configure the add_include
attribute to only be True on classified resources, and will disable the addition of File resources on
resource collectors.

fileswill configure the file scanner to only emit File resources, configure the add_include attribute
to True on File and classified resources, and will allow resource collectors to add File instances.

4.17. PythonPackagingPolicy 51

PyOxidizer, Release 0.14.1

52 Chapter 4. Configuration Files

CHAPTER 5

Packaging User Guide

So you want to package a Python application using PyOxidizer? You’ve come to the right place to learn how!
Read on for all the details on how to oxidize your Python application!

First, you’ll need to install PyOxidizer. See Installing for instructions.

5.1 Creating a PyOxidizer Project

The process for oxidizing every Python application looks the same: you start by creating a new PyOxidizer config-
uration file via the pyoxidizer init-config-file command:

Create a new configuration file in the directory "pyapp"
$ pyoxidizer init-config-file pyapp

Behind the scenes, PyOxidizer works by leveraging a Rust project to build binaries embedding Python. The auto-
generated project simply instantiates and runs an embedded Python interpreter. If you would like your built binaries
to offer more functionality, you can create a minimal Rust project to embed a Python interpreter and customize from
there:

Create a new Rust project for your application in ~/src/myapp.
$ pyoxidizer init-rust-project ~/src/myapp

The auto-generated configuration file and Rust project will launch a Python REPL by default. And the pyoxidizer
executable will look in the current directory for a pyoxidizer.bzl configuration file. Let’s test that the new
configuration file or project works:

$ pyoxidizer run
...

Compiling pyapp v0.1.0 (/home/gps/src/pyapp)
Finished dev [unoptimized + debuginfo] target(s) in 53.14s

writing executable to /home/gps/src/pyapp/build/x86_64-unknown-linux-gnu/debug/exe/
→˓pyapp
>>>

53

PyOxidizer, Release 0.14.1

If all goes according to plan, you just built a Rust executable which contains an embedded copy of Python. That
executable started an interactive Python debugger on startup. Try typing in some Python code:

>>> print("hello, world")
hello, world

It works!

(To exit the REPL, press CTRL+d or CTRL+z or import sys; sys.exit(0) from the REPL.)

Note: If you have built a Rust project before, the output from building a PyOxidizer application may look familiar
to you. That’s because under the hood Cargo - Rust’s package manager and build system - is doing a lot of the work
to build the application. If you are familiar with Rust development, you can use cargo build and cargo run
directly. However, Rust’s build system is only responsible for build binaries and some of the higher-level functionality
from PyOxidizer’s configuration files (such as application packaging) will likely not be performed unless tweaks
are made to the Rust project’s build.rs.

Now that we’ve got a new project, let’s customize it to do something useful.

5.2 Packaging Primitives in pyoxidizer.bzl Files

PyOxidizer’s run-time behavior is controlled by pyoxidizer.bzl Starlark (a Python-like language) configuration
files. See Configuration Files for documentation on these files, including low-level API documentation.

This document gives a medium-level overview of the important Starlark types and functions and how they all interact.

5.2.1 Targets Define Actions

As detailed at Targets, a PyOxidizer configuration file is composed of named targets, which are functions returning
an object that may have a build or run action attached. Commands like pyoxidizer build identify a target to
evaluate then effectively walk the dependency graph evaluating dependent targets until the requested target is built.

5.2.2 Defining an Executable Embedding Python

In this example, we create an executable embedding Python:

def make_dist():
return default_python_distribution()

def make_exe(dist):
return dist.to_python_executable("myapp")

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"], default=True)

PythonDistribution.to_python_executable() accepts an optional PythonPackagingPolicy in-
stance that influences how the executable is built and what resources are added where. See the type
documentation for the list of parameters that can be influenced. Some of this behavior is described in the sections
below. Other examples are provided throughout the Packaging User Guide documentation.

54 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

5.2.3 Configuring the Python Interpreter Run-Time Behavior

The PythonInterpreterConfig Starlark type configures the default behavior of the Python interpreter embed-
ded in built binaries.

A PythonInterpreterConfig instance is associated with PythonExecutable instances when they are cre-
ated. A custom instance can be passed into PythonDistribution.to_python_executable() to use non-
default settings.

In this example (similar to above), we construct a custom PythonInterpreterConfig instance using non-
defaults and then pass this instance into the constructed PythonExecutable:

def make_dist():
return default_python_distribution()

def make_exe(dist):
config = dist.make_python_interpreter_config()
config.run_command = "print('hello, world')"

return dist.to_python_executable("myapp", config=config)

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"], default=True)

The PythonInterpreterConfig type exposes a lot of modifiable settings. See the API documentation for
the complete list. These settings include but are not limited to:

• Control of low-level Python interpreter settings, such as whether environment variables (like PYTHONPATH)
should influence run-time behavior, whether stdio should be buffered, and the filesystem encoding to use.

• Whether to enable the importing of Python modules from the filesystem and what the initial value of sys.path
should be.

• The memory allocator that the Python interpreter should use.

• What Python code to run when the interpreter is started.

• How the terminfo database should be located.

Many of these settings are not needed for most programs and the defaults are meant to be reasonable for most programs.
However, some settings - such as the run_* arguments defining what Python code to run by default - are required by
most configuration files.

5.2.4 Adding Python Packages to Executables

A just-created PythonExecutable Starlark type contains just the Python interpreter and standard library derived
from the PythonDistribution from which it came. While you can use PyOxidizer to produce an executable
containing just a normal Python distribution with nothing else, many people will want to add their own Python pack-
ages/code.

The Starlark environment defines various types for representing Python package resources. These include
PythonModuleSource, PythonExtensionModule, PythonPackageDistributionResource, and
more.

Instances of these types can be created dynamically or by performing common Python packaging operations (such as
invoking pip install) via various methods on PythonExecutable instances. These Python package resource
instances can then be added to PythonExecutable instances so they are part of the built binary.

See Managing How Resources are Added and Packaging Python Files for more on this topic, including many examples.

5.2. Packaging Primitives in pyoxidizer.bzl Files 55

PyOxidizer, Release 0.14.1

5.2.5 Install Manifests Copy Files Next to Your Application

The starlark_tugger.FileManifest Starlark type represents a collection of files and their content. When
starlark_tugger.FileManifest instances are returned from a target function, their build action results in
their contents being manifested in a directory having the name of the build target.

starlark_tugger.FileManifest instances can be used to construct custom file install layouts.

Say you have an existing directory tree of files you want to copy next to your built executable defined by the
PythonExecutable type.

The starlark_tugger.glob() function can be used to discover existing files on the filesystem and turn them
into a starlark_tugger.FileManifest. You can then return this starlark_tugger.FileManifest
directory or overlay it onto another instance using starlark_tugger.FileManifest.add_manifest().
Here’s an example:

def make_dist():
return default_python_distribution()

def make_exe(dist):
return dist.to_python_executable("myapp")

def make_install(exe):
m = FileManifest()

m.add_python_resource(".", exe)

templates = glob(["/path/to/project/templates/**/*"], strip_prefix="/path/to/
→˓project/")

m.add_manifest(templates)

return m

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"])
register_target("install", make_install, depends=["exe"], default=True)

We introduce a new install target and make_install() function which returns a starlark_tugger.
FileManifest. It adds the PythonExecutable (represented by the exe argument/variable) to that manifest in
the root directory, signified by ..

Next, it calls glob() to find all files in the /path/to/project/templates/ directory tree, strips the path
prefix /path/to/project/ from them, and then merges all of these files into the final manifest.

When the InstallManifest is built, the final layout should look something like the following:

• install/myapp (or install/myapp.exe on Windows)

• install/templates/foo

• install/templates/...

See Packaging Files Instead of In-Memory Resources for more on this topic.

5.3 Understanding Python Distributions

The PythonDistribution Starlark type represents a Python distribution, an entity providing a Python installation
and build files which PyOxidizer uses to build your applications. See Python Distributions Provide Python for more.

56 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

5.3.1 Available Python Distributions

PyOxidizer ships with its own list of available Python distributions. These are constructed via the
default_python_distribution() Starlark function. Under most circumstances, you’ll want to use one of
these distributions instead of providing your own because these distributions are tested and should have maximum
compatibility.

Here are the built-in Python distributions:

Source Version Flavor Build Target
CPython 3.8.8 standalone_dynamic x86_64-unknown-linux-gnu
CPython 3.9.2 standalone_dynamic x86_64-unknown-linux-gnu
CPython 3.8.8 standalone_static x86_64-unknown-linux-musl
CPython 3.9.2 standalone_static x86_64-unknown-linux-musl
CPython 3.8.8 standalone_dynamic i686-pc-windows-msvc
CPython 3.9.2 standalone_dynamic i686-pc-windows-msvc
CPython 3.8.8 standalone_static i686-pc-windows-msvc
CPython 3.9.2 standalone_static i686-pc-windows-msvc
CPython 3.8.8 standalone_dynamic x86_64-pc-windows-msvc
CPython 3.9.2 standalone_dynamic x86_64-pc-windows-msvc
CPython 3.8.8 standalone_static x86_64-pc-windows-msvc
CPython 3.9.2 standalone_static x86_64-pc-windows-msvc
CPython 3.9.2 standalone_dynamic aarch64-apple-darwin
CPython 3.8.8 standalone_dynamic x86_64-apple-darwin
CPython 3.9.2 standalone_dynamic x86_64-apple-darwin

All of these distributions are provided by the python-build-standalone, and are maintained by the maintainer of PyOx-
idizer.

Here is what those target triple values translate to:

aarch64-apple-darwin 64-bit ARM compiled for macOS.

i686-pc-windows-msvc 32-bit Windows using the Microsoft Visual C++ Compiler.

x86-64-pc-windows-msvc 64-bit Windows using the Microsoft Visual C++ Compiler.

x86_64-apple-darwin 64-bit Intel processors compiled for macOS.

x86_64-pc-unknown-linux-gnu 64-bit x86 (typically Intel or AMD) targeting Linux, with a dependency on
GNU libc (glibc / libc.so).

x86_64-pc-unknown-linux-musl 64-bit x86 (typically Intel or AMD) targeting Linux using musl libc. (Musl
libc uses static linking for libc, unlike glibc.)

5.3.2 Python Version Compatibility

PyOxidizer is capable of working with Python 3.8 and 3.9.

Python 3.9 is the default Python version because it has been around for a while and is relatively stable.

PyOxidizer’s tests are run primarily against the default Python version. So adopting a non-default version may risk
running into subtle bugs.

5.3. Understanding Python Distributions 57

https://github.com/indygreg/python-build-standalone

PyOxidizer, Release 0.14.1

5.3.3 Choosing a Python Distribution

The Python 3.9 distributions are the default and are better tested than the Python 3.8 distributions. 3.8 was the default
in previous releases and is known to work.

The standalone_dynamic distributions behave much more similarly to traditional Python build configurations
than do their standalone_static counterparts. The standalone_dynamic distributions are capable of load-
ing Python extension modules that exist as shared library files. So when working with standalone_dynamic
distributions, Python wheels containing pre-built Python extension modules often just work.

The downside to standalone_dynamic distributions is that you cannot produce a single file, statically-linked
executable containing your application in most circumstances: you will need a standalone_static distribution
to produce a single file executable.

But as soon as you encounter a third party extension module with a standalone_static distribution, you will
need to recompile it. And this is often unreliable.

5.3.4 Binary Portability of Distributions

The built-in Python distributions are built in such a way that they should run on nearly every system for the platform
they target. This means:

• All 3rd party shared libraries are part of the distribution (e.g. libssl and libsqlite3) and don’t need to
be provided by the run-time environment.

• Some distributions are statically linked and have no dependencies on any external shared libraries.

• On the glibc linked Linux distributions, they use an old glibc version for symbol versions, enabling them to run
on Linux distributions created years ago. (The current version is 2.19, which was released in 2014.)

• Any shared libraries not provided by the distribution are available in base operating system installs. On Linux,
example shared libraries include libc.so.6 and linux-vdso.so.1, which are part of the Linux Standard
Base Core Configuration and should be present on all conforming Linux distros. On macOS, referenced dylibs
include libSystem, which is part of the macOS core install.

• For Linux, see Distribution Considerations for Linux for portability considerations.

• For macOS, see Distribution Considerations for macOS for portability considerations.

• For Windows, see Distribution Considerations for Windows for portability considerations.

5.3.5 Known Issues with Distributions

There are various known issues with various distributions. The python-build-standalone project documentation at
https://python-build-standalone.readthedocs.io/en/latest/ attempts to capture many of them.

PyOxidizer contains workaround for many of the limitations. For example, PyOxidizer (specifically the pyembed
Rust crate) can automatically configure the terminfo database at run-time.

The aarch64-apple-darwin Python distributions are considered beta quality because PyOxidizer does not have
continuous CI coverage for this architecture. Releases should be tested before they are released. But there may be
undetected breakage on unreleased commits on the main branch due to lack of CI coverage. This limitation should
go away once GitHub Actions supports running jobs on M1 hardware.

5.4 Managing How Resources are Added

An important concept in PyOxidizer packaging is how to manage resources that are added to built applications.

58 Chapter 5. Packaging User Guide

https://python-build-standalone.readthedocs.io/en/latest/

PyOxidizer, Release 0.14.1

A resource is some entity that will be packaged and distributed. Examples of resources include Python module source
and bytecode, Python extension modules, and arbitrary files on the filesystem.

Resources are represented by a dedicated Starlark type for each resource flavor (see Resource Types).

During evaluation of PyOxidizer’s Starlark configuration files, resources are created and added to another Starlark
type whose job is to collect all desired resources and then do something with them.

5.4.1 Classified Resources Versus Files

All resources in PyOxidizer are ultimately derived from or representable by a file or a file-like primitive. For example,
a PythonModuleSource is derived from or could be manifested as a .py file.

Various PyOxidizer functionality works by scanning existing files and turning those files into resources.

This file scanning functionality has two modes of operation: classified and files. In files mode, PyOxidizer simply emits
resources corresponding to the raw files it encounters. In classified mode, PyOxidizer attempts to classify a file as a par-
ticular resource and emit a strongly-typed resource like PythonModuleSource or PythonExtensionModule.

Classified mode is more powerful because PyOxidizer is able to build an index of typed resources at packaging time and
make this index available to oxidized_importer Python Extension at run-time to facilitate faster loading of resources.

However, the main downside to classified mode is it relies on being able to identify files properly and this is unreliable.
Python file layouts are under-specified and there are many edge cases where PyOxidizer fails to properly classify a
file. See Debugging Resource Scanning and Identification with find-resources for how to identify problems here.

In files mode, PyOxidizer simply indexes and manages a named file and its content. There is far less potential for
PyOxidizer to make mistakes about a file’s type and how it is handled. This means that files mode often just works
when classified mode doesn’t. The main downside to files mode is that oxidized_importer Python Extension doesn’t
have a rich index embedded in the built binary, so you will have to rely on Python’s default filesystem-based importer,
which is slower than oxidized_importer.

5.4.2 Packaging Policies and Adding Resources

The exact mechanism by which resources are emitted and added to resource collectors is influenced by a packag-
ing policy (represented by the PythonPackagingPolicy Starlark type) and attributes on each resource object
influencing how they are added.

When resources are created, the packaging policy determines whether emitted resources are classified or simply files.
And the packaging policy is applied to each created resource to populate the initial values for the various add_*
attributes on the Starlark resource types.

When a resource is added (e.g. by calling PythonExecutable.add_python_resource()), these aforemen-
tioned add_* attributes are consulted and used to influence exactly how that resource is added/packaged.

For example, a PythonModuleSource can set attributes indicating to exclude source code and only generate
bytecode at a specific optimization level. Or a PythonExtensionModule can set attributes saying to prefer to
compile it into the built binary or materialize it as a standalone dynamic extension module (e.g. my_ext.so or
my_ext.pyd).

5.4.3 Resource Types

The following Starlark types represent individual resources:

PythonModuleSource Source code for a Python module. Roughly equivalent to a .py file.

5.4. Managing How Resources are Added 59

PyOxidizer, Release 0.14.1

This type can also be converted to Python bytecode (roughly equivalent to a .pyc) when added to a resource
collector.

PythonExtensionModule A Python module defined through compiled, machine-native code. On Linux, these
are typically encountered as .so files. On Windows, .pyd files.

PythonPackageResource A non-module resource file loadable by Python resources APIs, such as those in
importlib.resources.

PythonPackageDistributionResource A non-module resource file defining metadata for a Python pack-
age. Typically accessed via importlib.metadata. This is how files in *.dist-info or *.egg-info
directories are represented.

File Represents a filesystem path and its content.

starlark_tugger.FileContent Represents the content of a filesystem file.

This is different from File in that it only represents file content and doesn’t have an associated path. (It is
likely these 2 types will be merged someday.)

There are also Starlark types that are logically containers for multiple resources:

starlark_tugger.FileManifest Holds a mapping of relative filesystem paths to starlark_tugger.
FileContent instances. This type effectively allows modeling a directory tree.

PythonEmbeddedResources Holds a collection of Python resources of various types. (This type is often hidden
away. e.g. inside a PythonExecutable instance.)

5.4.4 Resource Locations

Resources have the concept of a location. A resource’s location determines where the data for that resource is packaged
and how that resource is loaded at run-time.

In-Memory

When a Python resource is placed in the in-memory location, the content behind the resource will be embedded in a
built binary and loaded from there by the Python interpreter.

Python modules imported from memory do not have the __file__ attribute set. This can cause compatibility issues
if Python code is relying on the existence of this module. See __file__ and __cached__ Module Attributes for more.

Filesystem-Relative

When a Python resource is placed in the filesystem-relative location, the resource will be materialized as a file next to
the produced entity. e.g. a filesystem-relative PythonModuleSource for the foo.bar Python module added to
a PythonExecutable will be materialized as the file foo/bar.py or foo/bar/__init__.py in a directory
next to the built executable.

Resources added to filesystem-relative locations should be materialized under paths that preserve semantics with stan-
dard Python file layouts. For e.g. Python source and bytecode modules, it should be possible to point sys.path of
any Python interpreter at the destination directory and the modules will be loadable.

During packaging, PyOxidizer indexes all filesystem-relative resources and embeds metadata about them in the built
binary. While the files on the filesystem may look like a standard Python install layout, loading them is serviced by
PyOxidizer’s custom importer, not the standard importer that Python uses by default.

60 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

5.4.5 Customizing Python Packaging Policies

As described in Packaging Policies and Adding Resources, a PythonPackagingPolicy Starlark type instance
is bound to every entity creating resource instances and this packaging policy is used to derive the default add_*
attributes which influence what happens when a resource is added to some entity.

PythonPackagingPolicy instances can be customized to influence what the default values of the add_* at-
tributes are.

The primary mechanisms for doing this are:

1. Modifying the PythonPackagingPolicy instance’s internal state. See PythonPackagingPolicy for
the full list of object attributes and methods that can be set or called.

2. Registering a function that will be called whenever a resource is created. This enables custom Starlark code to
perform arbitrarily complex logic to influence settings and enables application developers to devise packaging
strategies more advanced than what PyOxidizer provides out-of-the-box.

The following sections give examples of customized packaging policies.

Changing the Resource Handling Mode

As documented in Classified Resources Versus Files, PyOxidizer can operate on classified resources or files-based
resources.

PythonPackagingPolicy.set_resource_handling_mode() exists to change the operating mode of a
PythonPackagingPolicy instance.

def make_exe():
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()

Set policy attributes to only operate on "classified" resource types.
(This is the default.)
policy.set_resource_handling_mode("classify")

Set policy attributes to only operate on `File` resource types.
policy.set_resource_handling_mode("files")

PythonPackagingPolicy.set_resource_handling_mode() is just a convenience method for manip-
ulating a collection of attributes on PythonPackagingPolicy instances. If you don’t like the behavior of its
pre-defined modes, feel free to adjust attributes to suit your needs. You can even configure things to emit both classi-
fied and files variants simultaneously!

Customizing Default Resource Locations

The PythonPackagingPolicy.resources_location and PythonPackagingPolicy.
resources_location_fallback attributes define primary and fallback locations that resources
should attempt to be added to. These effectively define the default values for the add_location and
add_location_fallback attributes on individual resource objects.

The accepted values are:

in-memory Load resources from memory.

filesystem-relative:prefix Load resources from the filesystem at a path relative to some entity (probably
the binary being built).

5.4. Managing How Resources are Added 61

PyOxidizer, Release 0.14.1

Additionally, PythonPackagingPolicy.resources_location_fallback can be set to None to remove
a fallback location.

And here is how you would manage these values in Starlark:

def make_exe():
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()
policy.resources_location = "in-memory"
policy.resources_location_fallback = None

Only allow resources to be added to the in-memory location.
exe = dist.to_python_executable(

name = "myapp",
packaging_policy = policy,

)

Only allow resources to be added to the filesystem-relative location under
a "lib" directory.

policy = dist.make_python_packaging_policy()
policy.resources_location = "filesystem-relative:lib"
policy.resources_location_fallback = None

exe = dist.to_python_executable(
name = "myapp",
packaging_policy = policy,

)

Try to add resources to in-memory first. If that fails, add them to a
"lib" directory relative to the built executable.

policy = dist.make_python_packaging_policy()
policy.resources_location = "in-memory"
policy.resources_location_fallback = "filesystem-relative:lib"

exe = dist.to_python_executable(
name = "myapp",
packaging_policy = policy,

)

return exe

Using Callbacks to Influence Resource Attributes

The PythonPackagingPolicy.register_resource_callback(func) method will register a function
to be called when resources are created. This function receives as arguments the active PythonPackagingPolicy
and the newly created resource.

Functions registered as resource callbacks are called after the add_* attributes are derived for a resource but before
the resource is otherwise made available to other Starlark code. This means that these callbacks provide a hook point
where resources can be modified as soon as they are created.

register_resource_callback() can be called multiple times to register multiple callbacks. Registered func-
tions will be called in order of registration.

Functions can be leveraged to unify all resource packaging logic in a single place, making your Starlark configuration

62 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

files easier to reason about.

Here’s an example showing how to route all resources belonging to a single package to a filesystem-relative
location and everything else to memory:

def resource_callback(policy, resource):
if type(resource) in ("PythonModuleSource", "PythonPackageResource",

→˓"PythonPackageDistributionResource"):
if resource.package == "my_package":

resource.add_location = "filesystem-relative:lib"
else:

resource.add_location = "in-memory"

def make_exe():
dist = default_python_distribution()

policy = dist.make_python_packaging_policy()
policy.register_resource_callback(resource_callback)

exe = dist.to_python_executable(
name = "myapp",
packaging_policy = policy,

)

exe.add_python_resources(exe.pip_install(["my_package"]))

5.4.6 PythonExtensionModule Location Compatibility

Many resources just work in any available location. This is not the case for PythonExtensionModule instances!

While there only exists a single PythonExtensionModule type to represent Python extension modules, Python
extension modules come in various flavors. Examples of flavors include:

• A module that is part of a Python distribution and is compiled into libpython (a builtin extension module).

• A module that is part of a Python distribution that is compiled as a standalone shared library (e.g. a .so or
.pyd file).

• A non-distribution module that is compiled as a standalone shared library.

• A non-distribution module that is compiled as a static library.

Not all extension module flavors are compatible with all Python distributions. Furthermore, not all flavors are com-
patible with all build configurations.

Here are some of the rules governing extension modules and their locations:

• A builtin extension module that’s part of a Python distribution will always be statically linked into libpython.

• A Windows Python distribution with a statically linked libpython (e.g. the standalone_static distri-
bution flavor) is not capable of loading extension modules defined as shared libraries and only supports loading
builtin extension modules statically linked into the binary.

• A Windows Python distribution with a dynamically linked libpython (e.g. the standalone_dynamic
distribution flavor) is capable of loading shared library backed extension modules from the in-memory location.
Other operating systems do not support the in-memory location for loading shared library extension modules.

• If the current build configuration targets Linux MUSL-libc, shared library extension modules are not supported
and all extensions must be statically linked into the binary.

5.4. Managing How Resources are Added 63

PyOxidizer, Release 0.14.1

• If the object files for the extension module are available, the extension module may be statically linked into the
produced binary.

• If loading extension modules from in-memory import is supported, the extension module will have its dynamic
library embedded in the binary.

• The extension module will be materialized as a file next to the produced binary and will be loaded from the
filesystem. (This is how Python extension modules typically work.)

Note: Extension module handling is one of the more nuanced aspects of PyOxidizer. There are likely many subtle
bugs and room for improvement. If you experience problems handling extension modules, please consider filing an
issue.

5.5 Packaging Python Files

The most important packaged resource type are arguably Python files: source modules, bytecode modules, extension
modules, package resources, etc.

For PyOxidizer to recognize these Python resources as Python resources (as opposed to regular files), you will need to
use the methods on the PythonExecutable Starlark type to use the settings from the thing being built to scan for
resources, possibly performing a Python packaging action (such as invoking pip install) along the way.

This documentation covers the available methods and how they can be used.

5.5.1 PythonExecutable Python Resources Methods

The PythonExecutable Starlark type has the following methods that can be called to perform an action and obtain
an iterable of objects representing discovered resources:

PythonExecutable.pip_download() Invokes pip download with specified arguments and collects re-
sources discovered from downloaded Python wheels.

PythonExecutable.pip_install() Invokes pip install with specified arguments and collects all re-
sources installed by that process.

PythonExecutable.read_package_root() Recursively scans a filesystem directory for Python resources
in a typical Python installation layout.

PythonExecutable.setup_py_install() Invokes python setup.py install for a given path and
collects resources installed by that process.

PythonExecutable.read_virtualenv() Reads Python resources present in an already populated vir-
tualenv.

Typically, the Starlark types resolved by these method calls are passed into a method that adds the resource to a
to-be-generated entity, such as the PythonExecutable Starlark type.

The following sections demonstrate common use cases.

5.5.2 Packaging an Application from a PyPI Package

In this section, we’ll show how to package the pyflakes program using a published PyPI package. (Pyflakes is a Python
linter.)

First, let’s create an empty project:

64 Chapter 5. Packaging User Guide

https://github.com/indygreg/PyOxidizer/issues
https://github.com/indygreg/PyOxidizer/issues
https://pypi.org/project/pyflakes/

PyOxidizer, Release 0.14.1

$ pyoxidizer init-config-file pyflakes

Next, we need to edit the configuration file to tell PyOxidizer about pyflakes. Open the pyflakes/pyoxidizer.
bzl file in your favorite editor.

Find the make_exe() function. This function returns a PythonExecutable instance which defines a standalone
executable containing Python. This function is a registered target, which is a named entity that can be individually built
or run. By returning a PythonExecutable instance, this function/target is saying build an executable containing
Python.

The PythonExecutable type holds all state needed to package and run a Python interpreter. This includes low-
level interpreter configuration settings to which Python resources (like source and bytecode modules) are embedded in
that executable binary. This type exposes an PythonExecutable.add_python_resources() method which
adds an iterable of objects representing Python resources to the set of embedded resources.

Elsewhere in this function, the dist variable holds an instance of PythonDistribution. This type represents a
Python distribution, which is a fancy way of saying an implementation of Python.

Two of the methods exposed by PythonExecutable are PythonExecutable.pip_download() and
PythonExecutable.pip_install(), which invoke pip commands with settings to target the built exe-
cutable.

To add a new Python package to our executable, we call one of these methods then add t he results to our
PythonExecutable instance. This is done like so:

exe.add_python_resources(exe.pip_download(["pyflakes==2.2.0"]))
or
exe.add_python_resources(exe.pip_install(["pyflakes==2.2.0"]))

When called, these methods will effectively run pip download pyflakes==2.2.0 or pip install
pyflakes==2.2.0, respectively. Actions are performed in a temporary directory and after pip runs, PyOxi-
dizer will collect all the downloaded/installed resources (like module sources and bytecode data) and return them as an
iterable of Starlark values. The exe.add_python_resources() call will then teach the built executable binary
about the existence of these resources. Many resource types will be embedded in the binary and loaded from binary.
But some resource types (notably compiled extension modules) may be installed next to the built binary and loaded
from the filesystem.

Next, we tell PyOxidizer to run pyflakes when the interpreter is executed:

python_config.run_command = "from pyflakes.api import main; main()"

This says to effectively run the Python code eval(from pyflakes.api import main; main()) when
the embedded interpreter starts.

The new make_exe() function should look something like the following (with comments removed for brevity):

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.extension_module_filter = "all"
policy.include_distribution_sources = True
policy.include_distribution_resources = True
policy.include_test = False

config = dist.make_python_interpreter_config()
config.run_command = "from pyflakes.api import main; main()"

exe = dist.to_python_executable(
name="pyflakes",

(continues on next page)

5.5. Packaging Python Files 65

PyOxidizer, Release 0.14.1

(continued from previous page)

packaging_policy=policy,
config=config,

)

exe.add_python_resources(exe.pip_install(["pyflakes==2.1.1"]))

return exe

With the configuration changes made, we can build and run a pyflakes native executable:

From outside the ``pyflakes`` directory
$ pyoxidizer run --path /path/to/pyflakes/project -- /path/to/python/file/to/analyze

From inside the ``pyflakes`` directory
$ pyoxidizer run -- /path/to/python/file/to/analyze

Or if you prefer the Rust native tools
$ cargo run -- /path/to/python/file/to/analyze

By default, pyflakes analyzes Python source code passed to it via stdin.

5.5.3 Packaging an Application from an Existing Virtualenv

This scenario is very similar to the above example. So we’ll only briefly describe what to do so we don’t repeat
ourselves.:

$ pyoxidizer init-config-file /path/to/myapp

Now edit the pyoxidizer.bzl so the make_exe() function look like the following:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.extension_module_filter = "all"
policy.include_distribution_sources = True
policy.include_distribution_resources = False
policy.include_test = False

config = dist.make_python_interpreter_config()
config.run_command = "from myapp import main; main()"

exe = dist.to_python_executable(
name="myapp",
packaging_policy=policy,
config=config,

)

exe.add_python_resources(exe.read_virtualenv("/path/to/virtualenv"))

return exe

Of course, you need a populated virtualenv!:

$ python3.8 -m venv /path/to/virtualenv
$ /path/to/virtualenv/bin/pip install -r /path/to/requirements.txt

Once all the pieces are in place, simply run pyoxidizer to build and run the application:

66 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

$ pyoxidizer run --path /path/to/myapp

Warning: When consuming a pre-populated virtualenv, there may be compatibility differences between the
Python distribution used to populate the virtualenv and the Python distributed used by PyOxidizer at build and
application run time.

For best results, it is recommended to use a packaging method like pip_install(...) or
setup_py_install(...) to use PyOxidizer’s Python distribution to invoke Python’s packaging tools.

5.5.4 Packaging an Application from a Local Python Package

Say you have a Python package/application in a local directory. It follows the typical Python package layout and has
a setup.py file and Python files in sub-directories corresponding to the package name. e.g.:

setup.py
mypackage/__init__.py
mypackage/foo.py

You have a number of choices as to how to proceed here. Again, the workflow is very similar to what was explained
above. The main difference is the content of the pyoxidizer.bzl file and the exact method to call to obtain the
Python resources.

You could use pip install <local path> to use pip to process a local filesystem path:

exe.add_python_resources(exe.pip_install(["/path/to/local/package"]))

If the pyoxidizer.bzl file is in the same directory as the directory you want to process, you can derive the absolute
path to this directory via the CWD Starlark variable:

exe.add_python_resources(exe.pip_install([CWD]))

If you don’t want to use pip and want to run setup.py directly, you can do so:

exe.add_python_resources(exe.setup_py_install(package_path=CWD))

Or if you don’t want to run a Python packaging tool at all and just scan a directory tree for Python files:

exe.add_python_resources(exe.read_package_root(CWD, ["mypackage"]))

Note: In this mode, all Python resources must already be in place in their final installation layout for things to work
correctly. Many setup.py files perform additional actions such as compiling Python extension modules, installing
additional files, dynamically generating some files, or changing the final installation layout.

For best results, use a packaging method that invokes a Python packaging tool (like pip_install(...) or
setup_py_install(...).

5.5.5 Choosing Which Packaging Method to Call

There are a handful of different methods for obtaining Python resources that can be added to a resource collection.
Which one should you use?

5.5. Packaging Python Files 67

PyOxidizer, Release 0.14.1

The reason there are so many methods is because the answer is: it depends.

Each method for obtaining resources has its niche use cases. That being said, the preferred method for obtaining
Python resources is pip_download(). However, pip_download() may not work in all cases, which is why other
methods exist.

PythonExecutable.pip_download() runs pip download and attempts to fetch Python wheels for speci-
fied packages, requirements files, etc. It then extracts files from inside the wheel and converts them to Python resources
which can be added to resource collectors.

Important: pip_download() will only work if a compatible Python wheel package (.whl file) is available. If
the configured Python package repository doesn’t offer a compatible wheel for the specified package or any of its
dependencies, the operation will fail.

Many Python packages do not yet publish wheels (only .tar.gz archives) or don’t publish at all to Python package
repositories (this is common in corporate environments, where you don’t want to publish your proprietary packages
on PyPI or you don’t run a Python package server).

Important: Not all build targets support pip_download() for all published packages. For example, when target-
ing Linux musl libc, built binaries are fully static and aren’t capable of loading Python extension modules (which are
shared libraries). So pip_download() only supports source-only Python wheels in this configuration.

Another advantage of pip_download() is it supports cross-compiling. Unlike pip install, pip download
supports arguments that tell it which Python version, platform, implementation, etc to download packages for. PyOx-
idizer automatically tells pip download to download wheels that are compatible with the target environment you
are building for. This means you can do things like download wheels containing Windows binaries when building on
Linux.

Note: Cross-compiling is not yet fully supported by PyOxidizer and likely doesn’t work in many cases. However,
this is a planned feature (at least for some configurations) and pip_download() is likely the most future-proof
mechanism to support installing Python packages when cross-compiling.

A potential downside with pip_download() is that it only supports classical Python binary loading/shipping tech-
niques. If you are trying to produce a statically linked executable containing custom Python extension modules,
pip_download() won’t work for you.

After pip_download, PythonExecutable.pip_install() PythonExecutable.
setup_py_install() are the next most-preferred packaging methods.

Both of these work by locally running a Python packaging action (pip install or python setup.py
install, respectively) and then collecting resources installed by that action.

The advantage over pip download is that a pre-built Python wheel does not have to be available and published
on a Python package repository for these commands to work: you can run either against say a local version control
checkout of a Python project and it should work.

The main disadvantage over pip download is that you are running Python packaging operations on the local
machine as part of building an executable. If your package contains just Python code, this should just work. But
if you need to compile extension modules, there’s a good chance your local machine may either not be able to build
them properly or will build those extension modules in such a way that they aren’t compatible with other machines
you want to run them on.

The final options for obtaining Python resources are PythonExecutable.read_package_root() and
PythonExecutable.read_virtualenv(). Both of these methods rely on traversing a filesystem tree that is

68 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

already populated with Python resources. This should just work if only pure Python resources are in play. But if there
are compiled Python extension modules, all bets are off and there is no guarantee that found extension mod-
ules will be compatible with PyOxidizer or will have binary compatibility with other machines. These resource
discovery mechanisms also rely on state not under the control of PyOxidizer and therefore packaging results may be
highly inconsistent and not reproducible across runs. For these reasons, read_package_root() and read_virtualenv()
are the least preferred methods for Python resource discovery.

5.6 Packaging Files Instead of In-Memory Resources

By default, PyOxidizer will classify files into typed resources and attempt to load these resources from memory
(with the exception of compiled extension modules, which require special treatment). Please read Managing How
Resources are Added, specifically Classified Resources Versus Files and Resource Locations for more on the concepts
of classification and resource locations.

This is the ideal packaging method because it keeps the entire application self-contained and can result in performance
wins at run-time.

However, sometimes this approach isn’t desired or flat out doesn’t work. Fear not: PyOxidizer has you covered.

5.6.1 Examples of Packaging Failures

Let’s give some concrete examples of how PyOxidizer’s default packaging settings can fail.

black

Let’s demonstrate a failure attempting to package black, a Python code formatter.

We start by creating a new project:

$ pyoxidizer init-config-file black

Then edit the pyoxidizer.bzl file to have the following:

def make_exe(dist):
config = dist.make_python_interpreter_config()
config.run_module = "black"

exe = dist.to_python_executable(
name = "black",

)

for resource in exe.pip_install(["black==19.3b0"]):
resource.add_location = "in-memory"
exe.add_python_resource(resource)

return exe

Then let’s attempt to build the application:

$ pyoxidizer build --path black
processing config file /home/gps/src/black/pyoxidizer.bzl
resolving Python distribution...
...

5.6. Packaging Files Instead of In-Memory Resources 69

https://github.com/python/black

PyOxidizer, Release 0.14.1

Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path black
Traceback (most recent call last):

File "black", line 46, in <module>
File "blib2to3.pygram", line 15, in <module>

NameError: name '__file__' is not defined
SystemError

Uh oh - that’s didn’t work as expected.

As the error message shows, the blib2to3.pygram module is trying to access __file__, which is not defined.
As explained by __file__ and __cached__ Module Attributes, PyOxidizer doesn’t set __file__ for modules
loaded from memory. This is perfectly legal as Python doesn’t mandate that __file__ be defined. But black (and
many other Python modules) assume __file__ always exists. So it is a problem we have to deal with.

NumPy

Let’s attempt to package NumPy, a popular Python package used by the scientific computing crowd.

$ pyoxidizer init-config-file numpy

Then edit the pyoxidizer.bzl file to have the following:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.resources_location_fallback = "filesystem-relative:lib"

exe = dist.to_python_executable(
name = "numpy",
packaging_policy = policy,

)

for resource in exe.pip_download(["numpy==1.19.0"]):
resource.add_location = "filesystem-relative:lib"
exe.add_python_resource(resource)

return exe

We did things a little differently from the black example above: we’re explicitly adding NumPy’s resources into
the filesystem-relative location so they are materialized as files instead of loaded from memory. This is to
demonstrate a separate failure mode.

Then let’s attempt to build the application:

$ pyoxidizer build --path numpy
processing config file /home/gps/src/numpy/pyoxidizer.bzl
resolving Python distribution...
...

Looking good so far!

Now let’s try to run it:

$ pyoxidizer run --path numpy
...

(continues on next page)

70 Chapter 5. Packaging User Guide

https://numpy.org/

PyOxidizer, Release 0.14.1

(continued from previous page)

Python 3.8.6 (default, Oct 3 2020, 20:48:20)
[Clang 10.0.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
Traceback (most recent call last):

File "numpy.core", line 22, in <module>
File "numpy.core.multiarray", line 12, in <module>
File "numpy.core.overrides", line 7, in <module>

ImportError: libopenblasp-r0-ae94cfde.3.9.dev.so: cannot open shared object file: No
→˓such file or directory

During handling of the above exception, another exception occurred:
...

That’s not good! What happened?

Well, the hint is in the stack trace: libopenblasp-r0-ae94cfde.3.9.dev.so: cannot
open shared object file: No such file or directory. So there’s a file named
libopenblasp-r0-ae94cfde.3.9.dev.so that can’t be found. Let’s look in our install layout:

$ find numpy/build/x86_64-unknown-linux-gnu/debug/install/ | grep libopenblasp
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
→˓ae94cfde
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
→˓ae94cfde/3
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
→˓ae94cfde/3/9
numpy/build/x86_64-unknown-linux-gnu/debug/install/lib/numpy/libs/libopenblasp-r0-
→˓ae94cfde/3/9/dev.so

Well, we found some files, including a .so file! But the filename has been mangled.

This filename mangling is actually a bug in PyOxidizer’s file/resource classification. See Incorrect Resource Identifi-
cation and Classified Resources Versus Files for more.

5.6.2 Installing Classified Resources on the Filesystem

In the black example above, we saw how black failed to run with modules imported from memory because of
__file__ not being defined.

In scenarios where in-memory resource loading doesn’t work, the ideal mitigation is to fix the offending Python
modules so they can load from memory. But this isn’t always trivial or possible with 3rd party dependencies.

Your next mitigation should be to attempt to place the resource on the filesystem, next to the built binary.

This will require configuration file changes.

The goal of our new configuration is to materialize Python resources associated with black on the filesystem instead
of in memory.

Change your configuration file so make_exe() looks like the following:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.resources_location_fallback = "filesystem-relative:lib"

python_config = dist.make_python_interpreter_config()

(continues on next page)

5.6. Packaging Files Instead of In-Memory Resources 71

PyOxidizer, Release 0.14.1

(continued from previous page)

python_config.run_module = "black"

exe = dist.to_python_executable(
name = "black",
packaging_policy = policy,
config = python_config,

)

for resource in exe.pip_install(["black==19.3b0"]):
resource.add_location = "filesystem-relative:lib"
exe.add_python_resource(resource)

return exe

There are a few changes here.

We constructed a new PythonPackagingPolicy via PythonDistribution.
make_python_packaging_policy() and set its PythonPackagingPolicy.
resources_location_fallback attribute to filesystem-relative-lib. This allows us to install
resources on the filesystem, relative to the produced binary.

Next, in the for resource in exe.pip_install(...) loop, we set resource.add_location =
"filesystem-relative:lib". What this does is tell the subsequent call to PythonExecutable.
add_python_resource() to add the resource as a filesystem-relative resource in the lib directory.

With the new configuration in place, let’s re-build and run the application:

$ pyoxidizer run --path black
...
adding extra file lib/toml-0.10.1.dist-info/top_level.txt to .
installing files to /home/gps/tmp/myapp/build/x86_64-unknown-linux-gnu/debug/install
No paths given. Nothing to do

That No paths given output is from black: it looks like the new configuration worked!

If you examine the build output, you’ll see a bunch of messages indicating that extra files are being installed to the
lib/ directory. And if you poke around in the install directory, you will in fact see all these files.

In this configuration file, the Python distribution’s files are all loaded from memory but black resources (collected
via pip install black) are materialized on the filesystem. All of the resources are indexed by PyOxidizer at
build time and that index is embedded into the built binary so oxidized_importer Python Extension can find and load
resources more efficiently.

Because only some of the Python modules used by black have a dependency on __file__, it is probably possible
to cherry pick exactly which resources are materialized on the filesystem and minimize the number of files present.
We’ll leave that as an exercise for the reader.

5.6.3 Installing Unclassified Files on the Filesystem

In Installing Classified Resources on the Filesystem we demonstrated how to move classified resources from memory
to the filesystem in order to work around issues importing a module from memory.

Astute readers may have already realized that this workaround (setting .add_location to
filesystem-relative:...) was attempted in the NumPy failure example above. So this workaround
doesn’t always work.

72 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

In cases where PyOxidizer’s resource classifier or logic to materialize those classified resources as files is failing
(presumably due to bugs in PyOxidizer), you can fall back to using unclassified, file-based resources. See Classified
Resources Versus Files for more on classified versus files based resources.

Our approach here is to switch from classified to files packaging mode. Using our NumPy example from above, change
the make_exe() in your configuration file to as follows:

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.set_resource_handling_mode("files")
policy.resources_location_fallback = "filesystem-relative:lib"

python_config = dist.make_python_interpreter_config()
python_config.module_search_paths = ["$ORIGIN/lib"]

exe = dist.to_python_executable(
name = "numpy",
packaging_policy = policy,
config = python_config,

)

for resource in exe.pip_download(["numpy==1.19.0"]):
resource.add_location = "filesystem-relative:lib"
exe.add_python_resource(resource)

return exe

There are a few key lines here.

policy.set_resource_handling_mode("files") calls a method on the PythonPackagingPolicy
to set the resource handling mode to files. This effectively enables File based resources to work. Without it, resource
scanners won’t emit File and attempts at adding File to a resource collection will fail.

Next, we enable file-based resource installs by setting PythonPackagingPolicy.
resources_location_fallback.

Another new line is python_config.module_search_paths = ["$ORIGIN/lib"]. This all-important
line to set PythonInterpreterConfig.module_search_paths effectively installs the lib directory next
to the executable on sys.path at run-time. And as a side-effect of defining this attribute, Python’s built-in
module importer is enabled (to supplement oxidized_importer). This is important because because when
you are operating in files mode, resources are indexed as files and not classified/typed resources. This means
oxidized_importer doesn’t recognize them as loadable Python modules. But since you enable Python’s standard
importer and register lib/ as a search path, Python’s standard importer will be able to find the numpy package at
run-time.

Anyway, let’s see if this actually works:

$ pyoxidizer run --path numpy
...
adding extra file lib/numpy.libs/libgfortran-2e0d59d6.so.5.0.0 to .
adding extra file lib/numpy.libs/libopenblasp-r0-ae94cfde.3.9.dev.so to .
adding extra file lib/numpy.libs/libquadmath-2d0c479f.so.0.0.0 to .
adding extra file lib/numpy.libs/libz-eb09ad1d.so.1.2.3 to .
installing files to /home/gps/tmp/myapp/build/x86_64-unknown-linux-gnu/debug/install
Python 3.8.6 (default, Oct 3 2020, 20:48:20)
[Clang 10.0.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy

(continues on next page)

5.6. Packaging Files Instead of In-Memory Resources 73

PyOxidizer, Release 0.14.1

(continued from previous page)

>>> numpy.__loader__
<_frozen_importlib_external.SourceFileLoader object at 0x7f063da1c7f0>

It works!

Critically, we see that the formerly missing libopenblasp-r0-ae94cfde.3.9.dev.so file is being installed
to the correct location. And we can confirm from the numpy.__loader__ value that the standard library’s module
loader is being used. Contrast with a standard library module:

>>> import pathlib
>>> pathlib.__loader__
<OxidizedFinder object at 0x7f063dc8f8f0>

Enabling files mode and falling back to Python’s importer is often a good way of working around bugs in PyOxidizer’s
resource handling. But it isn’t bulletproof.

Important: Please file a bug report <https://github.com/indygreg/PyOxidizer/issues> if you encounter any issues
with PyOxidizer’s handling of resources and paths.

5.7 Working with Python Extension Modules

Python extension modules are machine native code exposing functionality to a Python interpreter via Python modules.

PyOxidizer has varying levels of support for extension modules. This is because some PyOxidizer configurations
break assumptions about how Python interpreters typically run.

This document attempts to capture all the nuances of working with Python extension modules with PyOxidizer.

5.7.1 Extension Module Flavors

Python extension modules exist as either built-in or standalone. A built-in extension module is statically linked into
libpython and a standalone extension module is a shared library that is dynamically loaded at run-time.

Typically, built-in extension modules only exist in Python distributions (and are part of the Python standard library by
definition) and Python package maintainers only ever produce standalone extension modules (e.g. as .so or .pyd
files).

Python distributions typically contain a mix of built-in and standalone extension modules. e.g. the _ast extension
module is built-in and the _ssl extension module is standalone.

Important: Because PyOxidizer enables you to build your own binaries embedding Python and because different
Python distributions have different levels of support for extension modules, it is important to familiarize yourself with
the types of extension modules and how they can be used.

5.7.2 Extension Module Restrictions

PyOxidizer imposes a handful of restrictions on how extension modules work. These restrictions are typically a side-
effect of limitations of the Python distribution being used/targeted. These restrictions are documented in the sections
below.

74 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

musl libc Linux Distributions Only Support Built-in Extension Modules

The Python distributions built against musl libc (build target *-linux-musl) only support built-in extension mod-
ules.

This is because musl libc binaries are statically linked and statically linked Linux binaries are incapable of calling
dlopen() to load a shared library.

This means Python binaries built in this configuration cannot load standalone Python extension modules existing as
separate files (.so files typically). This means PyOxidizer cannot consume Python wheels or other Python resource
sources containing pre-built Python extension modules.

In order for PyOxidizer to support a Python extension module built for musl libc, it must compile that extension
module from source and link the resulting object files / static library directly into the built binary and expose that
extension module as a built-in. This is done using Building with a Custom Distutils.

Windows Static Distributions Only Support Built-in Extension Modules

The Windows standalone_static distribution flavor only supports built-in extension modules and doesn’t sup-
port loading shared library extension modules.

See the above section for implications on this.

The situation of having to rebuild Python extension modules on Windows is often more complicated than on Linux be-
cause oftentimes building extension modules on Windows isn’t as trivial as on Linux. This is because many Windows
environments don’t have the correct version of Visual Studio or various library dependencies. If you want a turnkey
experience for Windows packaging, it is recommended to use the standalone_dynamic distribution flavor.

Loading Extension Modules from in-memory Location

When you attempt to add a PythonExtensionModule Starlark instance to the in-memory resource location, the
request may or may not work depending on the state of the extension module and support from the Python distribution.

The in-memory resource location is interpreted by PyOxidizer as load this extension from memory, without having
a standalone file. PyOxidizer will try its hardest to satisfy this request.

If the object files / static library of an extension module are known to PyOxidizer, these will be statically linked into
the built binary and the extension module will be exposed as a built-in extension module.

If only a shared library is available for the extension module, PyOxidizer only supports loading shared libraries from
memory on Windows standalone_dynamic distributions: in all other platforms the request to load a shared
library extension module is rejected.

Some extensions and shared libraries are known to not work when loaded from memory using the
custom shared library loader used by PyOxidizer. For this reason, PythonPackagingPolicy.
allow_in_memory_shared_library_loading exists to control this behavior.

Important: Because the in-memory location for extension modules can be brittle, it is recommended to set a
resources policy or add_location_fallback to allow extension modules to exist as standalone files. This will
provide maximum compatibility with built Python extension modules and will reduce the complexity of packaging
3rd party extension modules.

5.7. Working with Python Extension Modules 75

PyOxidizer, Release 0.14.1

5.7.3 Extension Module Library Dependencies

PyOxidizer doesn’t currently support resolving additional library dependencies from discovered extension modules
outside of the Python distribution. For example, if your extension module foo.so has a run-time dependency on
bar.so, PyOxidizer doesn’t yet detect this and doesn’t realize that bar.so needs to be handled.

This means that if you add a PythonExtensionModule Starlark type and this extension module depends on an
additional library, PyOxidizer will likely not realize this and fail to distribute that additional library dependency with
your application.

If your Python extensions depend on additional libraries, you may need to manually add these files to your installation
via custom Starlark code.

Note that if your shared library exists as a file in Python package (a directory with __init__.py somewhere in
the hierarchy), PyOxidizer’s resource scanning may detect the shared library as a PythonPackageResource and
package this resource. However, the packaged resource won’t be flagged as a shared library. This means that the run-
time importer won’t identify the shared library dependency and won’t take steps to ensure it is available/loaded before
the extension is loaded. This means that the shared library loading needs to be handled by the operating system’s
default rules. And this means that the shared library file must exist on the filesystem, next to a file-based extension
module.

5.7.4 Building with a Custom Distutils

If PyOxidizer is not able to reuse an existing shared library extension module or the build configuration is forcing an
extension to be built as a built-in, PyOxidizer attempts to compile the extension module from source so that it can be
statically linked as a built-in.

The way PyOxidizer achieves this is a bit crude, but often effective.

When PyOxidizer invokes pip or setup.py to build a package, it installs a modified version of distutils into
the invoked Python’s sys.path. This modified distutils changes the behavior of some key build steps (notably
how C extensions are compiled) such that the build emits artifacts that PyOxidizer can statically link into a custom
binary.

For example, on Linux, PyOxidizer copies the intermediate object files produced by the build and links them into
the binary containing the generated libpython. PyOxidizer completely ignores the shared library that is or would
typically be produced.

If setup.py scripts are following the traditional pattern of using distutils.core.Extension to define extension mod-
ules, things tend to just work (assuming extension modules are supported by PyOxidizer for the target platform).
However, if setup.py scripts are doing their own monkeypatching of distutils, rely on custom build steps or
types to compile extension modules, or invoke separate Python processes to interact with distutils, things may
break.

The easiest way to avoid the pitfalls of a custom distutils build is to not attempt to produce a statically linked
binary: use a standalone_dynamic distribution flavor that supports loading extension modules from files.

Until PyOxidizer supports telling it additional object files or static libraries to link into a binary, there’s no easy
workaround aside from giving up on a statically linked binary. Better support will hopefully be present in future
versions of PyOxidizer.

5.8 Managing Packed Resources Data

PyOxidizer’s custom module importer (see OxidizedFinder Meta Path Finder) reads data in a custom serialization for-
mat (see Python Packed Resources) to facilitate efficient module importing and resource loading. If you are using this

76 Chapter 5. Packaging User Guide

https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension

PyOxidizer, Release 0.14.1

module importer (controlled from the PythonInterpreterConfig.oxidized_importer attribute, which
is enabled by default), the interpreter will need to reference this packed resources data at run-time.

The PythonExecutable.packed_resources_load_mode attribute can be used in config files to control
how this resources data should be read.

5.8.1 Available Resource Data Load Modes

Embedded

The embedded resources load mode (the default) will embed raw resources data into the binary and it will be read
from memory at run-time.

This mode is necessary to achieve self-contained, single-file executables. This mode is also useful for single executable
applications, where only a single executable file embeds a Python interpreter.

This mode is also likely the fastest mode, as no explicit filesystem I/O needs to be performed to reference resources
data at run-time.

Binary Relative Memory Mapped File

The binary relative memory mapped file load mode will write resources data into a standalone file that is installed next
to the built binary. At run-time, that file will be memory mapped and memory mapped I/O will be used.

This mode is useful for multiple executable applications, as it enables the resources data to be shared across executables
without bloating total distribution size.

Here’s an example:

def make_exe():
dist = default_python_distribution()

exe = dist.to_python_executable(
name = "myapp",

)

Write and load resources from a "myapp.pypacked" file next to
the executable.
exe.packed_resources_load_mode = "binary-relative-memory-mapped:myapp.pypacked"

return exe

None / Disabled

The resources load mode of none will disable the writing and loading of this packed resources data. This effectively
means oxidized_importer.OxidizedFinder can’t load anything by default.

This mode can be useful to produce a binary that behaves like python, without PyOxidizer’s special run-time code.
(See Building an Executable that Behaves Like python for more on this topic.)

If this mode is in use, you will need to enable Python’s filesystem importer (PythonInterpreterConfig.
filesystem_importer) or define custom Rust code to have oxidized_importer.OxidizedFinder in-
dex resources or else the embedded Python interpreter will fail to initialize due to missing modules.

5.8. Managing Packed Resources Data 77

PyOxidizer, Release 0.14.1

5.9 Trimming Unused Resources

By default, packaging rules are very aggressive about pulling in resources such as Python modules. For example, the
entire Python standard library is embedded into the binary by default. These extra resources take up space and can
make your binary significantly larger than it could be.

It is often desirable to prune your application of unused resources. For example, you may wish to only include Python
modules that your application uses. This is possible with PyOxidizer.

Essentially, all strategies for managing the set of packaged resources boil down to crafting config file logic that chooses
which resources are packaged.

But maintaining explicit lists of resources can be tedious. PyOxidizer offers a more automated approach to solving
this problem.

The PythonInterpreterConfig type defines a write_modules_directory_env setting, which when
enabled will instruct the embedded Python interpreter to write the list of all loaded modules into a ran-
domly named file in the directory identified by the environment variable defined by this setting. For ex-
ample, if you set write_modules_directory_env="PYOXIDIZER_MODULES_DIR" and then run your
binary with PYOXIDIZER_MODULES_DIR=~/tmp/dump-modules, each invocation will write a ~/tmp/
dump-modules/modules-* file containing the list of Python modules loaded by the Python interpreter.

One can therefore use write_modules_directory_env to produce files that can be referenced in a different
build target to filter resources through a set of only include names.

TODO this functionality was temporarily dropped as part of the Starlark port.

5.10 Performance of Built Binaries

Binaries built with PyOxidizer tend to run faster than those executing via a normal python interpreter. There are a
few reasons for this.

5.10.1 Resources Data Compiled Into Binary

Traditionally, when Python needs to import a module, it traverses the entries on sys.path and queries the filesys-
tem to see whether a .pyc file, .py file, etc are available until it finds a suitable file to provide the Python module
data. If you trace the system calls of a Python process (e.g. strace -f python3 ...), you will see tons of
lstat(), open(), and read() calls performing filesystem I/O.

While filesystems cache the data behind these I/O calls, every time Python looks up data in a file the process needs to
context switch into the kernel and then pass data back to Python. Repeated thousands of times - or even millions of
times across hundreds or thousands of process invocations - the few microseconds of overhead plus the I/O overhead
for a cache miss can add up to significant overhead!

When binaries are built with PyOxidizer, all available Python resources are discovered at build time. An index of
these resources along with the raw resource data is packed - often into the executable itself - and made available to
PyOxidizer’s custom importer. When PyOxidizer services an import statement, looking up a module is effectively
looking up a key in a dictionary: there is no explicit filesystem I/O to discover the location of a resource.

PyOxidizer’s packed resources data supports storing raw resource data inline or as a reference via a filesystem path.

If inline storage is used, resources are effectively loaded from memory, often using 0-copy. There is no explicit
filesystem I/O. The only filesystem I/O that can occur is indirect, as the operating system pages a memory page on first
access. But this all happens in the kernel memory subsystem and is typically faster than going through a functionally
equivalent system call to access the filesystem.

78 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

If filesystem paths are stored, the only filesystem I/O we require is to open() the file and read() its file descriptor:
all filesystem I/O to locate the backing file is skipped, along with the overhead of any Python code performing this
discovery.

We can attempt to isolate the effect of in-memory module imports by running a Python script that attempts to import the
entirety of the Python standard library. This test is a bit contrived. But it is effective at demonstrating the performance
difference.

Using a stock python3.7 executable and 2 PyOxidizer executables - one configured to load the standard library
from the filesystem using Python’s default importer and another from memory:

$ hyperfine -m 50 -- '/usr/local/bin/python3.7 -S import_stdlib.py' import-stdlib-
→˓filesystem import-stdlib-memory
Benchmark #1: /usr/local/bin/python3.7 -S import_stdlib.py

Time (mean ± 𝜎): 258.8 ms ± 8.9 ms [User: 220.2 ms, System: 34.4 ms]
Range (min ... max): 247.7 ms ... 310.5 ms 50 runs

Benchmark #2: import-stdlib-filesystem
Time (mean ± 𝜎): 249.4 ms ± 3.7 ms [User: 216.3 ms, System: 29.8 ms]
Range (min ... max): 243.5 ms ... 258.5 ms 50 runs

Benchmark #3: import-stdlib-memory
Time (mean ± 𝜎): 217.6 ms ± 6.4 ms [User: 200.4 ms, System: 13.7 ms]
Range (min ... max): 207.9 ms ... 243.1 ms 50 runs

Summary
'import-stdlib-memory' ran
1.15 ± 0.04 times faster than 'import-stdlib-filesystem'
1.19 ± 0.05 times faster than '/usr/local/bin/python3.7 -S import_stdlib.py'

We see that the PyOxidizer executable using the standard Python importer has very similar performance to
python3.7. But the PyOxidizer executable importing from memory is clearly faster. These measurements
were obtained on macOS and the import_stdlib.py script imports 506 modules.

A less contrived example is running the test harness for the Mercurial version control tool. Mercurial’s test harness
creates tens of thousands of new processes that start Python interpreters. So a few milliseconds of overhead starting
interpreters or loading modules can translate to several seconds.

We run the full Mercurial test harness on Linux on a Ryzen 3950X CPU using the following variants:

• hg script with a #!/path/to/python3.7 line (traditional)

• hg PyOxidizer executable using Python’s standard filesystem import (oxidized)

• hg PyOxidizer executable using filesystem-relative resource loading (filesystem)

• hg PyOxidizer executable using in-memory resource loading (in-memory)

The results are quite clear:

Variant CPU Time (s) Delta (s) % Orig
traditional 11,287 0 100
oxidized 10,735 -552 95.1
filesystem 10,186 -1,101 90.2
in-memory 9,883 -1,404 87.6

These results help us isolate specific areas of speedups:

• oxidized over traditional is a rough proxy for the benefits of python -S over python. Although there are
other factors at play that may be influencing the numbers.

5.10. Performance of Built Binaries 79

PyOxidizer, Release 0.14.1

• filesystem over oxidized isolates the benefits of using PyOxidizer’s importer instead of Python’s default importer.
The performance wins here are due to a) avoiding excessive I/O system calls to locate the paths to resources and
b) functionality being implemented in Rust instead of Python.

• in-memory over filesystem isolates the benefits of avoiding explicit filesystem I/O to load Python resources. The
Rust code backing these 2 variants is very similar. The only meaningful difference is that in-memory constructs
a Python object from a memory address and filesystem must open and read a file using standard OS mechanisms
before doing so.

From this data, one could draw a few conclusions:

• Processing of the site module during Python interpreter initialization can add substantial overhead.

• Maintaining an index of Python resources such that you can avoid discovery via filesystem I/O provides a
meaningful speedup.

• Loading Python resources from an in-memory data structure is faster than incurring explicit filesystem I/O to do
so.

5.10.2 Ignoring site

In its default configuration, binaries produced with PyOxidizer configure the embedded Python interpreter differently
from how a python is typically configured.

Notably, PyOxidizer disables the importing of the site module by default (making it roughly equivalent to python
-S). The site module does a number of things, such as look for .pth files, looks for site-packages directories,
etc. These activities can contribute substantial overhead, as measured through a normal python3.7 executable on
macOS:

$ hyperfine -m 500 -- '/usr/local/bin/python3.7 -c 1' '/usr/local/bin/python3.7 -S -c
→˓1'
Benchmark #1: /usr/local/bin/python3.7 -c 1

Time (mean ± 𝜎): 22.7 ms ± 2.0 ms [User: 16.7 ms, System: 4.2 ms]
Range (min ... max): 18.4 ms ... 32.7 ms 500 runs

Benchmark #2: /usr/local/bin/python3.7 -S -c 1
Time (mean ± 𝜎): 12.7 ms ± 1.1 ms [User: 8.2 ms, System: 2.9 ms]
Range (min ... max): 9.8 ms ... 16.9 ms 500 runs

Summary
'/usr/local/bin/python3.7 -S -c 1' ran
1.78 ± 0.22 times faster than '/usr/local/bin/python3.7 -c 1'

Shaving ~10ms off of startup overhead is not trivial!

5.11 Packaging Pitfalls

While PyOxidizer is capable of building fully self-contained binaries containing a Python application, many Python
packages and applications make assumptions that don’t hold inside PyOxidizer. This section talks about all the things
that can go wrong when attempting to package a Python application.

5.11.1 C and Other Native Extension Modules

Many Python packages compile extension modules to native code. (Typically C is used to implement extension mod-
ules.)

80 Chapter 5. Packaging User Guide

PyOxidizer, Release 0.14.1

PyOxidizer has varying levels of support for Python extension modules. In many cases, everything just works. But
there are known incompatibilities and corner cases. See Working with Python Extension Modules for details.

5.11.2 Identifying PyOxidizer

Python code may want to know whether it is running in the context of PyOxidizer.

At packaging time, pip and setup.py invocations made by PyOxidizer should set a PYOXIDIZER=1 environment
variable. setup.py scripts, etc can look for this environment variable to determine if they are being packaged by
PyOxidizer.

At run-time, PyOxidizer will always set a sys.oxidized attribute with value True. So, Python code can test
whether it is running in PyOxidizer like so:

import sys

if getattr(sys, 'oxidized', False):
print('running in PyOxidizer!')

5.11.3 Incorrect Resource Identification

PyOxidizer has custom code for scanning for and indexing files as specific Python resource types. This code is
somewhat complex and nuanced and there are known bugs that will cause PyOxidizer to fail to identify or classify a
file appropriately.

To help debug problems with this code, the pyoxidizer find-resources command can be employed. See
Debugging Resource Scanning and Identification with find-resources for more.

Important: Please file a bug to report problems!

See Classified Resources Versus Files for more on this topic.

5.12 Masquerading As Other Packaging Tools

Tools to package and distribute Python applications existed several years before PyOxidizer. Many Python pack-
ages have learned to perform special behavior when the _fingerprint* of these tools is detected at run-time.

First, PyOxidizer has its own fingerprint: sys.oxidized = True. The presence of this attribute can indicate
an application running with PyOxidizer. Other applications are discouraged from defining this attribute.

Since PyOxidizer’s run-time behavior is similar to other packaging tools, PyOxidizer supports falsely identify-
ing itself as these other tools by emulating their fingerprints.

The EmbbedPythonConfig configuration section defines the boolean flag sys_frozen to control whether sys.
frozen = True is set. This can allow PyOxidizer to advertise itself as a frozen application.

In addition, the sys_meipass boolean flag controls whether a sys._MEIPASS = <exe directory> attribute
is set. This allows PyOxidizer to masquerade as having been built with PyInstaller.

Warning: Masquerading as other packaging tools is effectively lying and can be dangerous, as code relying on
these attributes won’t know if it is interacting with PyOxidizer or some other tool. It is recommended to only
set these attributes to unblock enabling packages to work with PyOxidizer until other packages learn to check

5.12. Masquerading As Other Packaging Tools 81

https://github.com/indygreg/PyOxidizer/issues/new

PyOxidizer, Release 0.14.1

for sys.oxidized = True. Setting sys._MEIPASS is definitely the more risky option, as a case can be
made that PyOxidizer should set sys.frozen = True by default.

5.13 Standalone / Single File Applications with Static Linking

This document describes how to produce standalone, single file application binaries embedding Python using static
linking.

See also Working with Python Extension Modules for extensive documentation about extension modules, which are
often a pain point when it comes to static linking.

5.13.1 Building Fully Statically Linked Binaries on Linux

It is possible to produce a fully statically linked executable embedding Python on Linux. The produced binary will
have no external library dependencies nor will it even support loading dynamic libraries. In theory, the executable can
be copied between Linux machines and it will just work.

Building such binaries requires using the x86_64-unknown-linux-musl Rust toolchain target. Using
pyoxidizer:

$ pyoxidizer build --target x86_64-unknown-linux-musl

Specifying --target x86_64-unknown-linux-muslwill cause PyOxidizer to use a Python distribution built
against musl libc as well as tell Rust to target musl on Linux.

Targeting musl requires that Rust have the musl target installed. Standard Rust on Linux installs typically do not have
this installed! To install it:

$ rustup target add x86_64-unknown-linux-musl
info: downloading component 'rust-std' for 'x86_64-unknown-linux-musl'
info: installing component 'rust-std' for 'x86_64-unknown-linux-musl'

If you don’t have the musl target installed, you get a build time error similar to the following:

error[E0463]: can't find crate for `std`
|
= note: the `x86_64-unknown-linux-musl` target may not be installed

But even installing the target may not be sufficient! The standalone Python builds are using a modern version of
musl and the Rust musl target must also be using this newer version or else you will see linking errors due to missing
symbols. For example:

/build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to `getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:132: undefined reference to
→˓`getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to
→˓`getrandom'
/usr/bin/ld: /build/Python-3.7.3/Python/bootstrap_hash.c:136: undefined reference to
→˓`getrandom'

Rust 1.37 or newer is required for the modern musl version compatibility. And newer versions of Rust may change
which version of musl they use, introducing failures similar to above. If you run into problems with a modern version
of Rust, consider reporting an issue against PyOxidizer!

82 Chapter 5. Packaging User Guide

https://www.musl-libc.org/
https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.14.1

Once Rust’s musl target is installed, you can build away:

$ pyoxidizer build --target x86_64-unknown-linux-musl
$ ldd build/apps/myapp/x86_64-unknown-linux-musl/debug/myapp

not a dynamic executable

Congratulations, you’ve produced a fully statically linked executable containing a Python application!

Important: There are reported performance problems with Python linked against musl libc. Application maintainers
are therefore highly encouraged to evaluate potential performance issues before distributing binaries linked against
musl libc.

It’s worth noting that in the default configuration PyOxidizer binaries will use jemalloc for memory allocations,
bypassing musl’s apparently slower memory allocator implementation. This may help mitigate reported performance
issues.

5.13.2 Building Statically Linked Binaries on Windows

It is possibly to produce a mostly self-contained .exe on Windows. We say mostly self-contained here because
currently the built binary has some external .dll dependencies. However, these DLLs are core Windows / system
DLLs and should be present on any Windows installation supported by the Python distribution being used.

The main trick to build a statically linked Windows binary is to switch the Python distribution from the default
standalone_dynamic flavor to standalone_static. This can be done via the following in your config
file:

def make_dist():
return default_python_distribution(flavor = "standalone_static")

Important: The standalone_static Windows distributions build Python in a way that is incompatible with
compiled Python extensions (.pyd files). So if you use this distribution flavor, you will need to compile all Python
extensions from source and cannot use pre-built wheels packages. This can make building applications with many
dependencies difficult, as many Python packages don’t compile on Windows without installing many dependencies
first.

See also Windows Static Distributions Only Support Built-in Extension Modules.

See also Understanding Python Distributions for more details on the differences between standalone_dynamic
and standalone_static Python distributions.

5.13.3 Implications of Static Linking

Most Python distributions rely heavily on dynamic linking. In addition to python frequently loading a dynamic
libpython, many C extensions are compiled as standalone shared libraries. This includes the modules _ctypes,
_json, _sqlite3, _ssl, and _uuid, which provide the native code interfaces for the respective non-_ prefixed
modules which you may be familiar with.

These C extensions frequently link to other libraries, such as libffi, libsqlite3, libssl, and libcrypto.
And more often than not, that linking is dynamic. And the libraries being linked to are provided by the sys-
tem/environment Python runs in. As a concrete example, on Linux, the _ssl module can be provided by _ssl.
cpython-37m-x86_64-linux-gnu.so, which can have a shared library dependency against libssl.so.

5.13. Standalone / Single File Applications with Static Linking 83

https://superuser.com/questions/1219609/why-is-the-alpine-docker-image-over-50-slower-than-the-ubuntu-image

PyOxidizer, Release 0.14.1

1.1 and libcrypto.so.1.1, which can be located in /usr/lib/x86_64-linux-gnu or a similar location
under /usr.

When Python extensions are statically linked into a binary, the Python extension code is part of the binary instead of
in a standalone file.

If the extension code is linked against a static library, then the code for that dependency library is part of the exten-
sion/binary instead of dynamically loaded from a standalone file.

When PyOxidizer produces a fully statically linked binary, the code for these 3rd party libraries is part of the
produced binary and not loaded from external files at load/import time.

There are a few important implications to this.

One is related to security and bug fixes. When 3rd party libraries are provided by an external source (typically the
operating system) and are dynamically loaded, once the external library is updated, your binary can use the latest
version of the code. When that external library is statically linked, you need to rebuild your binary to pick up the latest
version of that 3rd party library. So if e.g. there is an important security update to OpenSSL, you would need to ship a
new version of your application with the new OpenSSL in order for users of your application to be secure. This shifts
the security onus from e.g. your operating system vendor to you. This is less than ideal because security updates are
one of those problems that tend to benefit from greater centralization, not less.

It’s worth noting that PyOxidizer’s library security story is very similar to that of containers (e.g. Docker images).
If you are OK distributing and running Docker images, you should be OK with distributing executables built with
PyOxidizer.

Another implication of static linking is licensing considerations. Static linking can trigger stronger licensing protec-
tions and requirements. Read more at Licensing Considerations.

5.14 Licensing Considerations

Any time you link libraries together or distribute software, you need to be concerned with the licenses of the underlying
code. Some software licenses - like the GPL - can require that any code linked with them be subject to the license
and therefore be made open source. In addition, many licenses require a license and/or copyright notice be attached
to works that use or are derived from the project using that license. So when building or distributing any software,
you need to be cognizant about all the software going into the final work and any licensing terms that apply. Binaries
produced with PyOxidizer are no different!

PyOxidizer and the code it uses in produced binaries is licensed under the Mozilla Public License version 2.0. The
licensing terms are generally pretty favorable. (If the requirements are too strong, the code that ships with binaries
could potentially use a weaker license. Get in touch with the project author.)

The Rust code PyOxidizer produces relies on a handful of 3rd party Rust crates. These crates have various licenses.
We recommend using the cargo-license, cargo-tree, and cargo-lichking tools to examine the Rust crate dependency
tree and their respective licenses. The cargo-lichking tool can even assemble licenses of Rust dependencies
automatically so you can more easily distribute those texts with your application!

As cool as these Rust tools are, they don’t include licenses for the Python distribution, the libraries its extensions link
against, nor any 3rd party Python packages you may have packaged.

Python and its various dependencies are governed by a handful of licenses. These licenses have various requirements
and restrictions.

At the very minimum, the binary produced with PyOxidizer will have a Python distribution which is governed by a
license. You will almost certainly need to distribute a copy of this license with your application.

Various C-based extension modules part of Python’s standard library link against other C libraries. For self-contained
Python binaries, these libraries will be statically linked if they are present. That can trigger stronger license protections.

84 Chapter 5. Packaging User Guide

https://github.com/onur/cargo-license
https://github.com/sfackler/cargo-tree
https://github.com/Nemo157/cargo-lichking

PyOxidizer, Release 0.14.1

For example, if all extension modules are present, the produced binary may contain a copy of the GPL 3.0 licensed
readline and gdbm libraries, thus triggering strong copyleft protections in the GPL license.

Important: It is critical to audit which Python extensions and packages are being packaged because of licensing
requirements of various extensions.

Consider using a package such as pip-licenses to generate a license report for your Python packages.

5.14.1 Showing Python Distribution Licenses

The special Python distributions that PyOxidizer consumes can annotate licenses of software within.

The pyoxidizer python-distribution-licenses command can display the licenses for the Python dis-
tribution and libraries it may link against. This command can be used to evaluate which extensions meet licensing
requirements and what licensing requirements apply if a given extension or library is used.

5.15 Terminfo Database

Note: This content is not relevant to Windows.

If your application interacts with terminals (e.g. command line tools), your application may require the availability of
a terminfo database so your application can properly interact with the terminal. The absence of a terminal database
can result in the inability to properly colorize text, the backspace and arrow keys not working as expected, weird
behavior on window resizing, etc. A terminfo database is also required to use curses or readline module
functionality without issue.

UNIX like systems almost always provide a terminfo database which says which features and properties various
terminals have. Essentially, the TERM environment variable defines the current terminal [emulator] in use and the
terminfo database converts that value to various settings.

From Python, the ncurses library is responsible for consulting the terminfo database and determining how to
interact with the terminal. This interaction with the ncurses library is typically performed from the _curses,
_curses_panel, and _readline C extensions. These C extensions are wrapped by the user-facing curses
and readline Python modules. And these Python modules can be used from various functionality in the Python
standard library. For example, the readline module is used to power pdb.

PyOxidizer applications do not ship a terminfo database. Instead, applications rely on the terminfo database
on the executing machine. (Of course, individual applications could ship a terminfo database if they want: the
functionality just isn’t included in PyOxidizer by default.) The reason PyOxidizer doesn’t ship a terminfo database
is that terminal configurations are very system and user specific: PyOxidizer wants to respect the configuration of the
environment in which applications run. The best way to do this is to use the terminfo database on the executing
machine instead of providing a static database that may not be properly configured for the run-time environment.

PyOxidizer applications have the choice of various modes for resolving the terminfo database location. This is
facilitated mainly via the PythonInterpreterConfig.terminfo_resolution config setting.

By default, when Python is initialized PyOxidizer will try to identify the current operating system and choose an
appropriate set of well-known paths for that operating system. If the operating system is well-known (such as a
Debian-based Linux distribution), this set of paths is fixed. If the operating system is not well-known, PyOxidizer will
look for terminfo databases at common paths and use whatever paths are present.

If all goes according to plan, the default behavior just works. On common operating systems, the cost to the default
behavior is reading a single file from the filesystem (in order to resolve the operating system). The overhead should be

5.15. Terminfo Database 85

https://github.com/raimon49/pip-licenses

PyOxidizer, Release 0.14.1

negligible. For unknown operating systems, PyOxidizer may need to stat() ~10 paths looking for the terminfo
database. This should also complete fairly quickly. If the overhead is a concern for you, it is recommended to build
applications with a fixed path to the terminfo database.

Under the hood, when PyOxidizer resolves the terminfo database location, it communicates these paths to
ncurses by setting the TERMINFO_DIRS environment variable. If the TERMINFO_DIRS environment variable is
already set at application run-time, PyOxidizer will never overwrite it.

The ncurses library that PyOxidizer applications ship with is also configured to look for a terminfo database
in the current user’s home directory (HOME environment variable) by default, specifically $HOME/.terminfo).
Support for termcap databases is not enabled.

Note: terminfo database behavior is intrinsically complicated because various operating systems do things dif-
ferently. If you notice oddities in the interaction of PyOxidizer applications with terminals, there’s a good chance
you found a deficiency in PyOxidizer’s terminal detection logic (which is located in the pyembed::osutils Rust
module).

Please report terminal interaction issues at https://github.com/indygreg/PyOxidizer/issues.

5.16 Using the tkinter Python Module

The tkinter Python standard library module/package provides a Python interface to tcl/tk/tkinter. This interface allows
you to create GUI applications.

PyOxidizer has partial support for using tkinter. Since tkinter isn’t a commonly used Python feature, you must
opt in to enabling it.

5.16.1 Installing tcl Files

tkinter requires both a Python extension module compiled against tcl/tk and tcl support files to be loaded at run-
time.

All the built-in Python distributions shipping with PyOxidizer provide tkinter support with the exception of the
Windows standalone_static distributions.

However, the tcl support files aren’t installed by default.

To install tcl support files, you will need to set the PythonExecutable.tcl_files_path attribute of a
PythonExecutable instance to the directory you want to install these files into. e.g.

def make_exe(dist):
exe = dist.to_python_executable(name="myapp")
exe.tcl_files_path = "lib"

return exe

When tcl_files_path is set to a non-None value, the tcl files required by tkinter are installed in that direc-
tory and the built executable will automatically set the TCL_LIBRARY environment variable at run-time so the tcl
interpreter uses those files.

86 Chapter 5. Packaging User Guide

https://github.com/indygreg/PyOxidizer/issues
https://docs.python.org/3/library/tkinter.html

PyOxidizer, Release 0.14.1

5.16.2 tcl Files Prevent Self-Contained Executables

The tcl interpreter needs to load various files off the filesystem at run-time. PyOxidizer does not (yet) support embed-
ding these files in the binary and loading them from memory or extracting them at run-time.

So if you need to use tkinter, you cannot have a single-file executable that works without a dependency on tcl files
elsewhere on the filesystem.

5.17 Building an Executable that Behaves Like python

It is possible to use PyOxidizer to build an executable that would behave like a typical python executable would.

To start, initialize a new config file:

$ pyoxidizer init-config-file python

Then, we’ll want to modify the pyoxidizer.bzl configuration file to look something like the following:

def make_dist():
return default_python_distribution()

def make_exe(dist):
policy = dist.make_python_packaging_policy()
policy.extension_module_filter = "all"
policy.include_distribution_resources = True

Add resources to the filesytem, next to the built executable.
You can add resources to memory too. But this makes the install
layout somewhat consistent with what Python expects.
policy.resources_location = "filesystem-relative:lib"

python_config = dist.make_python_interpreter_config()

This is the all-important line to make the embedded Python interpreter
behave like `python`.
python_config.config_profile = "python"

Enable the stdlib path-based importer.
python_config.filesystem_importer = True

You could also disable the Rust importer if you really want your
executable to behave like `python`.
python_config.oxidized_importer = False

exe = dist.to_python_executable(
name="python3",
packaging_policy = policy,
config = python_config,

)

return exe

def make_embedded_resources(exe):
return exe.to_embedded_resources()

def make_install(exe):

(continues on next page)

5.17. Building an Executable that Behaves Like python 87

PyOxidizer, Release 0.14.1

(continued from previous page)

files = FileManifest()
files.add_python_resource(".", exe)

return files

register_target("dist", make_dist)
register_target("exe", make_exe, depends=["dist"])
register_target("resources", make_embedded_resources, depends=["exe"], default_build_
→˓script=True)
register_target("install", make_install, depends=["exe"], default=True)

resolve_targets()

(The above code is dedicated to the public domain and can be used without attribution.)

From there, build/run from the config:

$ cd python
$ pyoxidizer build
...
$ pyoxidizer run
...
Python 3.8.6 (default, Oct 3 2020, 20:48:20)
[Clang 10.0.1] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

5.17.1 Resource Loading Caveats

PyOxidizer’s configuration defaults are opinionated about how resources are loaded by default. In the default con-
figuration, the Python distribution’s resources are indexed and loaded via oxidized_importer at run-time. This
behavior is obviously different from what a standard python executable would do.

If you want the built executable to behave like python would and use the standard library importers, you can disable
oxidized_importer by setting PythonInterpreterConfig.oxidized_importer to False.

Another caveat is that indexed resources are embedded in the built executable by default. This will
bloat the size of the executable for no benefit. To disable this functionality, set PythonExecutable.
packed_resources_load_mode none.

5.17.2 Binary Portability

A python-like executable built with PyOxidizer may not just work when copied to another machine. See Portability
of Binaries Built with PyOxidizer to learn more about the portability of binaries built with PyOxidizer.

88 Chapter 5. Packaging User Guide

CHAPTER 6

Distributing User Guide

This documentation covers how to distribute or ship applications with PyOxidizer.

6.1 Overview

Application distribution in PyOxidizer is fundamentally a separate domain from building or packaging applications.
One way to think about this is building is concerned with producing files constituting your application - the executables
and support files needed at run-time - and distribution is concerned with installing those files on other machines.

PyOxidizer uses the Tugger tool to handle most distribution functionality. Tugger is a Rust crate and Starlark dialect
developed alongside PyOxidizer that specializes in functionality required to distribute applications. Tugger is techni-
cally a separate project. But PyOxidizer provides full access to Tugger’s Starlark functionality and even extends it to
make distributing Python applications simpler.

6.1.1 Using Tugger Starlark

Tugger defines a Starlark dialect that enables you to produce distributable artifacts. See Tugger Starlark Dialect for
the documentation of this dialect.

The full Tugger Starlark dialect is available to PyOxidizer configuration files.

PyOxidizer configuration files have the option of using the generic Tugger Starlark primitives and using supplemen-
tal/extended functionality provided by PyOxidizer’s Starlark dialect. The Tugger-provided primitives are generally
low-level and generic. The PyOxidizer-provided extensions are Python specific and may allow simpler configuration
files.

See other documentation in Distributing User Guide for details on PyOxidizer’s extensions to Tugger’s Starlark dialect
and how to perform common distribution actions.

89

PyOxidizer, Release 0.14.1

6.2 Portability of Binaries Built with PyOxidizer

Binary portability refers to the property that a binary built in machine/environment X is able to run on ma-
chine/environment Y. In other words, you’ve achieved binary portability if you are able to copy a binary to another
machine and run it without modifications.

It is exceptionally difficult to achieve high levels of binary portability for various reasons.

PyOxidizer is capable of building binaries that are highly portable. However, the steps for doing so can be nuanced
and vary substantially by operating system and target platform.

This document outlines some general strategies for tackling binary portability. Please also consult the various platform-
specific documentation on this topic:

• Distribution Considerations for Linux

• Distribution Considerations for macOS

• Distribution Considerations for Windows

Important: Please create issues at https://github.com/indygreg/PyOxidizer/issues when documentation on this sub-
ject is inaccurate or lacks critical details.

6.2.1 Using pyoxidizer analyze For Assessing Binary Portability

The pyoxidizer analyze command can be used to analyze the contents of executables and libraries. It can be
used as a PyOxidizer-specific tool for assessing the portability of built binaries.

For example, for ELF binaries (the binary format used on Linux), this command will list all shared library dependencies
and analyze glibc symbol versions and print out which Linux distribution versions it thinks the binary is compatible
with.

Note: pyoxidizer analyze is not yet feature complete on all platforms.

6.3 Building Windows Installers with the WiX Toolset

PyOxidizer supports building Windows installers (e.g. .msi and .exe installer files) using the WiX Toolset. PyOx-
idizer leverages the Tugger shipping tool for integrating with WiX. See Using the WiX Toolset to Produce Windows
Installers for the full Tugger WiX documentation.

Tugger - and PyOxidizer by extension - are able to automatically create XML files used by WiX to define installers
with common features as well as use pre-existing WiX files. This enables Tugger/PyOxidizer to facilitate both simple
and arbitrarily complex use cases.

6.3.1 Extensions to Tugger Starlark Dialect

PyOxidizer supplements Tugger’s Starlark dialect with additional functionality that makes building Python application
installers simpler. For example, instead of manually constructing a WiX installer, you can call a method on a Python
Starlark type to convert it into an installer.

PyOxidizer provides the following extensions and integrations with Tugger’s Starlark dialect:

90 Chapter 6. Distributing User Guide

https://github.com/indygreg/PyOxidizer/issues
https://wixtoolset.org/

PyOxidizer, Release 0.14.1

FileManifest.add_python_resource() Adds a Python resource type to Tugger’s starlark_tugger.
FileManifest.

FileManifest.add_python_resources() Adds an iterable of Python resource types to Tugger’s starlark_tugger.
FileManifest type.

PythonExecutable.to_file_manifest() Converts a PythonExecutable to a starlark_tugger.
FileManifest. Enables materializing an executable/application as a set of files, which Tugger can easily
operate against.

PythonExecutable.to_wix_bundle_builder() Converts a PythonExecutable to a
starlark_tugger.WiXBundleBuilder.

This method will produce a starlark_tugger.WiXBundleBuilder. that is pre-configured with appro-
priate settings and state for a Python application. The produced .exe installer should just work.

PythonExecutable.to_wix_msi_builder() Converts a PythonExecutable to a
starlark_tugger.WiXMSIBuilder.

This method will produce a starlark_tugger.WiXMSIBuilder that is pre-configured to install a Python
application and all its support files. The MSI will install all files composing the Python application, excluding
system-level dependencies.

6.3.2 Choosing an Installer Creation Method

Tugger provides multiple Starlark primitives for defining Windows installers built with the WiX Toolset. Which one
should you use?

See Tugger’s WiX APIs for a generic overview of this topic. The remainder of this documentation will be specific to
Python applications.

It is is important to call out that unless you are using the static Python distributions, binaries built with PyOxidizer will
have a run-time dependency on the Visual C++ Redistributable runtime DLLs (e.g. vcruntime140.dll). Many
Windows applications have a dependency on these DLLs and most Windows machines have installed an application
that has installed the required DLLs. So not distributing vcruntimeXXX.dll with your application may just work
most of the time. However, on a fresh Windows installation, these required files may not exist. So it is important that
they be installed with your application.

When using PythonExecutable.to_wix_msi_builder() or PythonExecutable.
to_wix_bundle_builder(), PyOxidizer will automatically add the Visual C++ Redistributable to the
installer if it is required. However, the method varies. For bundle installers, the installer will contain the official
VC_Redist*.exe installer and this installer will be executed as part of running your application’s installer. For
MSI installers, Tugger will attempt to locate the vcruntimeXXX.dll files on your system (this requires an
installation of Visual Studio) and copy these files next to your built/installed executable.s

If you are not using one of the aforementioned APIs to create your installer, you will need to explic-
itly add the Visual C++ Redistributable to your installer. The starlark_tugger.WiXMSIBuilder.
add_visual_cpp_redistributable() and starlark_tugger.WiXBundleBuilder.
add_vc_redistributable() Starlark methods can be called to do this. (PyOxidizer’s Starlark methods
for creating WiX installers effectively call these methods.)

6.4 Distribution Considerations for Linux

This document describes some of the considerations when you want to install/run a PyOxidizer-built application on a
separate Linux machine from the one that built it.

6.4. Distribution Considerations for Linux 91

PyOxidizer, Release 0.14.1

6.4.1 Exception for musl libc Binaries

Linux binaries built against musl libc (e.g. the x86_64-unknown-linux-musl target triple) generally work on
any Linux machine supporting the target architecture. This is because musl libc linked binaries are fully statically
linked and therefore self-contained.

If you run ldd /path/to/binary and it prints not a dynamic executable, that binary is likely highly
portable.

See Building Fully Statically Linked Binaries on Linux for instructions on building binaries with musl libc.

The rest of this document likely doesn’t apply if using musl libc.

6.4.2 Python Distribution Dependencies

The default Python distributions used by PyOxidizer have dependencies on shared libraries outside of the Python
distribution.

However, the python-build-standalone project - the entity building the default Python distributions - has gone to great
lengths to ensure that all dependencies are common to nearly every Linux system and that the Python distribution
binaries should be highly portable across machines.

The *-unknown-linux-gnu builds have a dependency against GNU libc (glibc), specifically libc.so.6. How-
ever, the python-build-standalone project has build-time validation that glibc version numbers in referenced symbols
aren’t higher than glibc 19 (released in 2014). This should make binaries compatible with the following common
distributions:

• Fedora 21+

• RHEL/CentOS 7+

• openSUSE 13.2+

• Debian 8+ (Jessie)

• Ubuntu 14.04+

In addition to glibc, Python distributions also link to a handful of other system libraries. Most of the libraries are part
of the Linux Standard Base specification and should be present on any conforming Linux distribution.

Some shared library dependencies are only pulled in by single Python extensions. For example, libcrypto.so.
1 is likely only needed by the crypt extension. Distributors wanting to minimize the number of shared library
dependencies can do so by pruning Python extensions from the install set. The PYTHON.json file in the extracted
Python distribution archive can be used to inspect which libraries are required by which extensions.

6.4.3 Built Application Dependencies

While the default Python distributions used by PyOxidizer are highly portable, the same cannot be said for binaries
built with PyOxidizer.

Important: The machine and environment you use to run pyoxidizer has critical implications for the portability
of built binaries.

When you use PyOxidizer to produce a new binary (an executable or library), you are compiling new code and linking it
in an environment that is different from the specialized environment used to build the default Python distributions. This
often means that the binary portability of your built binary is effectively defined by the environment pyoxidizer
was run from.

92 Chapter 6. Distributing User Guide

https://python-build-standalone.readthedocs.io/en/latest/
https://refspecs.linuxfoundation.org/lsb.shtml

PyOxidizer, Release 0.14.1

As a concrete example, if you run pyoxidizer build on an Ubuntu 20.10 machine and then pyoxidizer
analyze the resulting ELF binary, you’ll find that it has a dependency on libgcc_s.so.1 and it references glibc
2.32 symbol versions. This despite the default Python distribution not depending on libgcc_s.so.1‘ and only glibc
version 2.19.

What’s happening here is the compiler/build settings from the building machine are leaking into new binaries, likely
as part of compiling Rust code.

6.4.4 Managing Binary Portability on Linux

Linux is a difficult platform to tackle for binary portability.

The best way to produce a portable Linux binary is to produce a fully statically-linked binary. There are no shared
libraries to worry about and generally speaking these binaries just work. See Building Fully Statically Linked Binaries
on Linux for more.

If you produce a dynamic binary with library dependencies, things are complicated.

Nearly every binary built on Linux will require linking against libc and will require a symbol provided by glibc.
glibc versions it symbols. And when the linker resolves those symbols at link time, it usually uses the version of
glibc being linked against. For example, if you link on a machine with glibc 2.19, the symbol versions in the
produced binary will be against version 2.19 and the binary will load against glibc versions >=2.19. But if you link
on a machine with glibc 2.29, symbol versions are against version 2.29 and you can only load against versions >=
2.29.

This means that to ensure maximum portability, you want to link against old glibc symbol versions. While it is
possible to use old symbol versions when a more modern glibc is present, the path of least resistance is to build in
an environment that has an older glibc.

A similar story plays out with a dependency on libgcc_s.so.1.

The default Python distributions use Debian 8 (Jessie) as their build environment. So a Debian 8 build environment
is a good candidate to build on. Ubuntu 14.04, OpenSUSE 13.2, OpenSUSE 42.1, RHEL/CentOS 7, and Fedora 21
(glibc 2.20) are also good candidates for build environments.

Of course, if you are producing distribution-specific binaries and/or control installation (so e.g. dependencies are
installed automatically), this matters less to you.

The pyoxidizer analyze command can be very useful for inspecting binaries for portability and alerting you to
any potential issues.

6.5 Distribution Considerations for macOS

This document describes some of the considerations when you want to install/run a PyOxidizer-built application on a
separate macOS machine from the one that built it.

6.5.1 Operating System and Architecture Requirements

PyOxidizer has support for targeting x86_64 (Intel) and aarch64 (ARM) Apple devices. The default Python distribu-
tions target macOS 10.9+ for x86_64 and 11.0+ for aarch64.

6.5. Distribution Considerations for macOS 93

PyOxidizer, Release 0.14.1

6.5.2 Build Machine Requirements

PyOxidizer needs to link new binaries containing Python. Due to the way linking works on Apple platforms, you
must use an Apple SDK no older than the one used to build the Python distributions or linker errors (likely undefined
symbols) can occur.

PyOxidizer will automatically attempt to locate, validate, and use an appropriate Apple SDK given requirements
specified by the Python distribution in use. If you have Xcode or the Xcode Commandline Tools installed, PyOxidizer
should be able to locate Apple SDKs automatically. When building, PyOxidizer will print information about Apple
SDK discovery. More details are printed when running pyoxidizer --verbose.

PyOxidizer will automatically look for SDKs in the directory specified by xcode-select --print-path. This
path is often /Applications/Xcode.app/Contents/Developer. You can specify an alternative directory
by setting the DEVELOPER_DIR environment variable. e.g.:

DEVELOPER_DIR=/Applications/Xcode-beta.app/Contents/Developer pyoxidizer build

You can override PyOxidizer’s automatic SDK discovery by setting SDKROOT to the base directory of an Apple SDK
you want to use. (If you find yourself doing this to work around SDK discovery bugs, please consider creating a
GitHub issue to track the problem.) e.g.:

SDKROOT=/Applications/Xcode.app/Contents/Developer/Platforms/MacOSX.platform/
→˓Developer/SDKs/MacOSX.sdk pyoxidizer build

6.5.3 Python Distribution Dependencies

The default Python distributions used by PyOxidizer have dependencies on system libraries outside of the Python
distribution.

The python-build-standalone project has gone to great lengths to ensure that the Python distributions only link against
external libraries and symbols that are present on a default macOS installation.

The default Python distributions are built to target macOS 10.9 on x86_64 and 11.0 on aarch64. So they should just
work on those and any newer versions of macOS.

6.5.4 Single Architecture Binaries

PyOxidizer currently only emits single architecture binaries.

Multiple architecture binaries (often referred to as universal or fat binaries) can not (yet) be emitted natively by
PyOxidizer.

This means that if you distribute a binary produced by PyOxidizer and want it to run on both Intel and ARM machines,
you will need to maintain separate artifacts for Intel and ARM machines or you will need to produce a fat binary outside
of PyOxidizer.

https://github.com/indygreg/PyOxidizer/issues/372 tracks implementing support for emitting fat binaries from PyOx-
idizer. Please engage there if this feature is important to you.

6.5.5 Managing Portability of Built Applications

Like Linux, the macOS build environment can leak into the built application and introduce additional dependencies
and degrade the portability of the default Python distributions.

94 Chapter 6. Distributing User Guide

https://python-build-standalone.readthedocs.io/en/latest/
https://github.com/indygreg/PyOxidizer/issues/372

PyOxidizer, Release 0.14.1

It is common for built binaries to pull in modern macOS SDK features. A common way to prevent this is to set the
MACOSX_DEPLOYMENT_TARGET environment variable during the build to the oldest version of macOS you want to
support.

The default Python distributions target macOS 10.9 on x86_64 and 11.0 on aarch64.

Important: PyOxidizer will automatically set the deployment target to match what the Python distribution was built
with, so in many cases you don’t need to worry about version targeting.

If you wish to override the default deployment targets, set an alternative value using the appropriate environment
variable.:

$ MACOSX_DEPLOYMENT_TARGET=10.15 pyoxidizer build

Apple’s Xcode documentation has various guides useful for further consideration.

6.6 Distribution Considerations for Windows

This document describes some of the considerations when you want to install/run a PyOxidizer-built application on a
separate Windows machine from the one that built it.

Important: The restrictions in this document regard the run-time / target environment that a binary will run on: they
do not describe the environment used to build that binary. In many cases, a binary built on Windows 10 or Windows
Server 2019 will work fine on earlier operating system versions.

Readers may also find the Microsoft documentation on deployment considerations for Windows binaries a useful
resource to supplement this document with more generic considerations.

6.6.1 Operating System Requirements

The default Python distributions used by PyOxidizer require Windows 8 or Windows 2012 or newer.

The official Python 3.8 Windows distributions available on www.python.org support Windows 7. PyOxidizer has
chosen to drop support for Windows 7 to simplify support.

In addition to the restrictions imposed by the Python distribution in use, Rust may impose its own restrictions. How-
ever, Rust has historically produced binaries that work on Windows 8 and Windows 2012, so this likely is not an
issue.

6.6.2 General Runtime / DLL Dependencies

The default Python distributions used by PyOxidizer require the Microsoft Visual C++ Redistributable and Universal
CRT (UCRT).

The standalone_dynamic distributions (the default distribution flavor) have a run-time dependency on various
3rd party DLLs used by extensions (OpenSSL, SQLite3, etc). However, these 3rd party DLLs are part of the Python
distribution and PyOxidizer should automatically install them if they are required.

All other DLL dependencies required by the default Python distributions should be core Windows operating system
components and always available, even in a freshly installed Windows machine.

6.6. Distribution Considerations for Windows 95

https://developer.apple.com/documentation/xcode
https://docs.microsoft.com/en-us/cpp/windows/deploying-native-desktop-applications-visual-cpp?view=vs-2019

PyOxidizer, Release 0.14.1

6.6.3 Application Specific Dependencies

When adding custom behavior to your application, PyOxidizer makes some effort to ensure additional dependencies
(beyond the operating system, Python distribution, and Microsoft runtimes) are met. However, there are limitations to
this.

When installing custom Python packages, PyOxidizer attempts to identify and install compiled Python extensions and
.dll dependencies distributed with that package. See Packaging Files Instead of In-Memory Resources for more.
However, there are corner cases and occasional bugs that may prevent this from working correctly.

To ensure are DLL dependencies are properly captured, it is recommend to inspect your binaries for references to
missing DLLs before distributing them. The Dependency Walker tool can be used for this. pyoxidizer analyze
may also provide useful information.

In many cases, installing a missing DLL is a matter of installing the DLL next to your application/binary by treating
the DLL as an additional file from the Starlark configuration. See Packaging Files Instead of In-Memory Resources
for more.

When possible, it is recommended to test your application in a freshly installed Windows environment to ensure it
works. Please note that many Windows virtual machines already contain additional software and may not reflect real
world deployment targets.

6.6.4 Managing the Visual C++ Redistributable Requirement

Binaries built with PyOxidizer often have a run-time dependency on the Microsoft Visual C++ Redistributable. These
are DLLs with filenames like vcruntime140.dll and vcruntime140_1.dll.

Important: The Visual C++ Redistributable is not a core Windows operating system component and any distributed
Windows application must take measures to ensure the Visual C++ Redistributable is available on the remote
machine or the application may fail to run with a missing DLL error.

See Microsoft’s Redistributing Visual C++ Files documentation for the canonical source on distribution requirements.

PyOxidizer has built-in features to make satisfying these requirements turnkey. Read the sections below for details of
each.

Installing the Visual C++ Redistributable as Part of Your Application Installer

PyOxidizer can produce Windows .exe application installers that embed a copy of the Microsoft Visual C++ Redis-
tributable installer (files named vc_redist<arch>.exe) and automatically run this installer during application
install.

The way this works is PyOxidizer contains a reference to the URL and SHA-256 of these vc_redist<arch>.exe
installers. When your application installer is built, these files are downloaded from Microsoft’s servers and embedded
in the new meta-installer. At install time, these embedded installers are executed automatically (if they need to be) and
the Visual C++ files are installed at the system level, where they are available to any application.

If a newer version of the Visual C++ Redistributable files are already present, the installer should no-op instead of
downgrading what’s already installed.

The following Starlark functionality can be used to bundle the Visual C++ Redistributable installer as part of your
application installer:

• PythonExecutable.to_wix_bundle_builder()

• starlark_tugger.WiXBundleBuilder.add_vc_redistributable()

96 Chapter 6. Distributing User Guide

http://www.dependencywalker.com/
https://docs.microsoft.com/en-us/cpp/windows/redistributing-visual-cpp-files?view=msvc-160

PyOxidizer, Release 0.14.1

Installing the Visual C++ Redistributable Files Locally Next to Your Binary

Another method of installing the Visual C++ Redistributable files is to distribute copies of the DLLs next to the binary
that loads them. e.g. if you produce a myapp.exe, there will be a vcruntime140[_1].dll in the same directory
as myapp.exe. Since Windows attempts to load DLLs next to the executable, if the DLLs are present, this should
just work.

PyOxidizer supports automatically finding and copying the required DLLs in this manner. The Starlark setting con-
trolling this behavior is PythonExecutable.windows_runtime_dlls_mode.

This setting effectively instructs the PythonExecutable building code to materialize extra files next to the binary.
The Visual C++ files are treated just like any other supplementary files (like Python resources). This means that Visual
C++ files will be materialized on the filesystem when running pyoxidizer build, pyoxidizer run. The files
will also be present in file lists when using Starlark methods like PythonExecutable.to_file_manifest()
or PythonExecutable.to_wix_msi_builder().

This local files mode relies on locating DLLs on the local system. It does so using vswhere.exe to locate a
Visual Studio installation containing the Microsoft.VisualCPP.Redist.<version>.Latest component
(<version> is 14 for vcruntime140.dll). This should just work if you have Visual Studio 2017 or 2019
installed with support for building C/C++ applications. If the files cannot be found, run the Visual Studio Installer,
Modify your installation, go to Individual Components, search for redistributable, and make sure all
items are checked.

Important: It is possible to include a copy of the Visual C++ Redistributable in both your application installer and
as files local to the built binary. This behavior is redundant and will likely result in the local files being used.

When including the Visual C++ Redistributable installer as part of your deployment solution, it is recommended to
set PythonExecutable.windows_runtime_dlls_mode = "never" to prevent them from being redun-
dantly installed.

6.6.5 Managing the Universal CRT (UCRT) Requirement

Binaries built with PyOxidizer may have a run-time dependency on the Universal C Runtime (UCRT).

The UCRT is a Windows operating system component and is always present in installations of Windows 10, Windows
Server 2016, and newer. Combined with PyOxidizer’s Windows version requirements, this means you don’t need to
worry about the UCRT unless you are targeting Windows 8 or Windows Server 2012.

PyOxidizer does not currently support automatically materializing the UCRT. See https://docs.microsoft.com/en-us/
cpp/windows/universal-crt-deployment for instructions on deploying the UCRT with your application.

We are receptive to adding a feature to support more turnkey UCRT management if there is interest in it.

6.6. Distribution Considerations for Windows 97

https://docs.microsoft.com/en-us/cpp/windows/universal-crt-deployment
https://docs.microsoft.com/en-us/cpp/windows/universal-crt-deployment

PyOxidizer, Release 0.14.1

98 Chapter 6. Distributing User Guide

CHAPTER 7

oxidized_importer Python Extension

oxidized_importer is a Python extension module maintained as part of the PyOxidizer project that allows you
to:

• Install a custom, high-performance module importer (OxidizedFinder) to service Python import state-
ments and resource loading (potentially from memory).

• Scan the filesystem for Python resources (source modules, bytecode files, package resources, distribution meta-
data, etc) and turn them into Python objects.

• Serialize Python resource data into an efficient binary data structure for loading into an OxidizedFinder
instance. This facilitates producing a standalone resources blob that can be distributed with a Python application
which contains all the Python modules, bytecode, etc required to power that application.

oxidized_importer is automatically compiled into applications built with PyOxidizer. It can also be built as a
standalone extension module and used with regular Python installs.

7.1 Getting Started

7.1.1 Requirements

oxidized_importer requires CPython 3.8 or newer. This is because it relies on modern C and Python standard
library APIs only available in that version.

Building oxidized_importer from source requires a working Rust toolchain for the target platform.

7.1.2 Installing from PyPI

oxidized_importer is available on PyPI. This means that installing is as simple as:

$ pip3 install oxidized_importer

99

https://pypi.org/project/oxidized_importer/

PyOxidizer, Release 0.14.1

7.1.3 Compiling from Source

To build from source, obtain a clone of PyOxidizer’s Git repository and run the setup.py script or use pip to build
the Python project in the root of the repository. e.g.:

$ python3.9 setup.py build_ext -i
$ python3.9 setup.py install

$ pip3.9 install .
$ pip3.9 wheel .

The setup.py is pretty minimal and is a thin wrapper around cargo build for the underlying Rust project. If
you want to build using Rust’s standard toolchain, do something like the following:

$ cd oxidized-importer
$ cargo build --release

If you don’t have a Python 3.9 python3 executable in your PATH, you will need to tell the Rust build system which
python3 executable to use to help derive the build configuration for the Python extension:

$ PYTHON_SYS_EXECUTABLE=/path/to/python3.9 cargo build

7.1.4 Using

To use oxidized_importer, simply import the module:

import oxidized_importer

To register a custom importer with Python, do something like the following:

import sys

import oxidized_importer

finder = oxidized_importer.OxidizedFinder()

You want to register the finder first so it has the highest priority.
sys.meta_path.insert(0, finder)

To get performance benefits of loading modules and resources from memory, you’ll need to index resources with the
OxidizedFinder, serialize that data out, then load that data into a new OxidizedFinder instance. See Freezing
Applications with oxidized_importer for more detailed examples.

7.2 Python Meta Path Finders

Python allows providing custom Python types to handle the low-level machinery behind the import statement. The
way this works is a meta path finder instance (as defined by the importlib.abc.MetaPathFinder interface) is registered
on sys.meta_path. When an import is serviced, Python effectively iterates the objects on sys.meta_path and
asks each one can you service this request until one does.

These meta path finder not only service basic Python module loading, but they can also facilitate loading resource files
and package metadata. There are a handful of optional methods available on implementations.

This documentation will often refer to a meta path finder as an importer, because it is primarily used for importing
Python modules.

100 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder
https://docs.python.org/3/library/sys.html#sys.meta_path

PyOxidizer, Release 0.14.1

Normally when you start a Python process, the Python interpreter itself will install 3 meta path finders on sys.
meta_path before your code even has a chance of running:

BuiltinImporter Handles importing of built-in extension modules, which are compiled into the Python inter-
preter. These include modules like sys.

FrozenImporter Handles importing of frozen bytecode modules, which are compiled into the Python interpreter.
This finder is typically only used to initialize Python’s importing mechanism.

PathFinder Handles filesystem-based loading of resources. This is what is used to import .py and .pyc files. It
also handles .zip files. This is the meta path finder that most imports are traditionally serviced by. It queries
the filesystem at import time to find and load resources.

7.3 OxidizedFinder Meta Path Finder

OxidizedFinder is a Python type implementing a custom and fully-featured meta path finder. Oxidized is in its
name because it is implemented in Rust.

Unlike traditional meta path finders which have to dynamically discover resources (often by scanning the filesys-
tem), OxidizedFinder instances maintain an index of known resources. When a resource is requested,
OxidizedFinder can retrieve that resource by effectively performing 1 or 2 lookups in a Rust HashMap. This
makes resource resolution extremely efficient, as no filesystem probing or other explicit I/O is performed.

Instances of OxidizedFinder are optionally bound to binary blobs holding packed resources data. This is a custom
serialization format for expressing Python modules (source and bytecode), Python extension modules, resource files,
shared libraries, etc. This data format along with a Rust library for interacting with it are defined by the python-
packed-resources crate.

When an OxidizedFinder instance is created, the packed resources data is parsed into a Rust data structure. On
a modern machine, parsing this resources data for the entirety of the Python standard library takes ~1 ms.

OxidizedFinder instances can index built-in extension modules and frozen modules, which are compiled
into the Python interpreter. This allows OxidizedFinder to subsume functionality normally provided by
the BuiltinImporter and FrozenImporter meta path finders, allowing you to potentially replace sys.
meta_path with a single instance of OxidizedFinder.

7.3.1 OxidizedFinder in PyOxidizer Applications

When running from an application built with PyOxidizer (or using the pyembed crate directly), an
OxidizedFinder instance will (likely) be automatically registered as the first element in sys.meta_path when
starting a Python interpreter.

You can verify this inside a binary built with PyOxidizer:

>>> import sys
>>> sys.meta_path
[<OxidizedFinder object at 0x7f16bb6f93d0>]

Contrast with a typical Python environment:

>>> import sys
>>> sys.meta_path
[

<class '_frozen_importlib.BuiltinImporter'>,
<class '_frozen_importlib.FrozenImporter'>,

(continues on next page)

7.3. OxidizedFinder Meta Path Finder 101

https://crates.io/crates/python-packed-resources
https://crates.io/crates/python-packed-resources

PyOxidizer, Release 0.14.1

(continued from previous page)

<class '_frozen_importlib_external.PathFinder'>
]

The OxidizedFinder instance will (likely) be associated with resources data embedded in the binary.

This OxidizedFinder instance is constructed very early during Python interpreter initialization. It is registered
on sys.meta_path before the first import requesting a .py/.pyc is performed, allowing it to service every
import except those from the very few built-in extension modules that are compiled into the interpreter and loaded
as part of Python initialization (e.g. the sys module).

If OxidizedFinder is being installed on sys.meta_path, its path_hook method will be registered as the
first item on sys.path_hooks.

If filesystem importing is disabled, all entries of sys.meta_path and sys.path_hooks not related to
OxidizedFinder will be removed.

7.3.2 Python API

See OxidizedFinder for the Python API documentation.

7.4 OxidizedFinder Behavior and Compliance

OxidizedFinder strives to be as compliant as possible with other meta path importers. So generally speaking, the
behavior as described by the importlib documentation should be compatible. In other words, things should mostly just
work and any deviance from the importlib documentation constitutes a bug worth reporting.

That being said, OxidizedFinder’s approach to loading resources is drastically different from more traditional
means, notably loading files from the filesystem. oxidized_finder breaks a lot of assumptions about how things
have worked in Python and there is some behavior that may seem odd or in violation of documented behavior in
Python.

The sections below attempt to call out known areas where OxidizedFinder deviates from typical behavior.

7.4.1 __file__ and __cached__ Module Attributes

Python modules typically have a __file__ attribute holding a str defining the filesystem path the source module
was imported from (usually a path to a .py file). There is also the similar - but lesser known - __cached__ attribute
holding the filesystem path of the bytecode module (usually the path to a .pyc file).

Important: OxidizedFinder will not set either attribute when importing modules from memory.

These attributes are not set because it isn’t obvious what the values should be! Typically, __file__ is used by
Python as an anchor point to derive the path to some other file. However, when loading modules from memory, the
traditional filesystem hierarchy of Python modules does not exist. In the opinion of PyOxidizer’s maintainer, exposing
__file__ would be lying and this would cause more potential for harm than good.

While we may make it possible to define __file__ (and __cached__) on modules imported from memory some-
day, we do not yet support this.

OxidizedFinder does, however, set __file__ and __cached__ on modules imported from the filesystem.
So, a workaround to restore these missing attributes is to avoid in-memory loading.

102 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3/library/importlib.html
https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.14.1

Note: Use of __file__ is commonly encountered in code loading resource files. See Loading Resource Files for
more on this topic, including how to port code to more modern Python APIs for loading resources.

7.4.2 __path__ Module Attribute

Python modules that are also packages must have a __path__ attribute containing an iterable of str. The iterable
can be empty.

If a module is imported from the filesystem, OxidizedFinder will set __path__ to the parent directory of the
module’s file, just like the standard filesystem importer would.

If a module is imported from memory, __path__ will be set to the path of the current executable joined with the
package name. e.g. if the current executable is /usr/bin/myapp and the module/package name is foo.bar,
__path__ will be ["/usr/bin/myapp/foo/bar"]. On Windows, paths might look like C:\dev\myapp.
exe\foo\bar.

Python’s zipimport importer uses the same approach for modules imported from zip files, so there is precedence
for OxidizedFinder doing things this way.

7.4.3 Support for __init__ in Module Names

There exists Python code that does things like from .__init__ import X.

__init__ is special in Python module names because it is the filename used to denote a Python package’s filename.
So syntax like from .__init__ import X is probably intended to be equivalent to from . import X. Or
import foo.__init__ is probably intended to be written as import foo.

Python’s filesystem importer doesn’t treat __init__ in module names as special. If you attempt to import a module
named foo.__init__, it will attempt to locate a file named foo/__init__.py. If that module is a package,
this will succeed. However, the module name seen by the importer has __init__ in it and the name on the created
module object will have __init__ in it. This means that you can have both a module foo and foo.__init__.
These will both be derived from the same file but are actually separate module objects.

PyOxidizer will automatically remove trailing .__init__ from module names. This will enable PyOxidizer to work
with syntax such as import foo.__init__ and from .__init__ import X and therefore be compatible
with Python code in the wild. However, PyOxidizer may not preserve the .__init__ in the module name. For
example, with Python’s path based importer, you could have both foo and foo.__init__ in sys.modules but
PyOxidizer will only have foo.

A limitation of PyOxidizer module name normalization is it only normalizes the single trailing .__init__ from the
module name: __init__ appearing inside the module name are not normalized. e.g. foo.__init__.bar is not
normalized to foo.bar. This may introduce incompatibilities with Python code in the wild. However, for this to
be true, the filesystem layout would have to be something like foo/__init__/bar.py. This hopefully does not
occur in the wild. But it is conceivable it does.

See https://github.com/indygreg/PyOxidizer/issues/317 and https://bugs.python.org/issue42564 for more discussion
on this issue.

7.4.4 ResourceReader Compatibility

ResourceReader has known compatibility differences with Python’s default filesystem-based importer. See Sup-
port for ResourceReader for details.

7.4. OxidizedFinder Behavior and Compliance 103

https://github.com/indygreg/PyOxidizer/issues/317
https://bugs.python.org/issue42564

PyOxidizer, Release 0.14.1

7.4.5 ResourceLoader Compatibility

The ResourceLoader interface is implemented but behavior of get_data(path) has some variance with
Python’s filesystem-based importer.

See Support for ResourceLoader for details.

Note: ResourceLoader is deprecated as of Python 3.7. Code should be ported to ResourceReader /
importlib.resources if possible.

7.4.6 importlib.metadata Compatibility

OxidizedFinder implements find_distributions() and therefore provides the required hook for
importlib.metadata to resolve Distribution instances. However, the returned objects do not implement
the full Distribution interface.

Here are the known differences between OxidizedDistribution and importlib.metadata.
Distribution instances:

• OxidizedDistribution is not an instance of importlib.metadata.Distribution.

• locate_file() is not defined.

• @staticmethod at() is not defined.

• @property files raises NotImplementedError.

There are additional _ prefixed attributes of importlib.metadata.Distribution that are not implemented.
But we do not consider these part of the public API and don’t feel they are worth calling out.

In addition, OxidizedFinder.find_distributions() ignores the path attribute of the passed Context
instance. Only the name attribute is consulted. If name is None, all packages with registered distribution files will
be returned. Otherwise the returned list contains at most 1 PyOxidizerDistribution corresponding to the
requested package name.

7.4.7 pkgutil Compatibility

The pkgutil package in Python’s standard library reacts to special functionality on MetaPathFinder instances.

pkgutil.iter_modules() attempts to use an iter_modules() method to obtain results.

OxidizedFinder implements iter_modules(prefix="") and pkgutil.iter_modules() should
work. However, there are some differences in behavior:

• iter_modules() is defined to be a generator but OxidizedFinder.iter_modules() returns a
list. list is iterable and this difference should hopefully be a harmless implementation detail.

• Support for the path argument to pkgutil.iter_modules() requires that OxidizedFinder’s
path_hook is installed in sys.path_hooks. This will be done automatically if OxidizedFinder is
installed at interpreter initialization time.

7.4.8 Paths Hooks Compatibility

The OxidizedFinder.path_hook method from an instantiated instance can be installed on sys.path_hooks
to enable a OxidizedFinder to function as a path entry finder.

104 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3/library/pkgutil.html
https://docs.python.org/3/reference/import.html#path-entry-finders

PyOxidizer, Release 0.14.1

As a brief refresher, callables on sys.path_hooks are called with paths, giving them the opportunity to service
a particular path. If a path hook responds to a path by returning a path entry finder, that returned object will service
that path. Often, the paths passed to path hooks are from sys.path. However, arbitrary paths can be passed in. A
property of the returned path entry finder is it only targets a particular level in the package hierarchy. Unlike meta
path finders (which can service any named resource it knows about), path entry finders are bound to a specific package
target level and will only return resources existing at that level.

path hooks are used by the following mechanisms:

• The standard library PathFinder (the meta path finder that Python uses to load resources from the filesystem)
uses sys.path_hooks as part of resolving a finder for a given sys.path entry.

• pkgutil.get_importer() for resolving the finder for a given sys.path entry. This in turn is used by
various code, including other pkgutil APIs.

• pkg_resources maps path entry finder types to functions to enable a resolution of pkg_resources.
Distribution instances for individual paths.

When installed on sys.path_hooks, OxidizedFinder.path_hook will respond to the following path val-
ues:

• The path to the current executable, as defined by OxidizedFinder.path_hook_base_str.

• A virtual sub-directory of the path to the current executable, as defined by OxidizedFinder.
path_hook_base_str.

Important: path_hook is very strict about what values it will respond to.

The value must be a str and be equal to OxidizedFinder.path_hook_base_str or have
OxidizedFinder.path_hook_base_str plus a directory separator as the exact string prefix.

path_hook will not respond to bytes, pathlib.Path, or any other path-like type.

OxidizedFinder.path_hook_base_str may not be the same value as sys.executable. Always use
OxidizedFinder.path_hook_base_str to derive sys.path values to ensure the path hook will respond.

When path_hook is called with its OxidizedFinder.path_hook_base_str value, a
OxidizedPathEntryFinder bound to the source OxidizedFinder is returned. This finder is able to
service root resources (i.e. top-level modules and packages).

When path_hook is called with a virtual sub-directory of OxidizedFinder.path_hook_base_str, the
same thing happens except the returned OxidizedPathEntryFinder will only service resources at the exact
package hierarchy specified by that virtual sub-directory.

The validation and normalization of path values is similar to the following:

def path_hook(self, path: str):
Path exactly matching current_exe will be bound to resources at root.
if path == self.path_hook_base_str:

return ...

Virtual sub-directories must begin with self.current_exe + directory
separator.
if not path.startswith((self.path_hook_base_str + "/", self.path_hook_base_str +

→˓"\\")):
raise ImportError

Part after directory separator.
package_part = path[len(self.path_hook_base_str) + 1:]

(continues on next page)

7.4. OxidizedFinder Behavior and Compliance 105

https://docs.python.org/3/library/importlib.html#importlib.machinery.PathFinder

PyOxidizer, Release 0.14.1

(continued from previous page)

Normalize to UNIX style directory separators, allowing Windows
separators to exist.
package_part = package_part.replace("\\", "/")

Ban leading, trailing, and consecutive directory separators.
if package_part.startswith("/") or package_part.endswith("\\") or package_part.

→˓contains("//"):
raise ImportError()

Ban dots in directory components.
for part in package_part.split("/"):

if part.startswith(".") or part.endswith(".") or part.contains(".."):
raise ImportError()

Normalize directory tree to package hierarchy. e.g. foo/bar -> foo.bar.
package = package_part.replace("/", ".")

When converting the package string to a Rust string to facilitate
resource name comparisons, it is encoded to UTF-8, replacing
"bad" code points with the Unicode replacement code point.
rust_package_string = package.encode("utf-8", "replace")

Note that when the package component of virtual sub-directories is converted to a Rust string, we use the UTF-8
encoding, not Python’s active filesystem encoding. This is to keep things simpler. And since OxidizedFinder
indexes resource names using Rust’s UTF-8 backed string type anyway, this seems semantically correct from the
perspective of oxidized_importer.

As an example, if path were os.path.join(finder.path_hook_base_str, "a"), the finder would
only service modules of the form a.*. So a, a.b would match but a.b.c and d would not.

For best results, use os.path.join(finder.path_hook_base_str, str) to define values that will be
accepted by the path hook.

OxidizedPathEntryFinder complies with the PathEntryFinder protocol and imple-
ments OxidizedPathEntryFinder.find_spec() and OxidizedPathEntryFinder.
invalidate_caches(). However, support for the deprecated methods find_loader and find_module is
not implemented. Instances also implement OxidizedPathEntryFinder.iter_modules(), enabling it to
be used by pkgutil.iter_modules().

7.4.9 pkg_resources Compatibility

OxidizedFinder can be registered as a provider for pkg_resources, enabling pkg_resources APIs to be
used with resources tracked by OxidizedFinder instances.

However, there are known compatibility differences. See Support for pkg_resources for more.

7.5 oxidized_importer Python Resource Types

The oxidized_importer module defines Python types beyond OxidizedFinder. This page documents those
types and their APIs.

Important: All types are backed by Rust structs and all properties return copies of the data. This means that if you

106 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3/library/importlib.html#importlib.abc.PathEntryFinder

PyOxidizer, Release 0.14.1

mutate a Python variable that was obtained from an instance’s property, that mutation won’t be reflected in the backing
Rust struct.

7.5.1 OxidizedResource

Represents a resource that is indexed by a OxidizedFinder instance.

See OxidizedResource for API documentation.

OxidizedResource Resource Types

Each OxidizedResource instance describes a particular type of resource. If a resource identifies as a type, it sets
one of the following is_* attributes to True:

OxidizedResource.is_module A Python module. These typically have source or bytecode attached.

Modules can also be packages. In this case, they can hold additional data, such as a mapping of resource files.

OxidizedResource.is_builtin_extension_module A built-in extension module. These represent
Python extension modules that are compiled into the application and don’t exist as separate shared libraries.

OxidizedResource.is_frozen_module A frozen Python module. These are Python modules whose byte-
code is compiled into the application.

OxidizedResource.is_extension_module A Python extension module. These are shared libraries that
can be loaded to provide additional modules to Python.

OxidizedResource.is_shared_library A shared library. e.g. a .so or .dll.

7.5.2 PythonModuleSource

The PythonModuleSource type represents Python module source code. e.g. a .py file. See its linked API
documentation for more.

7.5.3 PythonModuleBytecode

The PythonModuleBytecode type represents Python module bytecode. e.g. what a .pyc file holds (but without
the header that a .pyc file has).

7.5.4 PythonExtensionModule

The PythonExtensionModule type represents a Python extension module. This is a shared library defining a
Python extension implemented in native machine code that can be loaded into a process and defines a Python module.
Extension modules are typically defined by .so, .dylib, or .pyd files.

Note: Properties of this type are read-only.

7.5.5 PythonPackageResource

The PythonPackageResource type represents a non-module resource file.

7.5. oxidized_importer Python Resource Types 107

PyOxidizer, Release 0.14.1

7.5.6 PythonPackageDistributionResource

The PythonPackageDistributionResource type represents a non-module resource file living in a package
distribution directory

7.6 Resource Scanning APIs

The oxidized_importer module exposes functions and Python types to facilitate scanning for and collecting
Python resources.

7.6.1 find_resources_in_path(path)

This function scans a filesystem path and returns discovered resources. See find_resources_in_path() for
the API documentation.

To discover all filesystem based resources that Python’s PathFinder meta path finder would (with the exception of
.zip files), try the following:

import os
import oxidized_importer
import sys

resources = []
for path in sys.path:

if os.path.isdir(path):
resources.extend(oxidized_importer.find_resources_in_path(path))

7.6.2 OxidizedResourceCollector Python Type

The OxidizedResourceCollector type provides functionality for turning instances of Python resource types
into a collection of OxidizedResource for loading into an OxidizedFinder instance. It exists as a conve-
nience, as working with individual OxidizedResource instances can be rather cumbersome.

To create a collector that only marks resources for in-memory loading:

import oxidized_importer

collector = oxidized_importer.OxidizedResourceCollector(
allowed_locations=["in-memory"]

)

7.7 Loading Resource Files

Many Python application need to load resources. Resources are typically non-Python support files, such as images,
config files, etc. In some cases, resources could be Python source or bytecode files. For example, many plugin
systems load Python modules outside the context of the normal import mechanism and therefore treat standalone
Python source/bytecode files as non-module resources.

oxidized_importer has support for loading resource files. But compatibility with Python’s expected behavior
may vary.

108 Chapter 7. oxidized_importer Python Extension

PyOxidizer, Release 0.14.1

7.7.1 Python Resource Loading Mechanisms

Before we talk about oxidized_importer’s support for resource loading, it is important to understand how Python
code in the wild can load resources.

We’ll overview them in the chronological order they were introduced into the Python ecosystem.

The most basic and oldest mechanism to load resources is to perform raw filesystem I/O. Typically, Python code looks
at __file__ to get the filename of the current module. Then, it calculates the directory name and derives paths to
resource files using e.g. os.path.join(). It will usually then open() these paths directly.

Python packaging evolved over time. Packaging tools could express various metadata at build time, such as supple-
mentary resource files. This metadata would be installed next to a package and APIs could be used to access it. One
such API was pkg_resources. Using e.g. pkg_resources.resource_string("foo", "bar.txt"), you
could obtain the content of the resource bar.txt in the foo package.

pkg_resources had useful functionality. And it was the recommended mechanism for loading resource files for
several years. But it wasn’t part of the Python standard library and needed to be explicitly installed. So not everyone
used it.

Python 3.1 added the importlib package, which is the primary home for all core functionality related to import.
Python importers were now defined via interfaces. One of those interfaces is ResourceLoader. It has a sin-
gle method get_data(path). Given a Python module’s loader (e.g. via the __loader__ attribute on the
module), you could call get_data(path) and load a resource. e.g. import foo; foo.__loader__.
get_data("bar.txt").

The standard library only had ResourceLoader for several years. And ResourceLoader wasn’t exactly a
convenient API to use because it was so low-level. Many Python applications continued to use pkg_resources or
direct file-based I/O.

Python 3.7 introduced significant improvements to resource loading in the standard library.

At a low level, module loaders could now implement a get_resource_reader(name) method, which
would return an object implementing the ResourceReader interface. This interface defined methods like
open_resource(name) and contents() to open a file-like handle on a named resource and obtain a list of
all available resources.

At a high level, the importlib.resources package provided a user-friendly API for interacting with ResourceReader
instances. You could call e.g. importlib.resources.open_binary(package, name) to obtain a file-like
handle on a specific resource within a package.

Python 3.7’s new resource APIs finally gave the Python standard library access to powerful APIs for loading resources
without using a 3rd party package (like pkg_resources).

At the time of writing this in April 2020, it looks like Python 3.9 will invent yet another low-level resource loading
API.

Because Python hasn’t had a robust resource loading API in the standard library for much of its history, lots of Python
code in the wild does not make use of the APIs in the standard library. It is not uncommon to see code in 2020 that
still uses __file__ to load resources. Furthermore, because Python 3.7 is still relatively young and code may wish
to maintain compatibility with older Python versions, the newer APIs may be actively avoided.

Important: As of Python 3.8, ResourceReader and importlib.resources are the most robust mechanisms
for loading resources and we recommend adopting these APIs if possible.

7.7.2 Support for ResourceReader

oxidized_importer implements the ResourceReader interface for loading resource files.

7.7. Loading Resource Files 109

https://setuptools.readthedocs.io/en/latest/pkg_resources.html
https://docs.python.org/3.7/library/importlib.html#importlib.abc.ResourceReader
https://docs.python.org/3.7/library/importlib.html#module-importlib.resources

PyOxidizer, Release 0.14.1

However, compatibility with Python’s default filesystem-based implementation can vary. Unfortunately, various be-
havior with ResourceReader is undefined, so it isn’t clear if CPython or oxidized_importer is buggy here.

oxidized_importer maintains an index of known resource files. This index is logically a dict
of dict``s, where the outer key is the Python package name and the inner key is
the resource name. Package names are fully qualified. e.g. ``foo or foo.bar. Re-
source names are effectively relative filesystem paths. e.g. resource.txt or subdir/resource.txt. The
relative paths always use / as the directory separator, even on Windows.

OxidizedFinder.get_resource_reader() returns instances of OxidizedResourceReader. Each in-
stance is bound to a specific Python package: that’s how they are defined. When an OxidizedResourceReader
receives the name of a resource, it performs a simple lookup in the global resources index. If the string key is found,
it is used. Otherwise, it is assumed the resource doesn’t exist.

The OxidizedResourceReader.contents() method will return a list of all keys in the internal resources
index.

OxidizedResourceReader works the same way for in-memory and filesystem-relative resource locations be-
cause internally both use the same index of resources to drive execution: only the location of the resource content
varies.

OxidizedResourceReader’s implementation varies from the standard library filesystem-based implementation
in the following ways:

• OxidizedResourceReader.contents() will return keys from the package’s resources dictionary, not
all the files in the same directory as the underlying Python package (the standard library uses os.listdir()).
OxidizedResourceReader will therefore return resource names in sub-directories as long as those sub-
directories aren’t themselves Python packages.

• Resources must be explicitly registered with OxidizedFinder as such in order to be exposed via the re-
sources API. By contrast, the filesystem-based importer - relying on os.listdir() - will expose all files in
a directory as a resource. This includes .py files.

• OxidizedResourceReader.is_resource() will return True for resource names containing a slash.
Contrast with Python’s, which returns False (even though you can open a resource with ResourceReader.
open_resource() for the same path). OxidizedResourceReader’s behavior is more consistent.

7.7.3 Support for ResourceLoader

OxidizedFinder implements the deprecated ResourceLoader interface and get_data(path) will return
bytes instances for registered resources or raise OSError on request of an unregistered resource.

The path passed to get_data(path) MUST be an absolute path that has the prefix of either the currently running
executable file or the directory containing it.

If the resource path is prefixed with the current executable’s path, the path components after the current executable
path are interpreted as the path to a resource registered for in-memory loading.

If the resource path is prefixed with the current executable’s directory, the path components after this directory are
interpreted as the path to a resource registered for application-relative loading.

All other resource paths aren’t recognized and an OSError will be raised. There is no fallback to loading from the
filesystem, even if a valid filesystem path pointing to an existing file is passed in.

Note: The behavior of not servicing paths that actually exist but aren’t registered with OxidizedFinder as
resources may be overly opinionated and undesirable for some applications.

If this is a legitimate use case for your application, please create a GitHub issue to request this feature.

110 Chapter 7. oxidized_importer Python Extension

https://bugs.python.org/issue36128

PyOxidizer, Release 0.14.1

Once a path is recognized as having the prefix of the current executable or its directory, the remaining path com-
ponents will be interpreted as the resource path. This resource path logically contains a package name component
and a resource name component. OxidizedFinder will traverse all potential package names starting from the
longest/deepest up until the top-level package looking for a known Python package. Once a known package name is
encountered, its resources will be consulted. At most 1 package will be consulted for resources.

Here is a concrete example.

If the path is /usr/bin/myapp/foo/bar/resource.txt and the current executable is /usr/bin/myapp,
the requested resource will be foo/bar/resource.txt. Since the path was prefixed with the executable path,
only resources registered for in-memory loading will be consulted.

Our candidate package names are foo.bar and foo, in that order.

If foo.bar is a known package and resource.txt is registered for in-memory loading, that resource’s contents
will be returned.

If foo.bar is a known package and resource.txt is not registered in that package, OSError is raised.

If foo.bar is not a known package, we proceed to check for package foo.

If foo is a known package and bar/resource.txt is registered for in-memory loading, its contents will be
returned.

Otherwise, we’re out of possible packages, so OSError is raised.

Similar logic holds for resources registered for filesystem-relative loading. The difference here is the stripped path
prefix and we are only looking for resources registered for filesystem-relative loading. Otherwise, the traversal logic
is exactly the same.

If OSError is raised due to a missing resource, its errno is ENOENT and its filename is the passed in
path. Python should automatically translate this to a FileNotFoundError exception. But callers should catch
OSError, as other OSError variants can be raised (e.g. for file permission errors).

7.7.4 Support for __file__

OxidizedFinder may or may not set the __file__ attribute on loaded modules. See __file__ and __cached__
Module Attributes for details.

Therefore, Python code relying on the presence of __file__ to derive paths to resource files may or may not work
with oxidized_importer.

Code utilizing __file__ for resource loading is highly encouraged to switch to the importlib.resources
API. If this is not possible, you can change packaging settings to move the resource locations from in-memory to
filesystem-relative, as __file__ is set when loading modules from the filesystem.

7.7.5 Support for pkg_resources

oxidized_importer has support for working with pkg_resources.

oxidized_importer integration with pkg_resources is enabled by calling
register_pkg_resources().

If an OxidizedFinder imports the pkg_resources module, register_pkg_resources() may be called
automatically.

The pyembed crate and PyOxidizer both have this functionality enabled by default and will likely have
OxidizedFinder servicing the pkg_resources import. So there are likely no additional steps needed to enable
pkg_resources support in these scenarios.

7.7. Loading Resource Files 111

PyOxidizer, Release 0.14.1

If you are using oxidized_importer as a standalone extension module in the context of a regular Python inter-
preter, you may need to call register_pkg_resources() manually to ensure integration is enabled.

To test whether integration is enabled, look for an <class ‘OxidizedFinder’>: <class ‘OxidizedPkgResource-
sProvider’> entry in pkg_resources._provider_factories.

Distribution Resolving

OxidizedPathEntryFinder is a path entry finder type that responds to paths via the sys.path_hooksmech-
anism.

Distribution resolution support requires OxidizedFinder.path_hook to be registered on sys.path_hook
and for register_pkg_resources() to have been called. If both these conditions are satisfied,
pkg_resources should be able to find package distributions indexed by OxidizedFinder instances.

pkg_resources_find_distributions() is the callable registered with pkg_resources for resolving
distributions. It respects path targeting and the only flag, per the behavior documented by pkg_resources.

Metadata and Resource Resolving

If pkg_resources derives the provider for any module loaded with OxidizedFinder or
OxidizedPathEntryFinder, it should create an instance of OxidizedPkgResourcesProvider to
resolve package metadata and resource info.

There are known behavior differences with OxidizedPkgResourcesProvider that may result in runtime errors.
See that type’s API documentation for more.

7.7.6 Porting Code to Modern Resources APIs

Say you have resources next to a Python module. Legacy code inside a module might do something like the following:

def get_resource(name):
"""Return a file handle on a named resource next to this module."""
module_dir = os.path.abspath(os.path.dirname(__file__))
Warning: there is a path traversal attack possible here if
name continues values like ../../../../../etc/password.
resource_path = os.path.join(module_dir, name)

return open(resource_path, 'rb')

Modern code targeting Python 3.7+ can use the ResourceReader API directly:

def get_resource(name):
"""Return a file handle on a named resource next to this module."""
get_resource_reader() may not exist or may return None, which this
code doesn't handle.
reader = __loader__.get_resource_reader(__name__)
return reader.open_resource(name)

The ResourceReader interface is quite low-level. If you want something higher level or want to access resources
outside the current module, it is recommended to use the importlib.resources APIs. e.g.:

import importlib.resources

with importlib.resources.open_binary('mypackage', 'resource-name') as fh:
data = fh.read()

112 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3.7/library/importlib.html#module-importlib.resources

PyOxidizer, Release 0.14.1

The importlib.resources functions are glorified wrappers around the low-level interfaces on module loaders.
But they do provide some useful functionality, such as additional error checking and automatic importing of modules,
making them useful in many scenarios, especially when loading resources outside the current package/module.

7.7.7 Maintaining Compatibility With Python <3.7

If you want to maintain compatibility with Python <3.7, you can’t use ResourceReader or importlib.
resources, as they are not available. The recommended solution here is to use a shim.

The best shim to use is importlib_resources. This is a standalone Python package that is a backport of importlib.
resources to older Python versions. Essentially, you can always get the APIs from the latest Python version. This
shim knows about the various APIs available on Loader instances and chooses the best available one. It should just
work with oxidized_importer.

If you want to implement your own shim without introducing a dependency on importlib_resources, the
following code can be used as a starting implementation:

import importlib

try:
import importlib.resources
Defeat lazy module importers.
importlib.resources.open_binary
HAVE_RESOURCE_READER = True

except ImportError:
HAVE_RESOURCE_READER = False

try:
import pkg_resources
Defeat lazy module importers.
pkg_resources.resource_stream
HAVE_PKG_RESOURCES = True

except ImportError:
HAVE_PKG_RESOURCES = False

def get_resource(package, resource):
"""Return a file handle on a named resource in a Package."""

Prefer ResourceReader APIs, as they are newest.
if HAVE_RESOURCE_READER:

If we're in the context of a module, we could also use
``__loader__.get_resource_reader(__name__).open_resource(resource)``.
We use open_binary() because it is simple.
return importlib.resources.open_binary(package, resource)

Fall back to pkg_resources.
if HAVE_PKG_RESOURCES:

return pkg_resources.resource_stream(package, resource)

Fall back to __file__.

We need to first import the package so we can find its location.
This could raise an exception!
mod = importlib.import_module(package)

Undefined __file__ will raise NameError on variable access.

(continues on next page)

7.7. Loading Resource Files 113

https://importlib-resources.readthedocs.io/en/latest/index.html

PyOxidizer, Release 0.14.1

(continued from previous page)

try:
package_path = os.path.abspath(os.path.dirname(mod.__file__))

except NameError:
package_path = None

if package_path is not None:
Warning: there is a path traversal attack possible here if
resource contains values like ../../../../etc/password. Input
must be trusted or sanitized before blindly opening files or
you may have a security vulnerability!
resource_path = os.path.join(package_path, resource)

return open(resource_path, 'rb')

Could not resolve package path from __file__.
raise Exception('do not know how to load resource: %s:%s' % (

package, resource))

(The above code is dedicated to the public domain and can be used without attribution.)

This code is provided for example purposes only. It may or may not be sufficient for your needs.

7.8 Freezing Applications with oxidized_importer

oxidized_importer can be used to create and run frozen Python applications, where Python resources data
(module source and bytecode, etc) is frozen/packaged and distributed next to your application.

This is conceptually similar to what PyOxidizer does. The major difference is that PyOxidizer will package and
distribute a Python distribution with your application: when only oxidized_importer is being used, the
Python distribution is provided by some other means (it is typically already installed on the system). This makes
oxidized_importer a light-weight alternative to PyOxidizer for scenarios where PyOxidizer isn’t suitable or
viable.

7.8.1 High-Level Freezing Workflow

The steps for freezing an application all look the same:

1. Load OxidizedResource instances into an OxidizedFinder instance so they are indexed.

2. Serialize indexed resources.

3. Write the serialized resources blob somewhere along with any files (if using filesystem-based loading).

4. Somehow make that resources blob available to others (you could add it as a resource file in your Python package
for example).

5. From your application, construct an OxidizedFinder instance and load the resources blob you generated.

6. Register the OxidizedFinder instance as the first element on sys.meta_path.

The next sections show what this may look like.

114 Chapter 7. oxidized_importer Python Extension

PyOxidizer, Release 0.14.1

7.8.2 Indexing and Serializing Resources

In your build process, you’ll need to index resources and serialize them. You can construct OxidizedResource
instances directly and hand them off to an OxidizedFinder instance. But you’ll probably want to use
OxidizedResourceCollector to make this simpler.

Try something like the following:

import os
import stat
import sys

import oxidized_importer

Create a collector to help with managing resources.
collector = oxidized_importer.OxidizedResourceCollector(

allowed_locations=["in-memory"]
)

Add all known Python resources by scanning sys.path.
Note: this will pull in the Python standard library and
any other installed packages, which may not be desirable!
for path in sys.path:

Only directories can be scanned by oxidized_importer.
if os.path.isdir(path):

for resource in oxidized_importer.find_resources_in_path(path):
collector.add_in_memory(resource)

Turn the collected resources into ``OxidizedResource`` and file
install rules.
resources, file_installs = collector.oxidize()

Now index the resources so we can serialize them.
finder = oxidized_importer.OxidizedFinder()
finder.add_resources(resources)

Turn the indexed resources into an opaque blob.
packed_data = finder.serialize_indexed_resources()

Write out that data somewhere.
with open("oxidized_resources", "wb") as fh:

fh.write(packed_data)

Then for all the file installs, materialize those files.
for (path, data, executable) in file_installs:

path.parent.mkdir(parents=True, exist_ok=True)

with path.open("wb") as fh:
fh.write(data)

if executable:
path.chmod(path.stat().st_mode | stat.S_IEXEC)

At this point, you’ve collected all known Python resources and written out a data structure describing them all. For
resources targeting in-memory loading, the content of those resources is embedded in the data structure. For resources
targeting filesystem-relative loading, the data structure contains the relative path to those resources. And you’ve written
out the files in the locations where those relative paths point to.

7.8. Freezing Applications with oxidized_importer 115

PyOxidizer, Release 0.14.1

7.8.3 Loading Serialized Resources in Your Application

Now, from our application code, we need to load the resources and register the custom importer with Python:

import os
import sys

import oxidized_importer

Load those resources into an instance of our custom importer. This
will read the index in the passed data structure and make all
resources immediately available for importing.
finder = oxidized_importer.OxidizedFinder()
finder.index_file_memory_mapped("oxidized_resources")

If the relative path of filesystem-based resources is not relative
to the current executable (which is likely the ``python3`` executable),
you'll need to set ``origin`` to the directory the resources are
relative to.
finder = oxidized_importer.OxidizedFinder(

relative_path_origin=os.path.dirname(os.path.abspath(__file__)),
)
finder.index_bytes(packed_data)

Register the meta path finder as the first item, making it the
first finder that is consulted.
sys.meta_path.insert(0, finder)

At this point, you should be able to ``import`` modules defined
in the resources data!

7.9 Common Issues

7.9.1 Extension Modules Support

Unlike PyOxidizer, OxidizedResourceCollector isn’t (yet) as intelligent about how to handle extension mod-
ules (standalone machine native shared libraries). And even PyOxidizer’s support for extension modules can be brittle.

One notable difference between PyOxidizer and OxidizedResourceCollector is PyOxidizer is able to de-
termine whether importing extension modules from memory is supported and is able to automatically redirect an
extension module to filesystem-based loading if not supported. OxidizedResourceCollector is dumb and
adds resources where you tell it to.

OxidizedFinder supports loading extension modules from memory on Windows. But everywhere else, this isn’t
supported and will result in an ImportError if you index an extension module for in-memory loading.

To work around this deficiency, you’ll want to mark extension modules as loaded from the filesystem unless you are
on Windows. Try something like this:

import oxidized_importer

collector = oxidized_importer.OxidizedResourceCollector(
allowed_locations=["in-memory", "filesystem-relative"],

)

(continues on next page)

116 Chapter 7. oxidized_importer Python Extension

PyOxidizer, Release 0.14.1

(continued from previous page)

Redirect extension modules to the filesystem and everything else to
memory.
for resource in oxidized_importer(find_resources_in_path("/path/to/resources")):

if isinstance(resource, oxidized_importer.PythonExtensionModule):
collector.add_filesystem_relative("lib", resource)

else:
collector.add_in_memory(resource)

7.9.2 Resource Scanning Descends Into site-packages

find_resources_in_path() descends into site-packages directories. This is arguably not the de-
sired behavior, especially when in the context of virtualenvs, which may want to not inherit the resources in the
site-packages of the outer Python installation. This will likely be fixed in a future release.

7.10 Security Implications of Loading Resources

OxidizedFinder allows Python code to define its own OxidizedResource instances to be made available for
loading. This means Python code can define its own Python module source or bytecode that could later be executed. It
also allows registration of extension modules and shared libraries, which give a vector for allowing execution of native
machine code.

This feature has security implications, as it provides a vector for arbitrary code execution.

While it might be possible to restrict this feature to provide stronger security protections, we have not done so yet.
Our thinking here is that it is extremely difficult to sandbox Python code. Security sandboxing at the Python layer
is effectively impossible: the only effective mechanism to sandbox Python is to add protections at the process level.
e.g. by restricting what system calls can be performed. We feel that the capability to inject new Python modules and
even shared libraries via OxidizedFinder doesn’t provide any new or novel vector that doesn’t already exist in
Python’s standard library and can’t already be exploited by well-crafted Python code. Therefore, this feature isn’t a
net regression in security protection.

If you have a use case that requires limiting the features of OxidizedFinder so security isn’t sacrificed, please file
an issue <https://github.com/indygreg/PyOxidizer/issues>.

7.11 API Reference

7.11.1 Module Level Functions

oxidized_importer.decode_source(io_module, source_bytes)→ str
Decodes Python source code bytes to a str.

This is effectively a reimplementation of importlib._bootstrap_external.decode_source()

oxidized_importer.find_resources_in_path(path)→ List
This function will scan the specified filesystem path and return an iterable of objects representing found re-
sources. Those objects will be 1 of the types documented in oxidized_importer Python Resource Types.

Only directories can be scanned.

oxidized_importer.register_pkg_resources()
Enables pkg_resources integration.

7.10. Security Implications of Loading Resources 117

PyOxidizer, Release 0.14.1

This function effectively does the following:

• Calls pkg_resources.register_finder() to map OxidizedPathEntryFinder to
:py:func:pkg_resources_find_distributions‘.

• Calls pkg_resources.register_load_type() to map OxidizedFinder to
OxidizedPkgResourcesProvider.

It is safe to call this function multiple times, as behavior should be deterministic.

oxidized_importer.pkg_resources_find_distributions(finder: OxidizedPathEntryFinder,
path_item: str, only=false)→ list

Resolve pkg_resources.Distribution instances given a OxidizedPathEntryFinder and search
criteria.

This function is what is registered with pkg_resources for distribution resolution and you likely don’t need
to call it directly.

7.11.2 The OxidizedFinder Class

class oxidized_importer.OxidizedFinder
A meta path finder that resolves indexed resources. See See OxidizedFinder Meta Path Finder for more high-
level documentation.

This type implements the following interfaces:

• importlib.abc.MetaPathFinder

• importlib.abc.Loader

• importlib.abc.InspectLoader

• importlib.abc.ExecutionLoader

See the importlib.abc documentation for more on these interfaces.

In addition to the methods on the above interfaces, the following methods defined elsewhere in importlib
are exposed:

• get_resource_reader(fullname: str) -> importlib.abc.ResourceReader

• find_distributions(context: Optional[DistributionFinder.Context]) ->
[Distribution]

ResourceReader is documented alongside other importlib.abc interfaces.
find_distribution() is documented in importlib.metadata.

Instances have additional functionality beyond what is defined by importlib. This functionality allows you
to construct, inspect, and manipulate instances.

path_hook_base_str
(str) The base path that the path hook handler on this instance will respond to.

This value is often the same as sys.executable but isn’t guaranteed to be that exact value.

origin
(str) The path this instance is using as the anchor for relative path references.

__new__(cls, relative_path_origin: Optional[os.PathLike])→ OxidizedFinder
Construct a new instance of OxidizedFinder.

New instances of OxidizedFinder can be constructed like normal Python types:

118 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3/library/importlib.html#importlib.abc.MetaPathFinder
https://docs.python.org/3/library/importlib.html#module-importlib.abc
https://docs.python.org/3/library/importlib.metadata.html

PyOxidizer, Release 0.14.1

finder = OxidizedFinder()

The constructor takes the following named arguments:

relative_path_origin A path-like object denoting the filesystem path that should be used as the
origin value for relative path resources. Filesystem-based resources are stored as a relative path to an
anchor value. This is that anchor value. If not specified, the directory of the current executable will
be used.

See the python_packed_resources Rust crate for the specification of the binary data blob defining packed
resources data.

Important: The packed resources data format is still evolving. It is recommended to use the same
version of the oxidized_importer extension to produce and consume this data structure to ensure
compatibility.

index_bytes(data: bytes)→ None
This method parses any bytes-like object and indexes the resources within.

index_file_memory_mapped(path: pathlib.Path)→ None
This method parses the given Path-like argument and indexes the resources within. Memory mapped I/O
is used to read the file. Rust managed the memory map via the memmap crate: this does not use the Python
interpreter’s memory mapping code.

index_interpreter_builtins()→ None
This method indexes Python resources that are built-in to the Python interpreter itself. This indexes built-in
extension modules and frozen modules.

index_interpreter_builtin_extension_modules()→ None
This method will index Python extension modules that are compiled into the Python interpreter itself.

index_interpreter_frozen_modules()→ None
This method will index Python modules whose bytecode is frozen into the Python interpreter itself.

indexed_resources()→ List[OxidizedResource]
This method returns a list of resources that are indexed by the instance. It allows Python code to inspect
what the finder knows about.

Any mutations to returned values are not reflected in the finder.

See OxidizedResource for more on the returned type.

add_resource(resource: OxidizedResource)
This method registers an OxidizedResource instance with the finder, enabling the finder to use it to service
lookups.

When an OxidizedResource is registered, its data is copied into the finder instance. So changes to
the original OxidizedResource are not reflected on the finder. (This is because OxidizedFinder
maintains an index and it is important for the data behind that index to not change out from under it.)

Resources are stored in an invisible hash map where they are indexed by the name attribute. When
a resource is added, any existing resource under the same name has its data replaced by the incoming
OxidizedResource instance.

If you have source code and want to produce bytecode, you can do something like the following:

def register_module(finder, module_name, source):
code = compile(source, module_name, "exec")
bytecode = marshal.dumps(code)

(continues on next page)

7.11. API Reference 119

https://docs.rs/python-packed-resources/0.1.0/python_packed_resources/

PyOxidizer, Release 0.14.1

(continued from previous page)

resource = OxidizedResource()
resource.name = module_name
resource.is_module = True
resource.in_memory_bytecode = bytecode
resource.in_memory_source = source

finder.add_resource(resource)

add_resources(resources: List[OxidizedResource]
This method is syntactic sugar for calling add_resource() for every item in an iterable. It is exposed
because function call overhead in Python can be non-trivial and it can be quicker to pass in an iterable of
OxidizedResource than to call add_resource() potentially hundreds of times.

serialize_indexed_resources(ignore_builtin=true, ignore_frozen=true)→ bytes
This method serializes all resources currently indexed by the instance into an opaque bytes in-
stance. The returned data can be fed into a separate OxidizedFinder instance by passing it to
OxidizedFinder.__new__().

Arguments:

ignore_builtin (bool) Whether to ignore builtin extension modules from the serialized data.

Default is True

ignore_frozen (bool) Whether to ignore frozen extension modules from the serialized data.

Default is True.

Entries for built-in and frozen modules are ignored by default because they aren’t portable, as they are
compiled into the interpreter and aren’t guaranteed to work from one Python interpreter to another. The
serialized format does support expressing them. Use at your own risk.

path_hook(path: Union[str, bytes, os.PathLike[AnyStr]])→ OxidizedPathEntryFinder
Implements a path hook for obtaining a PathEntryFinder from a sys.path entry. See Paths Hooks
Compatibility for details.

Raises ImportError if the given path isn’t serviceable. The exception should have .__cause__ set
to an inner exception with more details on why the path was rejected.

7.11.3 The OxidizedResourceReader Class

class oxidized_importer.OxidizedResourceReader
importlib.abc.ResourceReader implementer for OxidizedFinder.

open_resource(resource: str)

resource_path(resource: str)

is_resource(name: str)→ bool

contents()→ list[str]

7.11.4 The OxidizedPathEntryFinder Class

class oxidized_importer.OxidizedPathEntryFinder
A path entry finder that can find resources contained in an associated OxidizedFinder instance.

Instances are created via OxidizedFinder.path_hook.

120 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3/library/importlib.html#importlib.abc.PathEntryFinder
https://docs.python.org/3/reference/import.html#path-entry-finders

PyOxidizer, Release 0.14.1

Direct use of OxidizedPathEntryFinder is generally unnecessary: OxidizedFinder is the primary
interface to the custom importer.

See Paths Hooks Compatibility for more on path hook and path entry finder behavior in
oxidized_importer.

find_spec(fullname: str, target: Optional[types.ModuleType] = None) → Op-
tional[importlib.machinery.ModuleSpec]

Search for modules visible to the instance.

invalidate_caches()→ None
Invoke the same method on the OxidizedFinder instance with which the
OxidizedPathEntryFinder instance was constructed.

iter_modules(prefix: str = "")→ List[pkgutil.ModuleInfo]
Iterate over the visible modules. This method complies with pkgutil.iter_modules’s protocol.

7.11.5 The OxidizedPkgResourcesProvider Class

class oxidized_importer.OxidizedPkgResourcesProvider
A pkg_resources.IMetadataProvider and pkg_resources.IResourceProvider enabling
pkg_resources to access package metadata and resources.

All members of the aforementioned interfaces are implemented. Divergence from pkg_resources defined
behavior is documented next to the method.

has_metadata(name: str)→ bool

get_metadata(name: str)→ str

get_metadata_lines(name: str)→ List[str]
Returns a list instead of a generator.

metadata_isdir(name: str)→ bool

metadata_listdir(name: str)→ List[str]

run_script(script_name: str, namespace: Any)
Always raises NotImplementedError.

Please leave a comment in #384 if you would like this functionality implemented.

get_resource_filename(manager, resource_name: str)
Always raises NotImplementedError.

This behavior appears to be allowed given code in pkg_resources. However, it means that
pkg_resources.resource_filename() will not work. Please leave a comment in #383 if you
would like this functionality implemented.

get_resource_stream(manager, resource_name: str)→ io.BytesIO

get_resource_string(manager, resource_name: str)→ bytes

has_resource(resource_name: str)→ bool

resource_isdir(resource_name: str)→ bool

resource_listdir(resource_name: str)→ List[str]
Returns a list instead of a generator.

7.11. API Reference 121

https://github.com/indygreg/PyOxidizer/issues/384
https://github.com/indygreg/PyOxidizer/issues/383

PyOxidizer, Release 0.14.1

7.11.6 The OxidizedResource Class

class oxidized_importer.OxidizedResource
Represents a resource that is indexed by a OxidizedFinder instance.

Each instance represents a named entity with associated metadata and data. e.g. an instance can represent a
Python module with associated source and bytecode.

New instances can be constructed via OxidizedResource(). This will return an instance whose name =
"" and all properties will be None or false.

is_module
A bool indicating if this resource is a Python module. Python modules are backed by source or bytecode.

is_builtin_extension_module
A bool indicating if this resource is a Python extension module built-in to the Python interpreter.

is_frozen_module
A bool indicating if this resource is a Python module whose bytecode is frozen into the Python interpreter.

is_extension_module
A bool indicating if this resource is a Python extension module.

is_shared_library
A bool indicating if this resource is a shared library.

name
The str name of the resource.

is_package
A bool indicating if this resource is a Python package.

is_namespace_package
A bool indicating if this resource is a Python namespace package.

in_memory_source
bytes or None holding Python module source code that should be imported from memory.

in_memory_bytecode
bytes or None holding Python module bytecode that should be imported from memory.

This is raw Python bytecode, as produced from the marshal module. .pyc files have a header before
this data that will need to be stripped should you want to move data from a .pyc file into this field.

in_memory_bytecode_opt1
bytes or None holding Python module bytecode at optimization level 1 that should be imported from
memory.

This is raw Python bytecode, as produced from the marshal module. .pyc files have a header before
this data that will need to be stripped should you want to move data from a .pyc file into this field.

in_memory_bytecode_opt2
bytes or None holding Python module bytecode at optimization level 2 that should be imported from
memory.

This is raw Python bytecode, as produced from the marshal module. .pyc files have a header before
this data that will need to be stripped should you want to move data from a .pyc file into this field.

in_memory_extension_module_shared_library
bytes or None holding native machine code defining a Python extension module shared library that
should be imported from memory.

122 Chapter 7. oxidized_importer Python Extension

PyOxidizer, Release 0.14.1

in_memory_package_resources
dict[str, bytes] or None holding resource files to make available to the importlib.
resources APIs via in-memory data access. The name of this object will be a Python package name.
Keys in this dict are virtual filenames under that package. Values are raw file data.

in_memory_distribution_resources
dict[str, bytes] or None holding resource files to make available to the importlib.
metadata API via in-memory data access. The name of this object will be a Python package name.
Keys in this dict are virtual filenames. Values are raw file data.

in_memory_shared_library
bytes or None holding a shared library that should be imported from memory.

shared_library_dependency_names
list[str] or None holding the names of shared libraries that this resource depends on. If this resource
defines a loadable shared library, this list can be used to express what other shared libraries it depends on.

relative_path_module_source
pathlib.Path or None holding the relative path to Python module source that should be imported
from the filesystem.

relative_path_module_bytecode
pathlib.Path or None holding the relative path to Python module bytecode that should be imported
from the filesystem.

relative_path_module_bytecode_opt1
pathlib.Path or None holding the relative path to Python module bytecode at optimization level 1
that should be imported from the filesystem.

relative_path_module_bytecode_opt2
pathlib.Path or None holding the relative path to Python module bytecode at optimization level 2
that should be imported from the filesystem.

relative_path_extension_module_shared_library
pathlib.Path or None holding the relative path to a Python extension module that should be imported
from the filesystem.

relative_path_package_resources
dict[str, pathlib.Path] or None holding resource files to make available to the importlib.
resources APIs via filesystem access. The name of this object will be a Python package name. Keys
in this dict are filenames under that package. Values are relative paths to files from which to read data.

relative_path_distribution_resources
dict[str, pathlib.Path] or None holding resource files to make available to the importlib.
metadata APIs via filesystem access. The name of this object will be a Python package name. Keys in
this dict are filenames under that package. Values are relative paths to files from which to read data.

7.11.7 The OxidizedResourceCollector Class

class oxidized_importer.OxidizedResourceCollector
Provides functionality for turning instances of Python resource types into a collection of OxidizedResource
for loading into an OxidizedFinder instance.

__new__(cls, allowed_locations: list[str])
Construct an instance by defining locations that resources can be loaded from.

The accepted string values are in-memory and filesystem-relative.

allowed_locations
(list[str]) Exposes allowed locations where resources can be loaded from.

7.11. API Reference 123

PyOxidizer, Release 0.14.1

add_in_memory_resource(resource)
Adds a Python resource type (PythonModuleSource, PythonModuleBytecode, etc) to the col-
lector and marks it for loading via in-memory mechanisms.

add_filesystem_relative(prefix, resource)
Adds a Python resource type (PythonModuleSource, PythonModuleBytecode, etc) to the
collector and marks it for loading via a relative path next to some origin path (as specified to the
OxidizedFinder). That relative path can have a prefix value prepended to it. If no prefix is desired
and you want the resource placed next to the origin, use an empty str for prefix.

oxidize()→ tuple[list[OxidizedResource], list[tuple[pathlib.Path, bytes, bool]]]
Takes all the resources collected so far and turns them into data structures to facilitate later use.

The first element in the returned tuple is a list of OxidizedResource instances.

The second is a list of 3-tuples containing the relative filesystem path for a file, the content to write to that
path, and whether the file should be marked as executable.

7.11.8 The OxidizedResourceReader Class

class oxidized_importer.OxidizedResourceResource
An implementation of importlib.abc.ResourceReader to facilitate resource reading from an
OxidizedFinder.

See Support for ResourceReader for more.

7.11.9 The PythonModuleSource Class

class oxidized_importer.PythonModuleSource
Represents Python module source code. e.g. a .py file.

module
(str) The fully qualified Python module name. e.g. my_package.foo.

source
(bytes) The source code of the Python module.

Note that source code is stored as bytes, not str. Most Python source is stored as utf-8, so you can
.encode("utf-8") or .decode("utf-8") to convert between bytes and str.

is_package
(bool) Whether this module is a Python package.

7.11.10 The PythonModuleBytecode Class

class oxidized_importer.PythonModuleBytecode
Represents Python module bytecode. e.g. what a .pyc file holds (but without the header that a .pyc file has).

module
(str) The fully qualified Python module name.

bytecode
(bytes) The bytecode of the Python module.

This is what you would get by compiling Python source code via something like marshal.
dumps(compile(source, "exe")). The bytecode does not contain a header, like what would
be found in a .pyc file.

124 Chapter 7. oxidized_importer Python Extension

https://docs.python.org/3.9/library/importlib.html#importlib.abc.ResourceReader

PyOxidizer, Release 0.14.1

optimize_level
(int) The bytecode optimization level. Either 0, 1, or 2.

is_package
(bool) Whether this module is a Python package.

7.11.11 The PythonPackageResource Class

class oxidized_importer.PythonPackageResource
Represents a non-module resource file. These are files that live next to Python modules that are typically
accessed via the APIs in importlib.resources.

package
(str) The name of the leaf-most Python package this resource is associated with.

With OxidizedFinder, an importlib.abc.ResourceReader associated with this package will
be used to load the resource.

name
(str) The name of the resource within its package. This is typically the filename of the resource. e.g.
resource.txt or child/foo.png.

data
(bytes) The raw binary content of the resource.

7.11.12 The PythonPackageDistributionResource Class

class oxidized_importer.PythonPackageDistributionResource
Represents a non-module resource file living in a package distribution directory (e.g.
<package>-<version>.dist-info or <package>-<version>.egg-info).

These resources are typically accessed via the APIs in importlib.metadata.

package
(str) The name of the Python package this resource is associated with.

version
(str) Version string of Python package this resource is associated with.

name
(str) The name of the resource within the metadata distribution. This is typically the filename of the
resource. e.g. METADATA.

data
(bytes) The raw binary content of the resource.

7.11.13 The PythonExtensionModule Class

class oxidized_importer.PythonExtensionModule
Represents a Python extension module. This is a shared library defining a Python extension implemented in
native machine code that can be loaded into a process and defines a Python module. Extension modules are
typically defined by .so, .dylib, or .pyd files.

Note: Properties of this type are read-only.

7.11. API Reference 125

PyOxidizer, Release 0.14.1

126 Chapter 7. oxidized_importer Python Extension

CHAPTER 8

Python Packed Resources

PyOxidizer has defined a custom data format for storing resources useful to the execution of a Python interpreter. We
call this data format Python packed resources.

The way it works is that some producer collects resources required by a Python interpreter. These resources include
Python module source and bytecode, non-module resource/data files, extension modules, and shared libraries. Meta-
data about these resources and sometimes the raw resource data itself is serialized to a binary data structure.

At Python interpreter run time, this data structure is loaded (it can be embedded in a binary or exist as a standalone
file) and parsed. A custom Python Meta Path Finders (OxidizedFinder from oxidized_importer Python Extension)
then uses the parsed data structure to power Python module importing.

This functionality is similar to using a .zip file for holding Python modules. However, the Python packed resources
data structure is far more advanced.

8.1 Implementation

The canonical implementation of the writer and parser of this data structure lives in the
python-packed-resources Rust crate. The canonical home of this crate is https://github.com/indygreg/
PyOxidizer/tree/main/python-packed-resources.

This crate is published to crates.io at https://crates.io/crates/python-packed-resources.

8.2 Specification

From a high level, the data structure defines an iterable of resources. A resource is an entity with a name, metadata,
and blob fields. Typically the most common resource is a Python module/package. But other resource types (such as
shared libraries) are defined.

The first 8 bytes of the data structure are a magic header identifying the content as our data structure and the version of
it. The first 7 bytes are pyembed and the following 1 byte denotes a version. Semantics of each version are denoted
in sections below.

127

https://github.com/indygreg/PyOxidizer/tree/main/python-packed-resources
https://github.com/indygreg/PyOxidizer/tree/main/python-packed-resources
https://crates.io/crates/python-packed-resources

PyOxidizer, Release 0.14.1

8.2.1 High-Level Layout

From a high-level, the serialized format consists of:

• A global header describing the overall payload.

• An index describing the blob sections present in the payload.

• An index describing each resource and its content.

• A series of blob sections holding the data referenced by the resources index.

A resource is composed of various fields that describe it. Examples of fields include the resource name, source code,
and bytecode. The resources index describes which fields are present and where to find them in the payload.

The actual content of fields (e.g. the raw bytes containing source code) is stored in field-specific sections after the
index. Each field has its own section and data for all resources is stored next to each other. e.g. you will have all the
data for resource names followed by all data for module sourcecode.

The low-level data format is described below. All integers are little-endian.

The first 13 bytes after the magic header denote a global header. The global header consists of:

• A u8 denoting the number of blob sections, blob_sections_count.

• A u32 denoting the length of the blob index, blob_index_length.

• A u32 denoting the total number of resources in this data, resources_count.

• A u32 denoting the length of the resources index, resources_index_length.

Following the global header is the blob index. The blob index describes the various blob sections present in the
payload following the resources index.

Each entry in the blob index logically consists of a set of fields defining metadata about each blob section. This is
encoded by a start of entry u8 marker followed by N u8 field type values and their corresponding metadata, followed
by an end of entry u8 marker. The blob index is terminated by an end of index u8 marker. The total number of bytes
in the blob index including the end of index marker should be blob_index_length.

Following the blob index is the resources index. Each entry in this index defines a sparse set of metadata describing a
single resource. Entries are composed of a series of u8 identifying pieces of metadata, followed by field-specific sup-
plementary descriptions. For example, a value of 0x02 denotes the length of the resources’s name and is immediately
followed by a u16 holding said length. See the section below for each field tracked by this index.

Following the resources index is blob data. Blob data is logically consisted of different sections holding data for
different fields for different resources. But there is no internal structure or separators: all the individual blobs are just
laid out next to each other.

8.2.2 Blob Field Types

The Blob Index allows attributing a sparse set of metadata with every blob section entry. The type of metadata being
conveyed is defined by a u8. Some field types have additional metadata following that field.

The various field types and their semantics follow.

0x00 End of index. This field indicates that there are no more blob index entries and we’ve reached the end of the
blob index.

0x01 Start of blob section entry. Encountering this value signals the beginning of a new blob section. From a
specification standpoint, this isn’t strictly required. But it helps ensure parser state.

0xff End of blob section entry. Encountering this value signals the end of the current blob section definition. The
next encountered u8 in the index should be 0x01 to denote a new entry or 0x00 to denote end of index.

128 Chapter 8. Python Packed Resources

PyOxidizer, Release 0.14.1

0x02 Resource field type. This field defines which resource field this blob section is holding data for. A u8 following
this one will contain the resource field type value (see section below).

0x03 Raw payload length. This field defines the raw length in bytes of the blob section in the payload. The u64
containing that length will immediately follow this u8.

0x04 Interior padding mechanism. This field defines interior padding between elements in the blob section. Follow-
ing this u8 is another u8 denoting the padding mechanism.

0x01 indicates no padding. 0x02 indicates NULL padding (a 0x00 between elements).

If not present, no padding is assumed. If the payload data logically consists of discrete resources (e.g. Python
package resource files), then padding applies to these sub-elements as well.

8.2.3 Resource Field Types

The Resources Index allows attributing a sparse set of metadata with every resource. A u8 indicates what metadata is
being conveyed. Some field types have additional metadata following this [u8] further defining the field. The values
of each defined metadata type follow.

0x00 End of index. Special type to denote the end of an index.

0x01 Start of resource entry. Signals the beginning of a new resource. From a specification standpoint this isn’t
strictly required. But it helps ensure parser state.

0x02 Resource flavor. Declares the type of resource this entry represents. A u8 defining the resource flavor immedi-
ately follows this byte. See the section below for valid resource flavors.

This field is deprecated in version 2 in favor of the individual fields expressing presence of a resource type. (See
fields starting at 0x16.)

0xff End of resource entry. The next encountered u8 in the index should be an end of index or start of resource
marker.

0x03 Resource name. A u16 denoting the length in bytes of the resource name immediately follows this byte. The
resource name must be valid UTF-8.

0x04 Package flag. If encountered, the resource is identified as a Python package.

0x05 Namespace package flag. If encountered, the resource is identified as a Python namespace package.

0x06 In-memory Python module source code. A u32 denoting the length in bytes of the module’s source code
immediately follows this byte.

0x07 In-memory Python module bytecode. A u32 denoting the length in bytes of the module’s bytecode immedi-
ately follows this byte.

0x08 In-memory Python module optimized level 1 bytecode. A u32 denoting the length in bytes of the module’s
optimization level 1 bytecode immediately follows this byte.

0x09 In-memory Python module optimized level 2 bytecode. Same as previous, except for bytecode optimization
level 2.

0x0a In-memory Python extension module shared library. A u32 denoting the length in bytes of the extension
module’s machine code immediately follows this byte.

0x0b In-memory Python resources data. If encountered, the module/package contains non-module resources files
and the number of resources is contained in a u32 that immediately follows. Following this u32 is an array of
(u16, u64) denoting the resource name and payload size for each resource in this package.

0x0c In-memory Python distribution resource. Defines resources accessed from importlib.metadata APIs. If
encountered, the module/package contains distribution metadata describing the package. The number of files

8.2. Specification 129

PyOxidizer, Release 0.14.1

being described is contained in a u32 that immediately follows this byte. Following this u32 is an array of
(u16, u64) denoting the distribution file name and payload size for each virtual file in this distribution.

0x0d In-memory shared library. If set, this resource is a shared library and not a Python module. The resource
name field is the name of this shared library, with file extension (as it would appear in a dynamic binary’s
loader metadata to indicate a library dependency). A u64 denoting the length in bytes of the shared library data
follows. This shared library should be loaded from memory.

0x0e Shared library dependency names. This field indicates the names of shared libraries that this entity depends
on. The number of library names is contained in a u16 that immediately follows this byte. Following this u16
is an array of u16 denoting the length of the library name for each shared library dependency. Each described
shared library dependency may or may not be described by other entries in this data structure.

0x0f Relative filesystem path to Python module source code. A u32 holding the length in bytes of a filesystem path
encoded in the platform-native file path encoding follows. The source code for a Python module will be read
from a file at this path.

0x10 Relative filesystem path to Python module bytecode. Similar to the previous except the filesystem path holds
Python module bytecode.

0x11 Relative filesystem path to Python module bytecode at optimization level 1. Similar to the previous except for
what is being pointed to.

0x12 Relative filesystem path to Python module bytecode at optimization level 2. Similar to the previous except for
what is being pointed to.

0x13 Relative filesystem path to Python extension module shared library. Similar to the previous except the file holds
a Python extension module loadable as a shared library.

0x14 Relative filesystem path to Python package resources. The number of resources is contained in a u32 that im-
mediately follows. Following this u32 is an array of (u16, u32) denoting the resource name and filesystem
path to each resource in this package.

0x15 Relative filesystem path to Python distribution resources.

Defines resources accessed from importlib.metadata APIs. If encountered, the module/package contains
distribution metadata describing the package. The number of files being described is contained in a u32 that
immediately follows this byte. Following this u32 is an array of (u16, u32) denoting the distribution file
name and filesystem path to that distribution file.

0x16 Is Python module flag. If set, this resource contains data for an importable Python module or package. Resource
data is associated with Python packages and is covered by this type.

0x17 Is builtin extension module flag. This type represents a Python extension module that is built in (compiled
into) the interpreter itself or is otherwise made available to the interpreter via PyImport_Inittab such that
it should be imported with the builtin importer.

0x18 Is frozen Python module flag. This type represents a Python module whose bytecode is frozen and made
available to the Python interpreter via the PyImport_FrozenModules array and should be imported with
the frozen importer.

0x19 Is Python extension flag. This type represents a compiled Python extension. Extensions have specific require-
ments around how they are to be loaded and are differentiated from regular Python modules.

0x1a Is shared library flag. This type represents a shared library that can be loaded into a process.

0x1b Is utf-8 filename data flag. This type represents an arbitrary filename. The resource name is a UTF-8 encoded
filename of the file this resource represents. The file’s data is either embedded in memory or referred to via a
relative path reference.

0x1c File data is executable flag.

If set, the arbitrary file this resource tracks should be marked as executable.

130 Chapter 8. Python Packed Resources

PyOxidizer, Release 0.14.1

0x1d Embedded file data.

If present, the resource should be a file resource and this field holds its raw file data in memory.

A u64 containing the length of the embedded data follows this field.

0x1e UTF-8 relative path file data.

If present, the resource should be a file resource and this field defines the relative path containing that file’s data.
The relative path filename is UTF-8 encoded.

A u32 denoting the length of the UTF-8 relative path (in bytes) follows.

8.2.4 Resource Flavors

Important: Enumerated resource flavors are deprecated after version 1. You should use individual fields to express
resource identity instead.

The data format allows defining different types/flavors of resources. This flavor of a resource is identified by a u8.
The declared flavors are:

0x00 No flavor. Should not be encountered.

0x01 Python module/package. This is equivalent to resource field 0x16 being set.

0x02 Builtin Python extension module. This is equivalent to resource field 0x17 being set.

0x03 Frozen Python module. This is equivalent to resource field 0x18 being set.

0x04 Python extension. This is equivalent to resource field 0x19 being set.

0x05 Shared library. This is equivalent to resource field 0x1a being set.

8.2.5 pyembed\x01 Format

The initially released/formalized packed resources data format.

Supports resource field types up to and including 0x15.

8.2.6 pyembed\x02 Format

Version 2 of the packed resources data format.

This version introduces field type values 0x16 to 0x1a. The resource flavor field type (0x02) is deprecated and the
individual field types denoting resource types should be used instead.

(PyOxidizer removed run-time code looking at field type 0x02 when this format was introduced.)

8.2.7 pyembed\x03 Format

Version 3 of the packed resources data format.

This version introduces field type values 0x1b to 0x1e.

These fields provide the ability for a resource to identify itself as an arbitrary filename and for the arbitrary file data to
be embedded within the data structure or referenced via a relative path.

8.2. Specification 131

PyOxidizer, Release 0.14.1

Unlike previous fields that use OS-native encoding of filesystem paths ([u8] on POSIX and [u16] on Windows),
the paths for these new fields use UTF-8. This can’t represent all valid paths on all platforms. But it is portable and
works for most paths encountered in the wild.

8.3 Design Considerations

The design of the packed resources data format was influenced by a handful of considerations.

Performance is a significant consideration. We want everything to be as fast as possible. Possible dimensions influ-
encing performance include parse time, payload size, and I/O access patterns.

The payload is designed such that the index data is at the beginning so a reader only has to read a contiguous slice of
data to fully understand the data within. This is in opposition to jumping around the entire data structure to extract
metadata of the data within. This means that we only need to page in a fraction of the total backing data structure in
order to initialize our custom importer. In addition, the index data is read sequentially. Sequential I/O should always
be faster than random access I/O.

x86 is little endian, so we use little endian integers so we don’t need to waste cycles on endian transformation.

We store all data for the same field next to each other in the data structure. This is in opposition to say packing all
of resource A’s data then resource B’s, etc. We do this to help maximize locality for similar data. This can help with
performance because often the same field for multiple resources is accessed together. e.g. an importer will access a
bunch of module bytecode entries at the same time. This locality helps minimize the number of pages that must be
read. Locality can also help yield higher compression ratios.

Everything is designed to facilitate a reader leveraging 0-copy. If a reader has the data structure in memory, we don’t
want to require it to copy memory in order to reference entries. In Rust speak, we should be able to hold &[u8]
references everywhere.

There is no checksumming of the data because we don’t want to incur I/O overhead to read the entire blob. It could be
added as an optional feature.

8.4 Potential Future Features

This data structure is robust enough to be used by PyOxidizer to power importing of every Python module used by a
Python interpreter. However, there are various aspects that could be improved.

8.4.1 Compression

A potential area for optimization is use of general compression. Various fields should compress well - either in
streaming mode or by utilizing compression dictionaries. Compression would undermine 0-copy, of course. But in
environments where we want to optimize for size, it could be desirable.

8.4.2 Platform Portability

Currently, filesystem paths are encoded as platform native. That means [u8] on POSIX and [u16] on Windows.
This isn’t portable.

Most filenames are likely ASCII or UTF-8 safe. For the common case where we don’t need platform-native filenames
to preserve subtle encoding differences, we could express paths as a simpler string type.

132 Chapter 8. Python Packed Resources

CHAPTER 9

The pyembed Rust Crate

The pyembed Rust crate facilitates the embedding of a Python interpreter in a Rust binary.

The crate provides an API for instantiating and controlling an embedded Python interpreter. It also defines a custom
meta path importer that can be used to import Python resources (such as module bytecode) from memory.

9.1 Crate Configuration

9.1.1 Cargo Features to Control Building

The pyembed crate has a set of build-mode-* Cargo feature flags to control how build artifacts are created and
consumed.

The features are described in the following sections.

build-mode-default

This is the default build mode. It is enabled by default.

This build mode uses default Python linking behavior and feature detection as implemented by the cpython and
python3-sys crates. It will attempt to find a python in PATH or from the PYTHON_SYS_EXECUTABLE envi-
ronment variable and dynamically link against it.

This is the default mode for convenience, as it enables the pyembed crate to build in the most environments. However,
the built binaries will have a dependency against a foreign libpython and likely aren’t suitable for distribution.

pyembed has a dependency on Python 3.8+. If an older Python is detected, it can result in build errors, including
unresolved symbol errors.

build-mode-pyoxidizer-exe

A pyoxidizer executable will be run to generate build artifacts.

133

PyOxidizer, Release 0.14.1

The path to this executable can be defined via the PYOXIDIZER_EXE environment variable. Otherwise PATH will
be used.

At build time, pyoxidizer run-build-script will be run. A PyOxidizer configuration file will be discov-
ered using PyOxidizer’s heuristics for doing so. OUT_DIR will be set if running from cargo, so a pyoxidizer.
bzl next to the main Rust project being built should be found and used.

pyoxidizer run-build-scriptwill resolve the default build script target by default. To override which target
should be resolved, specify the target name via the PYOXIDIZER_BUILD_TARGET environment variable. e.g.:

$ PYOXIDIZER_BUILD_TARGET=build-artifacts cargo build

build-mode-prebuilt-artifacts

This mode tells the build script to reuse artifacts that were already built. (Perhaps you called pyoxidizer build
or pyoxidizer run-build-script outside the context of a normal cargo build.)

In this mode, the build script will look for artifacts in the directory specified by PYOXIDIZER_ARTIFACT_DIR if
set, falling back to OUT_DIR. See Build Artifacts for documentation on the required artifacts.

build-mode-standalone

Do not attempt to invoke pyoxidizer or find artifacts it would have built. It is possible to build the pyembed crate
in this mode if the rust-cpython and python3-sys crates can find a Python interpreter. But, the pyembed
crate may not be usable or work in the way you want it to.

This mode is intended to be used for performing quick testing on the pyembed crate. It is quite possible that linking
errors will occur in this mode unless you take additional actions to point Cargo at appropriate libraries.

cpython-link-unresolved-static

Configures the link mode of the cpython crate to use a static pythonXY library without resolv-
ing the symbol at its own build time. The pyembed crate or a crate building it will need to emit
cargo:rustc-link-lib=static=pythonXY and any cargo:rustc-link-search=native={} lines
to specify an explicit pythonXY library to link against.

This is the link mode used to produce self-contained binaries containing libpython and pyembed code.

cpython-link-default

Configures the link mode of the cpython crate to use default semantics. The crate’s build script will find a pre-
built Python library by querying the python defined by PYTHON_SYS_EXECUTABLE or found on PATH. See the
cpython crate’s documentation for more.

This link mode should be used when linking against an existing libpython that can be found by the cpython
crate’s build script.

9.1.2 Build Artifacts

When using build-mode-prebuilt-artifacts or build-mode-pyoxidizer-exe, the pyembed crate
consumes special artifacts as part of its build process to provide the embedded Python interpreter. These artifacts are
typically generated by PyOxidizer. However, there is nothing stopping anyone from producing equivalent artifacts via
other means and having pyembed consume them.

134 Chapter 9. The pyembed Rust Crate

PyOxidizer, Release 0.14.1

The way this mode works is the build script is pointed at a directory containing artifacts. The only required artifact is a
cargo_metadata.txt file. This file contains lines which will be printed to stdout by the crate build script. These
lines typically contain cargo: lines, which influence Cargo’s configuration for the crate.

The cargo: lines must define a pre-built pythonXY library to link against. That library name is literally
pythonXY and XY is not a placeholder for a version string!

Use cases like PyOxidizer derive a custom library containing Python’s core symbols. The cargo: lines for this use
case will look something like the following:

cargo:rustc-link-lib=depend0
cargo:rustc-link-lib=depend1
cargo:rustc-link-lib=static=depend2
cargo:rustc-link-lib=static=depend3
cargo:rustc-link-lib=static=pythonXY
cargo:rustc-link-search=native=/path/to/libraries

Essentially what PyOxidizer does is compile a custom library containing Python. This will be named pythonXY.
lib or pythonXY.dll on Windows and libpythonXY.a or libpythonXY.so on UNIX platforms. It then
lists link library dependencies as needed and registers the generated pythonXY library to be linked from the context
of the pyembed crate.

Deriving a custom library containing Python is fairly complex! From the perspective of
build-mode-prebuilt-artifacts, all that is strictly needed is for the cargo_metadata.txt to define
how to link against a pythonXY library. It is even possible to alias pythonXY to an existing Python library already
on your system (this is effectively what build-mode-default does). So a minimal cargo_metadata.txt
might look something like this:

cargo:rustc-link-lib=pythonXY:python3.9 cargo:rustc-link-search=native=/path/to/directory/containing/python/library

9.2 Controlling Python from Rust Code

9.2.1 Initializing a Python Interpreter

Initializing an embedded Python interpreter in your Rust process is as simple as calling
pyembed::MainPythonInterpreter::new(config: OxidizedPythonInterpreterConfig).

The hardest part about this is constructing the pyembed::OxidizedPythonInterpreterConfig instance.

9.2.2 Using a Python Interpreter

Once you’ve constructed a pyembed::MainPythonInterpreter instance, you can obtain a
cpython::Python instance via .acquire_gil() and then use it:

fn do_it(interpreter: &MainPythonInterpreter) -> {
let py = interpreter.acquire_gil();

match py.eval("print('hello, world')") {
Ok(_) => print("python code executed successfully"),
Err(e) => print("python error: {:?}", e),

}
}

9.2. Controlling Python from Rust Code 135

PyOxidizer, Release 0.14.1

Since CPython’s API relies on static variables (sadly), if you really wanted to, you could call out to CPython C APIs
directly (probably via the bindings in the python3-sys crate) and they would interact with the interpreter started
by the pyembed crate. This is all unsafe, of course, so tread at your own peril.

9.2.3 Finalizing the Interpreter

pyembed::MainPythonInterpreter implements Drop and it will call Py_FinalizeEx() when called.
So to terminate the Python interpreter, simply have the MainPythonInterpreter instance go out of scope or
drop it explicitly.

9.2.4 A Note on the pyembed APIs

The pyembed crate is highly tailored towards PyOxidizer’s default use cases and the APIs are not considered ex-
tremely well polished.

While the functionality should work, the ergonomics may not be great.

It is a goal of the PyOxidizer project to support Rust programmers who want to embed Python in Rust applications.
So contributions to improve the quality of the pyembed crate will likely be greatly appreciated!

9.3 Adding Extension Modules At Run-Time

A Python extension module is effectively a callable function defined in a library somewhere.

The pyembed crate supports registering Python extension modules multiple ways.

9.3.1 Statically Linked Extension Modules

You can inform the pyembed crate about the existence of additional Python extension modules which are statically
linked into the binary.

To do this, you will need to populate the extra_extension_modules field of the
OxidizedPythonInterpreterConfig Rust struct used to construct the Python interpreter. Simply add
an entry defining the extension module’s import name and a pointer to its C initialization function (often named
PyInit_<name>. e.g. if you are defining the extension module foo, the initialization function would be
PyInit_foo by convention.

Please note that Python stores extension modules in a global variable. So instantiating multiple interpreters via the
pyembed interfaces may result in duplicate entries or unwanted extension modules being exposed to the Python
interpreter.

9.3.2 Dynamically Linked Extension Modules

If you have an extension module provided as a shared library (this is typically how Python extension modules work),
it will be possible to load this extension module provided that the Python interpreter supports loading dynamically
linked Python extension modules.

There is not yet an explicit Rust API for loading additional dynamically linked extension modules. It is theoretically
possible to add an entry to the parsed embedded resources data structure. The path of least resistance is likely to enable
the standard filesystem importer and put your shared library extension module somewhere on Python’s sys.path.
(This is how extension modules are typically loaded.)

136 Chapter 9. The pyembed Rust Crate

CHAPTER 10

PyOxidizer for Rust Developers

PyOxidizer is implemented in Rust. Binaries built with PyOxidizer are also built with Rust using standard Rust
projects.

While the existence of Rust should be abstracted away from most users (aside from the existence of the install de-
pendency and build output), a target audience of PyOxidizer is Rust developers who want to embed Python in a Rust
project or Python developers who want to leverage more Rust in their Python applications.

Follow the links below to learn how PyOxidizer uses Rust and how Rust can be leveraged to build more advanced
applications embedding Python.

10.1 Using Cargo with PyOxidizer Source Checkouts

PyOxidizer’s source repository consists of multiple Rust projects/crates. At the root of the repository is a Cargo.
toml defining a workspace consisting of all these crates.

Important: Building various Rust crates from source can be extremely brittle and a top-level cargo build will
likely encounter multiple build failures.

If you want to run cargo from a PyOxidizer source checkout, you will likely want to limit the invocation to a single
crate at a time to ensure things can build.

The following sections detail how to build various crates inside a source checkout.

10.1.1 pyoxidizer Crate

Building the pyoxidizer crate in isolation (e.g. cargo build -p pyoxidizer) should just work, as it is a
pretty typical Rust crate.

Perhaps the only special property of this crate is that it defines both a library and an executable. So you may want
to limit operations to a specific binary. e.g. cargo build --bin pyoxidizer or cargo test --bin
pyoxidizer.

137

PyOxidizer, Release 0.14.1

10.1.2 python-packed-resources Crate

This is a standard Rust crate and should always build without issue. e.g. cargo build -p
python-packed-resources.

10.1.3 python-packaging Crate

This is a standard Rust crate and should always build without issue. e.g. cargo build -p
python-packaging or cargo test -p python-packaging.

10.1.4 pyembed Crate

The pyembed crate provides the bulk of the run-time functionality for binaries embedding Python interpreters. Be-
cause the crate needs to consult with a Python interpreter at build time and link against it and because it needs to
exchange state with PyOxidizer, its build configuration is. . . special.

Important: Almost all workspace build failures are somehow related to the pyembed crate.

The pyembed crate defines various features to control how it is built. See Crate Configuration for details.

In its default configuration, a Python 3.9 executable needs to be found on PATH. If said executable can’t be found,
you’ll get a No python interpreter found of version 3.* error at build time.

To work around this, add a python3.9 or python3 executable to PATH or run cargo build with the
PYTHON_SYS_EXECUTABLE environment variable pointing to a specific Python 3 executable. e.g.

$ PYTHON_SYS_EXECUTABLE=/path/to/python3.9 cargo build -p pyembed

10.1.5 oxidized-importer Crate

This crate is a very small shim around the pyembed crate which builds the pyembed crate in a specific manner so it
provides just the functionality needed for oxidized_importer Python Extension.

Because this crate is a thin shim, the caveats that apply to building pyembed apply to it as well.

10.2 PyOxidizer Rust Projects

PyOxidizer uses Rust projects to build binaries embedding Python.

If you just have a standalone configuration file (such as when running pyoxidizer init-config-file), a
temporary Rust project will be created as part of building binaries. That project will be built, its build artifacts copied,
and the temporary project will be deleted.

If you use pyoxidizer init-rust-project to initialize a PyOxidizer application, the Rust project exists
side-by-side with the PyOxidizer configuration file and can be modified like any other Rust project.

10.2.1 Layout

Generated Rust projects all have a similar layout:

138 Chapter 10. PyOxidizer for Rust Developers

PyOxidizer, Release 0.14.1

$ find pyapp -type f | grep -v .git
.cargo/config
Cargo.toml
build.rs
pyoxidizer.bzl
src/main.rs

The Cargo.toml file is the configuration file for the Rust project. Read more in the official Cargo documentation.
The magic lines in this file to enable PyOxidizer are the following:

[package]
build = "build.rs"

[dependencies]
pyembed = ...

These lines declare a dependency on the pyembed package, which holds the smarts for embedding Python in a binary.

In addition, the build = "build.rs" tells runs a script that hooks up the output of the pyembed crate with this
project.

Next let’s look at src/main.rs. If you aren’t familiar with Rust projects, the src/main.rs file is the default
location for the source file implementing an executable. If we open that file, we see a fn main() { line, which
declares the main function for our executable. The file is relatively straightforward. We import some symbols from
the pyembed crate. We then construct a config object, use that to construct a Python interpreter, then we run the
interpreter and pass its exit code to exit(). Succinctly, we instantiate and run an embedded Python interpreter.
That’s our executable.

The pyoxidizer.bzl is our auto-generated PyOxidizer configuration file.

10.2.2 Using Cargo With Generated Rust Projects

Rust developers will probably want to use cargo instead of pyoxidizer for building auto-generated Rust projects. This
is supported, but behavior can be very finicky.

PyOxidizer has to do some non-conventional things to get Rust projects to build in very specific ways. Commands
like pyoxidizer build abstract away all of this complexity for you.

If you do want to use cargo directly, the following sections will give you some tips.

build.rs Invokes pyoxidizer

The build.rs of the pyembed crate dependency will invoke pyoxidizer to generate various artifacts needed
by the pyembed crate.

By default, it uses the pyoxidizer in PATH. If you want to point it at an explicit executable (this is common when
you run pyoxidizer from Git source checkouts), set the PYOXIDIZER_EXE environment variable. e.g.:

$ PYOXIDIZER_EXE=~/src/pyoxidizer/target/debug/pyoxidizer cargo build

You may want to look at the source code of pyembed’s build.rs for all the magic that is being done.

Linking Against the Python Interpreter

The pyembed crate and some of its dependencies need to invoke a Python interpreter to configure the Python inter-
preter settings. By default, they look for python, python3.9, pythonX.Y executables on PATH.

10.2. PyOxidizer Rust Projects 139

https://doc.rust-lang.org/cargo/reference/manifest.html

PyOxidizer, Release 0.14.1

You can forcefully set the Python interpreter to use by setting the PYTHON_SYS_EXECUTABLE environment variable
to the path of a Python interpreter. For best results, use one of the default Python interpreters that your build of
PyOxidizer would use. Run pyoxidizer python-distribution-extract --help to see how you can
download and extract one of these distributions with ease.

Cargo Configuration

Linking a custom libpython into the final Rust binary can be finicky, especially when statically linking on Windows.

The auto-generated .cargo/config file defines some custom compiler settings to enable things to work. However,
this only works for some configurations. The file contains some commented out settings that may need to be set for
some configurations (e.g. the standalone_static Windows distributions). Please consult this file if running into
build errors when not building through pyoxidizer.

Nightly Rust Features on Windows

Some Windows build configurations require unstable Rust features. If your build complains about use of nightly-only
features, try building with the RUSTC_BOOTSTRAP=1 environment variable set to enable the use of unstable Rust
features on any Rust channel.

10.3 Controlling Python From Rust Code

PyOxidizer can be used to embed Python in a Rust application.

This page documents what that looks like from a Rust code perspective.

10.3.1 Interacting with the pyembed Crate

When writing Rust code to interact with a Python interpreter, your primary area of contact will be with the pyembed
crate.

The pyembed crate is a standalone crate maintained as part of the PyOxidizer project. This crate provides the core
run-time functionality for PyOxidizer, such as the implementation of PyOxidizer’s custom importer. It also exposes a
high-level API for initializing a Python interpreter and running code in it.

See The pyembed Rust Crate for full documentation on the pyembed crate. Controlling Python from Rust Code in
particular describes how to interface with the embedded Python interpreter.

The following documentation will be unique to PyOxidizer’s use of the pyembed crate.

10.3.2 Using the Default OxidizedPythonInterpreterConfig

When using a PyOxidizer-generated Rust project and that project is configured to use PyOxidizer to build (the default),
that project/crate’s build script will call into PyOxidizer to emit various build artifacts. This will process the PyOxidizer
configuration file and write some files somewhere.

One of the files generated is a Rust source file containing a fn default_python_config() ->
pyembed::OxidizedPythonInterpreterConfigwhich emits a pyembed::OxidizedPythonInterpreterConfig
using the configuration from the PyOxidizer configuration file. This configuration is based off the
PythonInterpreterConfig defined in the PyOxidizer Starlark configuration file.

The crate’s build script will set the PYOXIDIZER_DEFAULT_PYTHON_CONFIG_RS environment variable to the
path to this file, exposing it to Rust code.

140 Chapter 10. PyOxidizer for Rust Developers

PyOxidizer, Release 0.14.1

This all means that to use the auto-generated pyembed::OxidizedPythonInterpreterConfig instance
with your Rust application, you simply need to do something like the following:

include!(env!("PYOXIDIZER_DEFAULT_PYTHON_CONFIG_RS"));

fn create_interpreter() -> Result<pyembed::MainPythonInterpreter> {
// Calls function from include!()'d file.
let config: pyembed::OxidizedPythonInterpreterConfig = default_python_config();

pyembed::MainPythonInterpreter::new(config)
}

Using a Custom OxidizedPythonInterpreterConfig

If you don’t want to use the default pyembed::OxidizedPythonInterpreterConfig instance, that’s fine
too! However, this will be slightly more complicated.

First, if you use an explicit OxidizedPythonInterpreterConfig, the PythonInterpreterConfig
Starlark type defined in your PyOxidizer configuration file doesn’t matter that much. The primary purpose of this
Starlark type is to derive the default OxidizedPythonInterpreterConfig Rust struct. And if you are using
your own custom OxidizedPythonInterpreterConfig instance, you can ignore most of the arguments when
creating the PythonInterpreterConfig instance.

An exception to this is the raw_allocator argument/field. If you are using a custom allocator (like jemalloc,
mimalloc, or snmalloc), you will need to enable a Cargo feature when building the pyembed crate or else you will
get a run-time error that the specified allocator is not available.

pyembed::OxidizedPythonInterpreterConfig::default() can be used to construct a new
instance, pre-populated with default values for each field. The defaults should match what the
PythonInterpreterConfig Starlark type would yield.

The main catch to constructing the instance manually is that the custom meta path importer won’t be able to service
Python import requests unless you populate a few fields. In fact, if you just use the defaults, things will blow up
pretty hard at run-time:

$ myapp
Fatal Python error: initfsencoding: Unable to get the locale encoding
ModuleNotFoundError: No module named 'encodings'

Current thread 0x00007fa0e2cbe9c0 (most recent call first):
Aborted (core dumped)

What’s happening here is that Python interpreter initialization hits a fatal error because it can’t import encodings
(because it can’t locate the Python standard library) and Python’s C code is exiting the process. Rust doesn’t even get
the chance to handle the error, which is why we’re seeing a segfault.

The reason we can’t import encodings is twofold:

1. The default filesystem importer is disabled by default.

2. No Python resources are being registered with the OxidizedPythonInterpreterConfig instance.

This error can be addressed by working around either.

To enable the default filesystem importer:

let mut config = pyembed::OxidizedPythonInterpreterConfig::default();
config.filesystem_importer = true;
config.sys_paths.push("/path/to/python/standard/library");

10.3. Controlling Python From Rust Code 141

PyOxidizer, Release 0.14.1

As long as the default filesystem importer is enabled and sys.path can find the Python standard library, you should
be able to start a Python interpreter.

Hint: The sys_paths field will expand the special token $ORIGIN to the directory of the running executable.
So if the Python standard library is in e.g. the lib directory next to the executable, you can do something like
config.sys_paths.push("$ORIGIN/lib").

If you want to use the custom PyOxidizer Importer to import Python resources, you will need to update a handful of
fields:

let mut config = pyembed::OxidizedPythonInterpreterConfig::default();
config.packed_resources = ...;
config.oxidized_importer = true;

The packed_resources field defines a reference to packed resources data (a PackedResourcesSource
enum. This is a custom serialization format for expressing resources to make available to a Python interpreter. See
Python Packed Resources for more. The easiest way to obtain this data blob is by using PyOxidizer and consuming
the packed-resources build artifact/file, likely though include_bytes!. OxidizedFinder Meta Path Finder
can also be used to produce these data structures.

Finally, setting oxidized_importer = true is necessary to enable oxidized_importer.
OxidizedFinder.

10.4 Porting a Python Application to Rust

PyOxidizer can be used to gradually port a Python application to Rust. What we mean by this is that Python code in
an application would slowly be rewritten in Rust.

10.4.1 Overview

When porting a Python application to Rust, the goal is to port Python code - and possibly Python C extension code -
to Rust. Parts of the Rust code will presumably need to call into Python code and vice-versa.

When porting code to Rust, there are essentially two flavors of Rust code that will be written and executed:

1. Vanilla Rust code

2. Python-flavored Rust code

Vanilla Rust code is standard Rust code. It is what you would write if authoring a Rust-only project.

Python-flavored Rust code is Rust code that interacts with the Python C API. It is regular Rust code, of course, but it
is littered with references to PyObject and function calls into the Python C API (although these function calls may be
abstracted so you don’t have to use unsafe).

These different flavors of Rust code dictate different approaches to porting. Both flavors/approaches can be used
simultaneously when porting an application to Rust.

Vanilla Rust code will supplement the boilerplate Rust code that PyOxidizer uses to define and build a standalone
executable embedded Python. See Extending Rust Projects for more.

Python-flavored Rust code typically involves writing Python extension modules in Rust. In this approach, you create
a Python extension modules implemented in Rust and then make them available to the Python interpreter, which is
managed by a Rust project.

142 Chapter 10. PyOxidizer for Rust Developers

PyOxidizer, Release 0.14.1

10.4.2 Extending Rust Projects

When building an application from a standalone pyoxidizer.bzl file, PyOxidizer creates and builds a temporary,
boilerplate Rust project behind the scenes. This Rust project has just enough code to initialize and run an embedded
Python interpreter. That’s the extent of the Rust code.

PyOxidizer also supports persistent Rust projects. In this mode, you have full control over the Rust project and can
add custom Rust code to it as you desire. In this mode, you can run Rust code independent of the Python interpreter.

Supplementing the Rust code contained in your executable gives you the power to run arbitrary Rust code however
you see fit. Here are some common scenarios this can enable:

• Implementing argument parsing in Rust instead of Python. This could allow you to parse out the sub-command
being invoked and dispatch to pure Rust code paths if possible, falling back to running Python code only if
necessary.

• Running a forking server, which doesn’t start a Python interpreter until an event occurs.

• Starting a thread with a high-performance application component implemented in Rust. For example, you could
run a thread servicing a high-performance logging subsystem or HTTP server implemented in Rust and have
that thread interact with a Python interpreter via a pipe or some other handle.

Getting Started

To extend a Rust project with custom Rust code, you’ll first want to materialize the boilerplate Rust project used by
PyOxidizer:

$ pyoxidizer init-rust-project myapp

See PyOxidizer Rust Projects for details on the files materialized by this command.

If you are using version control, now would be a good time to add the created files to version control. e.g.:

$ git add myapp
$ git commit -m 'create boilerplate PyOxidizer project'

From here, your next steps are to modify the Rust project to do something new and different.

The auto-generated src/main.rs file contains the main() function used as the entrypoint for the Rust executable.
The default file will simply instantiate a Python interpreter from a configuration, run that interpreter, then exit the
process.

To extend your application with custom Rust code, simply add custom code to main(). e.g.

fn main() {
println!("hello from Rust!")

// Code auto-generated by ``pyoxidizer init-rust-project`` goes here.
// ...

}

That is literally all there is to it!

To build your custom Rust project, pyoxidizer build is the most robust way to do that. But it is also possible to
use cargo build.

10.4. Porting a Python Application to Rust 143

PyOxidizer, Release 0.14.1

What Can Go Wrong

pyoxidizer Not Found or Rust Code Version Mismatch

When using cargo build, the pyoxidizer executable will be invoked behind the scenes. This requires that
executable to be on PATH and for the version to be compatible with the Rust code you are trying to build. (The Rust
APIs do change from time to time.)

If the pyoxidizer executable is not on PATH or its version doesn’t match the Rust code, you can forcefully tell the
Rust build system which pyoxidizer executable to use:

$ PYOXIDIZER_EXE=/path/to/pyoxidizer cargo build

thread 'main' panicked at 'jemalloc is not available in this build
configuration'

If you see this error, the problem is that the Python interpreter configuration says to use jemalloc as the memory
allocator but the Rust project was built without jemalloc support. This is likely because the default Rust project
features in Cargo.toml don’t include jemalloc by default.

You can resolve this issue by either disabling jemalloc in the Python configuration or by enabling jemalloc in Rust.

To disable jemalloc, open your pyoxidizer.bzl file and find the definition of allocator_backend. You can
set it to raw_allocator="default" so Python uses the system memory allocator instead of jemalloc.

To enable jemalloc, you have a few options.

First, you could build the Rust project with jemalloc support:

$ cargo build --features allocator-jemalloc

Or, you modify Cargo.toml so the allocator-jemalloc feature is enabled by default:

.. code-block:: toml

[features] default = [“build-mode-pyoxidizer-exe”, “allocator-jemalloc”]

jemalloc is typically a faster allocator than the system allocator. So if you care about performance, you may want to
use it.

10.4.3 Implementing Python Extension Modules in Rust

If you want to port a Python application to Rust, chances are that you will need to have Rust and Python code interact
with each other. A common way to do this is to implement Python extensions in Rust so that Rust code will be invoked
as a Python interpreter is running.

There are two ways Rust-implemented Python extension modules can be consumed by PyOxidizer:

1. Define them via Python packaging tools (e.g. via a setup.py file for your Python package).

2. Define them in Rust code and register them as a built-in extension module.

Python Built Rust Extension Modules

If you’ve defined a Rust Python extension module via a Python package build tool (e.g. inside a setup.py), PyOxi-
dizer should automatically detect said extension module as part of packaging the corresponding Python package: there

144 Chapter 10. PyOxidizer for Rust Developers

PyOxidizer, Release 0.14.1

is no need to take special action to tell PyOxidizer it is a Rust extension, as this is all handled by Python packaging
tools invoked as part of processing your pyoxidizer.bzl file.

See Packaging User Guide for more.

The topic of authoring Python extension modules implemented in Rust is arguably outside the scope of this documen-
tation. A search engine search for Rust Python extension should set you on the right track.

Built-in Rust Extension Modules

A Python extension module is defined as a PyInit__<name> function which is called to initialize an extension
module. Typically, Python extension modules are compiled as standalone shared libraries, which are then loaded into
a process, after which their PyInit__<name> function is called.

But Python has an additional mechanism for defining extension modules: built-ins. A built-in extension module is
simply an extension module whose PyInit__<name> function is already present in the process address space. Typ-
ically, these are extensions that are part of the Python distribution itself and are compiled directly into libpython.

When you instantiate a Python interpreter, you give it a list of the available built-in Python extension modules. And
PyOxidizer’s pyembed crate allows you to supplement the default list with custom extensions.

To use built-in extension modules implemented in Rust, you’ll need to implement said extension module in Rust, either
as part of your application’s Rust crate or as part of a different crate. Either way, you’ll need to extend the boilerplate
Rust project code (see Extending Rust Projects) and tell it about additional built-in extension modules. See Adding
Extension Modules At Run-Time for instructions on how to do this.

The tricky part here is implementing your Rust extension module.

You probably want to use the cpython or PyO3 Rust crates for interfacing with the CPython API, as these provide an
interface that is more ergonomic and doesn’t require use of unsafe { }. Use of these crates is beyond the scope of
the PyOxidizer documentation.

If you attempt to use the cpython or PyO3 macros for defining a Python extension module, you’ll likely run into
problems because these assume that extension modules are standalone shared libraries, which isn’t the case for built-in
extension modules!

If you attempt to use a separate Rust crate to define your extension module, you may run into Python symbol issues
at link time because the build system for the cpython and PyO3 crates will use their own logic for locating a
Python interpreter and that interpreter may not have a configuration that is compatible with the one embedded in your
PyOxidizer binary!

At the end of the day, all you need to register a built-in extension module with PyOxidizer is an extern "C" fn
() -> *mut python3_sys::PyObject. Here is the boilerplate for defining a Python extension module in
Rust (this uses the cpython crate).

use python3_sys as pyffi;
use cpython::{PyErr, PyModule, PyObject};

static mut MODULE_DEF: pyffi::PyModuleDef = pyffi::PyModuleDef {
m_base: pyffi::PyModuleDef_HEAD_INIT,
m_name: std::ptr::null(),
m_doc: std::ptr::null(),
m_size: std::mem::size_of::<ModuleState>() as isize,
m_methods: 0 as *mut _,
m_slots: 0 as *mut _,
m_traverse: None,
m_clear: None,
m_free: None,

};

(continues on next page)

10.4. Porting a Python Application to Rust 145

https://crates.io/crates/cpython
https://crates.io/crates/PyO3

PyOxidizer, Release 0.14.1

(continued from previous page)

#[allow(non_snake_case)]
pub extern "C" fn PyInit_my_module() -> *mut pyffi::PyObject {

let py = unsafe { cpython::Python::assume_gil_acquired() };

unsafe {
if MODULE_DEF.m_name.is_null() {

MODULE_DEF.m_name = "my_module".as_ptr() as *const _;
MODULE_DEF.m_doc = "usage docs".as_ptr() as *const _;

}
}

let module = unsafe { pyffi::PyModule_Create(&mut MODULE_DEF) };

if module.is_null() {
return module;

}

let module = match unsafe { pyffi::from_owned_ptr(py, module).cast_into::
→˓<PyModule>(py) } {

Ok(m) => m,
Err(e) => {

PyErr::from(e).restore(py);
return std::ptr::null_mut();

}
};

match module_init(py, &module) {
Ok(()) => module.into_object().steal_ptr(),
Err(e) => {

e.restore(py);
std::ptr::null_mut()

}
}

}

If you want a concrete example of what this looks like and how to do things like define Python types and have
Python functions implemented in Rust, do a search for PyInit_oxidized_importer in the source code of the
pyembed crate (which is part of the PyOxidizer repository) and go from there.

The documentation for authoring Python extension modules and using the Python C API is well beyond the scope of
this document. A good place to start is the official documentation.

146 Chapter 10. PyOxidizer for Rust Developers

https://docs.python.org/3/extending/index.html

CHAPTER 11

Shipping Applications with tugger

The Tugger project aims to make it easy to ship applications. It does so by implementing generic functionality related
to application distribution in a myriad (fleet?) of individual, domain-specific crates. See Modular Crate Architecture
for more. Tugger supports generating distributable artifacts in common formats such as Windows .msi installers,
Debian .deb files, and Snapcraft .snap files.

Tugger’s Rust crates can be consumed as regular Rust library crates by any project and are explicitly designed for this
use case. Tugger also defines a Starlark dialect (Starlark is a Python-like configuration language), enabling applications
to define packaging functionality in configuration files, which Tugger can execute. The Starlark dialect is effectively a
scriptable interface to Tugger’s Rust internals.

Tugger is part of the PyOxidizer Project and is developed inside the PyOxidizer repository at https://github.com/
indygreg/PyOxidizer. However, Tugger is designed to be a standalone project and doesn’t require PyOxidizer.

11.1 Overview

Tugger aims to be a generic tool to help application maintainers ship their applications to end-users.

Tugger can be thought of a specialized build system for distributable artifacts (Windows MSI installers, Debian pack-
ages, RPMs, etc). However, Tugger itself is generally not concerned with details of how a particular file is built:
Tugger’s role is to consume existing files and package them into artifacts that are distributed/installed on other ma-
chines.

11.1.1 Designed to Be Platform Agnostic

An explicit goal of Tugger is to be platform agnostic and to have as much functionality implemented in-process. For
example, it should be possible to produce a Linux .deb from Windows, a Windows MSI installer from macOS, or a
macOS DMG from Linux without any out-of-process dependencies.

Tugger attempts to implement packaging functionality in Rust with minimal dependence on external tools. For exam-
ple, RPMs and Debian packages are built by constructing the raw archive files using Rust code rather than calling out
to tools like rpmbuild or debuild. This enables Tugger to build artifacts that don’t target the current architecture
or operating system.

147

https://github.com/indygreg/PyOxidizer
https://github.com/indygreg/PyOxidizer

PyOxidizer, Release 0.14.1

While Tugger may not achieve this goal for all distributable formats and architectures, it is something that Tugger
strives to do.

11.1.2 File Centric View

Tugger attempts to take a file-centric view towards packaging. This helps achieve platform independent and cross-
compiling. What this means in practice is many of Tugger’s packaging facilities operate by taking an input set of files
and assembling them into some other distributable format. Contrast this with specialized tools for each distributable
format, which generally invoke a custom build system and have domain-specific configuration files.

A side-effect of this decision is that Tugger is often not aware of build systems: it is often up to you to script Tugger
to produce the files you wish to distribute.

11.1.3 Modular Crate Architecture

Tugger is composed of a series - a fleet if you will - of Rust crates. Each Rust crate provides domain-specific function-
ality. While the Rust crates are part of the Tugger project, an attempt is made to implement them such that they can
be used outside of Tugger. For example, the tugger-debian crate contains generic code for building .deb files
from scratch.

The following crates compose Tugger’s crate fleet:

tugger-binary-analysis Analyze platform native binaries. Finds library dependencies. Identifies Linux dis-
tribution compatibility. Etc.

tugger-common Shared functionality required by multiple crates. This entails things like downloading files, shared
test code, etc.

tugger-debian Debian packaging primitives. Parsing and serializing control files. Writing .deb files.

tugger-file-manifest A virtual manifest of a collection of files. Virtual file manifests are used throughout
Tugger to represent a collection of files, their content, and file metadata.

tugger-licensing Functionality related to software licensing.

tugger-licensing-net Functionality related to software licensing requiring network access.

tugger-rpm RPM packaging primitives.

tugger-snapcraft Snapcraft packaging. Represent snapcraft.yaml files. Invoke snapcraft to produce
.snap files.

tugger-windows Windows-specific functionality. Finding the Microsoft SDK and Visual C++ Redistributable
files. Signing Windows binaries.

tugger-wix Interface to the WiX Toolset (produces Windows .msi and .exe installers). Can build Windows
installers with little-to-no knowledge about how the WiX Toolset works.

tugger The primary crate. Implements Starlark dialect and driver code for running it. This crate has minimal use
as a library, as most library functionality is within the domain-specific crates.

11.2 Tugger Starlark Dialect

Tugger uses Starlark files to configure run-time behavior.

Starlark is a subset of Python intended to be used as a configuration language and the syntax should be familiar to any
Python programmer.

148 Chapter 11. Shipping Applications with tugger

https://github.com/bazelbuild/starlark

PyOxidizer, Release 0.14.1

Tugger defines its own dialect of Starlark - types and functions - specific to Tugger.

11.2.1 Global Symbols

This document lists every single global type, variable, and function available in Tugger’s Starlark execution environ-
ment.

The Starlark environment contains symbols from the following:

• Starlark built-ins

• Tugger’s Dialect (documented below)

Global Types

Tugger’s Starlark dialect defines the following custom types:

CodeSigner An entity capable of performing code signing.

CodeSigningRequest Holds settings to influence code signing on a single entity.

FileContent Represents the content of a file on the filesystem.

FileManifest Represents a mapping of filenames to file content.

MacOsApplicationBundleBuilder Used to create macOS Application Bundles (i.e. .app directories).

SnapApp Represents an application inside a snapcraft.yaml file.

SnapPart Represents a part inside a snapcraft.yaml file.

Snap Represents a snapcraft.yaml file.

SnapcraftBuilder Manages the environment and invocations of the snapcraft command.

WiXBundleBuilder Produce a Windows exe installer containing multiple installers using WiX.

WiXInstaller Produce a Windows installer using WiX.

WiXMSIBuilder Produce a Windows MSI installer with common installer features using WiX.

Global Functions

Tugger’s Starlark dialect defines the following global functions:

glob() Collect files from the filesystem.

11.2.2 Functions for Interacting with the Filesystem

starlark_tugger.glob(include=List[str], exclude=Optional[List[str]], strip_prefix=Optional[str])→
FileManifest

The glob() function resolves file patterns to a starlark_tugger.FileManifest.

This function accepts the following arguments:

include Defines file patterns that will be matched using the glob Rust crate. If patterns begin with / or look
like a filesystem absolute path, they are absolute. Otherwise they are evaluated relative to the directory of
the current config file.

exclude File patterns used to exclude files from the result. All patterns in include are evaluated before
exclude.

11.2. Tugger Starlark Dialect 149

https://github.com/bazelbuild/starlark/blob/master/spec.md#built-in-constants-and-functions

PyOxidizer, Release 0.14.1

strip_prefix Prefix to strip from the beginning of matched files. strip_prefix is stripped after
include and exclude are processed.

11.2.3 Functions for Interacting with the Terminal

starlark_tugger.can_prompt()→ bool
Returns whether we are capable of prompting for user input.

If this returns False, functions like prompt_input() and prompt_password() will be unable to col-
lect input from the user and will error unless a default value is provided.

starlark_tugger.prompt_confirm(prompt: str, default: Optional[bool] = None)→ bool
Prompt the user to confirm something.

This will print the provided prompt and wait for user input to confirm it.

If y or n is pressed, this evaluates to True or False, respectively. If the escape key is pressed, an error is
raised.

If stdin is not interactive (e.g. it is connected to /dev/null), this will return default if provided or raise an
error otherwise.

starlark_tugger.prompt_input(prompt: str, default: Optional[str] = None)→ str
Prompt the user for input on the terminal.

This will print a prompt with the given prompt text to stderr. If default is provided, the default value will
printed and used if no input is provided.

The string constituting the raw input (without a trailing newline) is returned.

If stdin is not interactive (e.g. it is connected to /dev/null), this will return default if provided or raise an
error otherwise.

starlark_tugger.prompt_password(prompt: str, confirm: bool = False, default: Optional[str] =
None)→ str

Prompt the user for a password input on the terminal.

This will print a prompt with the given prompt text to stderr.

When the user inputs their password, its content will not be printed back to the terminal.

If confirm is True, the user will be prompted to confirm the hidden value they just entered and subsequent
prompts will be attempted until values agree.

If stdin is not interactive (e.g. it is connected to /dev/null), this will return default if provided or raise an
error if not.

The password value is stored in plain text in memory and treated like any other string value.

11.2.4 CodeSigner

class starlark_tugger.CodeSigner
Instances of CodeSigner are used to digitally sign code or content.

When instances are registered in your Starlark configuration file, they will automatically be used to sign entities.

See Code Signing for details on what code signing is supported.

activate()
Registers this instance with Tugger so that it is consulted when code signing events occur.

150 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

Once this method is called, subsequent mutations to the instance may or may not be reflected with the
instance that is registered to handle events.

Failure to call this method will mean this instance won’t be queried to handle code signing events as
Tugger runs.

chain_issuer_certificates_pem_file(path: str)
Register PEM encoded X.509 certificates located in a file to the certificate chain.

The file should have content like -----BEGIN CERTIFICATE-----. Multiple certificates can exist
in a single file.

See Understanding Code Signing Certificates for the meaning of the certificate chain.

chain_issuer_certificates_macos_keychain()
Register the issuer certificate chain by looking for certificates in the macOS keychain.

This function only works on macOS and will raise errors when called on other platforms.

See Understanding Code Signing Certificates for the meaning of the certificate chain.

set_time_stamp_server(path: str)
Set the URL of a Time-Stamp Protocol server to use.

Calling this will force the use of a particular time-stamp protocol server.

Important: Use of this feature will cause Apple code signatures to not validate correctly. See https:
//github.com/indygreg/PyOxidizer/issues/399.

set_signing_callback(f: Callable)
Defines a function that will be invoked when Tugger has encountered a signable entity that this instance is
capable of signing.

The function’s signature is: def callback(request: CodeSigningRequest) ->
Union[bool, dict, None].

The function receives as its arguments:

request The CodeSigningRequest that is about to be signed.

The CodeSigningRequest passed in is unique to this CodeSigner instance and can be used to
inspect the imminent code signing operation or influence how it is performed - even preventing it entirely.
See CodeSigningRequest for the full API documentation.

Constructor Functions

starlark_tugger.code_signer_from_pfx_file(path: str, password: str)→ CodeSigner
Construct a CodeSigner by specifying the path to a PFX file.

PFX files are commonly used to hold code a code signing key and its corresponding x509 certificate. These files
typically have the extension .pfx or .p12.

PFX files require a password to read. It is possible for the password to be the empty string (""). If you did not
supply a password when exporting the code signing certificate, the password is likely the empty string.

The password can be collected interactively via the prompt_password() function.

11.2. Tugger Starlark Dialect 151

https://github.com/indygreg/PyOxidizer/issues/399
https://github.com/indygreg/PyOxidizer/issues/399

PyOxidizer, Release 0.14.1

starlark_tugger.code_signer_from_windows_store_sha1_thumbprint(thumbprint:
str, store: str
= "my") →
CodeSigner

Construct a CodeSigner that uses a certificate in the Windows certificate store having the specified SHA-1
thumbprint.

This is the most reliable way to specify a certificate in the Windows certificate store, as SHA-1 thumbprints
should uniquely identify a certificate.

store denotes the Windows certificate store to use. Possible values are my, root, trust, ca, and userds
(all case-insensitive). The meaning of these values is described in Microsoft’s documentation.

starlark_tugger.code_signer_from_windows_store_subject(subject: str, store: str =
"my")→ CodeSigner

Construct a CodeSigner using a code signing certificate in a Windows certificate store.

subject defines a string value that is used to locate the certificate in the store. The string value is matched
against the subject field of the certificate (who the certificate was issued to). Its value is often the name of
someone or something.

See code_signer_from_windows_store_sha1_thumbprint() for accepted values for the store
argument.

starlark_tugger.code_signer_from_windows_store_auto()→ CodeSigner
Construct a CodeSigner that automatically chooses a code signing certificate from the Windows certificate
store.

This will choose the best available found certificate. The heuristics are not well-defined and may change over
time. For reliable results, use a different method.

11.2.5 CodeSigningRequest

class starlark_tugger.CodeSigningRequest
This type represents the invocation of and settings for a single code signing operation.

When CodeSigner instances are registered with Tugger, they can optionally register a callback function via
CodeSigner.set_signing_callback() to influence the imminent code signing operation. This type
is used to convey information about the code signing operation and to influence its settings.

Instances are constructed internally by Tugger and cannot be constructed via Starlark.

action
(read-only str)

The named action that triggered this code signing request.

filename
(read-only str)

The filename this request is associated with. This is only the filename: not a full filesystem path.

path
(read-only Union[str, None])

The filesystem path this request is associated with. May be None. The path may be a virtual path, such as
one tracked in a FileManifest instance.

defer
(write-only bool)

Whether to defer processing of this request to another signer.

152 Chapter 11. Shipping Applications with tugger

https://docs.microsoft.com/en-us/windows/win32/seccrypto/system-store-locations

PyOxidizer, Release 0.14.1

Normally, the first CodeSigner that is capable of signing something attempts to sign it and
CodeSigner traversal is stopped. Setting this to Truewill enable additional CodeSigner (or callback
functions on the same signer) to encounter this request.

prevent_signing
(write-only bool)

If set to True, the resource will not be signed and the signing attempt will be aborted.

11.2.6 FileContent

class starlark_tugger.FileContent
This type represents the content of a single file.

11.2.7 FileManifest

class starlark_tugger.FileManifest
The FileManifest type represents a set of files and their content.

FileManifest instances are used to represent things like the final filesystem layout of an installed applica-
tion.

Conceptually, a FileManifest is a dict mapping relative paths to file content.

add_manifest(manifest: FileManifest)
This method overlays another :py:class‘FileManifest‘ on this one. If the other manifest provides a path
already in this manifest, its content will be replaced by what is in the other manifest.

add_path(path: str, strip_prefix: str, force_read: bool = False)
This method adds a file on the filesystem to the manifest.

The following arguments are accepted:

path The filesystem path to add.

strip_prefix The string prefix to strip from the path. The remaining path will be stored in the mani-
fest.

force_read Whether to read the file data into memory now.

This can be set when reading temporary files.

install(path: str, replace: bool = True)
This method writes the content of the FileManifest to a directory specified by path. The path is
evaluated relative to the path specified by BUILD_PATH.

If replace is True (the default), the destination directory will be deleted and the final state of the desti-
nation directory should exactly match the state of the FileManifest.

Upon successful materialization of all files in the manifest, all written files will be assessed for code signing
with the file-manifest-install action.

11.2.8 MacOsApplicationBundleBuilder

class starlark_tugger.MacOsApplicationBundleBuilder
The MacOsApplicationBundleBuilder type allows creating macOS Application Bundles (typically .
app directories) providing applications on macOS.

For reference, see Apple’s bundle format documentation for the structure of application bundles.

11.2. Tugger Starlark Dialect 153

https://developer.apple.com/library/archive/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#//apple_ref/doc/uid/10000123i-CH101-SW1

PyOxidizer, Release 0.14.1

__init__(bundle_name: str)→ MacOsApplicationBundleBuilder
Construct new instances. It accepts the following arguments:

bundle_name The name of the application bundle.

This will become the value for CFBundleName and form the name of the generated bundle directory.

add_icon(path: str)
Accepts a string argument defining the path to a file that will become the <bundle_name>.icns
file for the bundle.

add_manifest(manifest: FileManifest)
Adds file data to the bundle via a FileManifest instance. All files in the manifest will be materialized
in the Contents/ directory of the bundle.

Accepts the following arguments:

manifest Collection of files to materialize.

Bundles have a well-defined structure and files should only be materialized in certain locations. This
method will allow you to materialize files in locations resulting in a malformed bundle. Use with caution.

add_macos_file(path: str, content: FileContent)
Adds a single file to be installed in the Contents/MacOS directory in the bundle.

Accepts the following arguments:

path Relative path of file under Contents/MacOS.

content Object representing file content to materialize.

add_macos_manifest(manifest: FileManifest))
Adds a FileManifest of content to be materialized in the Contents/MacOS directory.

Accepts the following arguments:

manifest Collection of files to materialize.

add_resources_file(path: str, content: FileContent)
Adds a single file to be installed in the Contents/Resources directory in the bundle.

Accepts the following arguments:

path Relative path of file under Contents/Resources.

content Object representing file content to materialize.

add_resources_manifest(manifest: FileManifest)
Adds a FileManifest of content to be materialized in the Contents/Resources directory.

Accepts the following arguments:

manifest Collection of files to materialize.

set_info_plist_key(key: str, value: Union[bool, int, str])
Sets the value of a key in the Contents/Info.plist file.

Accepts the following arguments:

key Key in the `Info.plist file to set.

value Value to set. Can be a bool, int, or string.

set_info_plist_required_keys(display_name: str, identifier: str, version: str, signature: str,
executable: str)

This method defines required keys in the Contents/Info.plist file.

The following named arguments are accepted and must all be provided:

154 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

display_name Sets the bundle display name (CFBundleDisplayName).

This is the name of the application as displayed to users.

identifier Sets the bundle identifier (CFBundleIdentifer).

This is a reverse DNS type identifier. e.g. com.example.my_program.

version Sets the bundle version string (CFBundleVersion)

signature Sets the bundle creator OS type code (CFBundleSignature).

The value must be exactly 4 characters.

executable Sets the name of the main executable file (CFBundleExecutable).

This is typically the same name as the bundle.

build(target: str)
This method will materialize the .app bundle/directory given the settings specified.

This method accepts the following arguments:

target The name of the target being built.

Upon successful bundle directory creation, the entire bundle is considered for code signing with the signing
action macos-application-bundle-creation. All signable Mach-O files and nested bundles
should be signed.

11.2.9 ResolvedTarget

class starlark_tugger.ResolvedTarget
Represents a build target that has been resolved.

11.2.10 SnapApp

class starlark_tugger.SnapApp
The SnapApp type represents an application entry in a snapcraft.yaml file. Specifically, this type repre-
sents the values of apps.<app-name> keys.

See https://snapcraft.io/docs/snapcraft-yaml-reference for more documentation.

Instances of SnapApp expose attributes that map to the keys within apps.<app-name> entries in
snapcraft.yaml configuration files.

Currently the attributes are write only.

Setting an attribute value to None has the side-effect of removing that attribute from the serialized
snapcraft.yaml file.

See https://snapcraft.io/docs/snapcraft-yaml-reference for detailed documentation about what each attribute
means.

__init__()→ SnapApp
SnapApp() creates an empty instance. It accepts no arguments.

adapter
(Optional[str])

autostart
(Optional[str])

11.2. Tugger Starlark Dialect 155

https://snapcraft.io/docs/snapcraft-yaml-reference
https://snapcraft.io/docs/snapcraft-yaml-reference

PyOxidizer, Release 0.14.1

command_chain
(Optional[list[str]])

command
(Optional[str])

common_id
(Optional[str])

daemon
(Optional[str])

desktop
(Optional[str])

environment
(Optional[list[str]])

extensions
(Optional[list[str]])

listen_stream
(Optional[str])

passthrough
(Optional[dict[str, str]])

plugs
(Optional[list[str]])

post_stop_command
(Optional[str])

restart_condition
(Optional[str])

slots
(Optional[list[str]])

stop_command
(Optional[str])

stop_timeout
(Optional[str])

timer
(Optional[str])

socket_mode
(Optional[int])

socket
(Optional[dict[str]])

11.2.11 SnapPart

class starlark_tugger.SnapPart
The SnapPart type represents a part entry in a snapcraft.yaml file. Specifically, this type represents the
values of parts.<part-name> keys.

See https://snapcraft.io/docs/snapcraft-yaml-reference for more documentation.

156 Chapter 11. Shipping Applications with tugger

https://snapcraft.io/docs/snapcraft-yaml-reference

PyOxidizer, Release 0.14.1

Instances of SnapPart expose attributes that map to the keys within parts.<part-name> entries in
snapcraft.yaml configuration files.

Currently the attributes are write only.

Setting an attribute value to None has the side-effect of removing that attribute from the serialized
snapcraft.yaml file.

See https://snapcraft.io/docs/snapcraft-yaml-reference for detailed documentation about what each attribute
means.

__init__()→ SnapPart
SnapPart() creates an empty instance. It accepts no arguments.

after
(Optional[list[str]])

build_attributes
(Optional[list[str]])

build_environment
(Optional[list[dict[str, str]]])

build_packages
(Optional[list[str]])

build_snaps
(Optional[list[str]])

filesets
(Optional[dict[str, list[str]]])

organize
(Optional[dict[str, str]])

override_build
(Optional[str])

override_prime
(Optional[str])

override_pull
(Optional[str])

override_stage
(Optional[str])

parse_info
(Optional[str])

plugin
(Optional[str])

prime
(Optional[list[str]])

source_branch
(Optional[str])

source_checksum
(Optional[str])

source_commit
(Optional[str])

11.2. Tugger Starlark Dialect 157

https://snapcraft.io/docs/snapcraft-yaml-reference

PyOxidizer, Release 0.14.1

source_depth
(Optional[int])

source_subdir
(Optional[str])

source_tag
(Optional[str])

source_type
(Optional[str])

source
(Optional[str])

stage_packages
(Optional[list[str]])

stage_snaps
(Optional[list[str]])

stage
(Optional[list[str]])

11.2.12 Snap

class starlark_tugger.Snap
The Snap type represents an entire snapcraft.yaml file.

See https://snapcraft.io/docs/snapcraft-yaml-reference for more documentation.

Instances of Snap expose attributes that map to the keys within snapcraft.yaml files.

Currently the attributes are write only.

Setting an attribute value to None has the side-effect of removing that attribute from the serialized
snapcraft.yaml file.

See https://snapcraft.io/docs/snapcraft-yaml-reference for detailed documentation about what each attribute
means.

__init__(name: str, version: str, summary: str, description: str)
Creates an instance initialized with required parameters. It accepts the following arguments:

name version summary description

adopt_info
(Optional[str])

apps
(Optional[dict[str, SnapApp]])

architectures
(Optional[dict["build_on" | "run_on", str]])

assumes
(Optional[list[str]])

base
(Optional[str])

confinement
(Optional[str])

158 Chapter 11. Shipping Applications with tugger

https://snapcraft.io/docs/snapcraft-yaml-reference
https://snapcraft.io/docs/snapcraft-yaml-reference

PyOxidizer, Release 0.14.1

description
(str)

grade
(Optional[str])

icon
(Optional[str])

license
(Optional[str])

name
(str)

passthrough
(Optional[dict[str, str]])

parts
(Optional[dict[str, SnapPart]])

plugs
(Optional[dict[str, list[str]]])

slots
(Optional[dict[str, list[str]]])

summary
(str)

title
(Optional[str])

type
(Optional[str])

version
(str)

to_builder()→ SnapcraftBuilder
Converts this instance into a SnapcraftBuilder.

This method accepts no arguments and is equivalent to calling SnapcraftBuilder(self).

11.2.13 SnapcraftBuilder

class starlark_tugger.SnapcraftBuilder
The SnapcraftBuilder type coordinates the invocation of the snapcraft command.

__init__(snap: Snap)→ SnapcraftBuilder
SnapcraftBuilder() constructs a new instance from a Snap.

It accepts the following arguments:

snap The Snap defining the configuration to be used.

add_invocation(args: List[str], purge_build: Optional[bool])
This method registers an invocation of snapcraft with the builder. When this instance is built, all
registered invocations will be run sequentially.

The following arguments are accepted:

args Arguments to pass to snapcraft executable.

11.2. Tugger Starlark Dialect 159

PyOxidizer, Release 0.14.1

purge_build Whether to purge the build directory before running this invocation.

If not specified, the build directory is purged for the first registered invocation and not purged for all
subsequent invocations.

add_file_manifest(manifest: FileManifest)
This method registers the content of a FileManifest with the build environment for this builder.

When this instance is built, the content of the passed manifest will be materialized in a directory next to
the snapcraft.yaml file this instance is building.

The following arguments are accepted:

manifest Defines files to install in the build environment.

build(target: str)→ ResolvedTarget
This method invokes the builder and runs snapcraft.

The following arguments are accepted:

target The name of the build target.

This method returns a ResolvedTarget. That target is not runnable.

11.2.14 WiXBundleBuilder

class starlark_tugger.WiXBundleBuilder
The WiXBundleBuilder type allows building simple bundle installers with the WiX Toolset.

WiXBundleBuilder instances allow you to create .exe installers that are composed of a chain of actions.
At execution time, each action in the chain is evaluated. See the WiX Toolset documentation for more.

__init__(id_prefix: str, name: str, version: str, manufacturer: str)→ WiXBundleBuilder
WiXBundleBuilder() is called to construct new instances. It accepts the following arguments:

id_prefix The string prefix to add to auto-generated IDs in the .wxs XML.

The value must be alphanumeric and - cannot be used.

The value should reflect the application whose installer is being defined.

name The name of the application being installed.

version The version of the application being installed.

This is a string like X.Y.Z, where each component is an integer.

manufacturer The author of the application.

add_condition(condition: str, message: str)
Defines a <bal:Condition> that must be satisfied to run this installer.

See the WiX Toolkit documentation for more.

This method accepts the following arguments:

condition The condition expression that must be satisfied.

message The message that will be displayed if the condition is not met.

add_vc_redistributable(platform: str)
This method registers the Visual C++ Redistributable to be installed.

This method accepts the following arguments:

platform The architecture to install for. Valid values are x86, x64, and arm64.

160 Chapter 11. Shipping Applications with tugger

https://wixtoolset.org/

PyOxidizer, Release 0.14.1

The bundle can contain Visual C++ Redistributables for multiple runtime architectures. The bundle in-
staller will only install the Redistributable when running on a machine of that architecture. This allows a
single bundle installer to target multiple architectures.

add_wix_msi_builder(builder: WiXMSIBuilder, display_internal_ui: Optional[bool] = False, in-
stall_condition: Optional[str] = None)

This method adds a WiXMSIBuilder to be installed by the produced installer.

This method accepts the following arguments:

builder The WiXMSIBuilder representing an MSI to install.

display_internal_ui Whether to display the UI of the MSI.

install_condition An expression that must be true for this MSI to be installed.

This method effectively coerces the WiXMSIBuilder instance to an <MsiPackage> element and adds
it to the <Chain> in the bundle XML. See the WiX Toolset documentation for more.

build(target: str)→ ResolvedTarget
This method will build an exe using the WiX Toolset.

This method accepts the following arguments:

target The name of the target being built.

Upon successful generation of an installer, the produced installer will be assessed for code signing with
the windows-installer-creation action.

11.2.15 WiXInstaller

class starlark_tugger.WiXInstaller
The WiXInstaller type represents a Windows installer built with the WiX Toolset.

WiXInstaller instances allow you to collect .wxs files for processing and to turn these into an installer
using the light.exe tool in the WiX Toolset.

__init__(id: str, filename: str)→ WiXInstaller
WiXInstaller() is called to construct a new instance. It accepts the following arguments:

id The name of the installer being built.

This value is used in Id attributes in WiX XML files and must conform to limitations imposed by
WiX. Notably, this must be alphanumeric and - cannot be used.

This value is also used to derive GUIDs for the installer.

This value should reflect the name of the entity being installed and should be unique to prevent colli-
sions with other installers.

filename The name of the file that will be built.

WiX supports generating multiple installer file types depending on the content of the .wxs files. You
will have to provide a filename that is appropriate for the installer type.

File extensions of .msi and .exe are common. If using add_simple_installer(), you will
want to provide an .msi filename.

add_build_files(manifest: FileManifest)
This method registers additional files to make available to the build environment. Files will be materialized
next to .wxs files that will be processed as part of building the installer.

Accepted arguments are:

11.2. Tugger Starlark Dialect 161

https://wixtoolset.org/

PyOxidizer, Release 0.14.1

manifest The file manifest defining additional files to install.

add_build_file(build_path: str, filesystem_path: str, force_read: Optional[bool] = False)
This method registers a single additional file to make available to the build environment.

Accepted arguments are:

build_path The relative path to materialize inside the build environment

filesystem_path The filesystem path of the file to copy into the build environment.

force_read Whether to read the content of this file into memory when this function is called.

add_install_file(install_path: str, filesystem_path: str, force_read: Optional[bool] = False)
Add a file from the filesystem to be installed by the installer.

This methods accepts the following arguments:

install_path The relative path to materialize inside the installation directory.

filesystem_path The filesystem path of the file to install.

force_read Whether to read the content of this file into memory when this function is called.

As a file is added, it is checked for code signing compatibility with the action
windows-installer-file-added.

add_install_files(manifest: FileManifest)
Add files defined in a FileManifest to be installed by the installer.

This method accepts the following arguments:

manifest Defines files to materialize in the installation directory. All these files will be installed by the
installer.

As files are added, they are checked for code signing compatibility with the action
windows-installer-file-added.

add_msi_builder(builder: WiXMSIBuilder)
This method adds a WiXMSIBuilder instance to this instance, marking it for processing/building.

add_simple_installer(product_name: str, product_version: str, product_manufacturer: str, pro-
gram_files: FileManifest)

This method will populate the installer configuration with a pre-defined and simple/basic configuration
suitable for simple applications. This method effectively derives a .wxs which will produce an MSI that
materializes files in the Program Files directory.

Accepted arguments are:

product_name The name of the installed product. This becomes the value of the <Product
Name="..."> attribute in the generated .wxs file.

product_version The version string of the installed product. This becomes the value of the
<Product Version="..."> attribute in the generated .wxs file.

product_manufacturer The author of the product. This becomes the value of the <Product
Manufacturer="..."> attribute in the generated .wxs file.

program_files Files to materialize in the Program Files/<product_name> directory upon
install.

add_wxs_file(path: str, preprocessor_parameters: Optional[dict[str, str]])
Adds an existing .wxs file to be processed as part of building this installer.

Accepted arguments are:

162 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

path The filesystem path to the .wxs file to add. The file will be copied into a temporary directory as
part of building the installer and the destination filename will be the same as the file’s name.

preprocessor_parameters Preprocessor parameters to define when invoking candle.exe for
this .wxs file. These effectively constitute -p arguments to candle.exe.

set_variable(key: str, value: Optional[str])
Defines a variable to be passed to light.exe as -d arguments.

Accepted arguments are:

key The name of the variable.

value The value of the variable. If None is used, the variable has no value and is simply defined.

build(target: str)→ ResolvedTarget
This method will build the installer using the WiX Toolset.

This method accepts the following arguments:

target The name of the target being built.

Upon successful generation of an installer, the produced installer will be assessed for code signing with
the windows-installer-creation action.

11.2.16 WiXMSIBuilder

class starlark_tugger.WiXMSIBuilder
The WiXMSIBuilder type allows building simple MSI installers using the WiX Toolset.

WiXMSIBuilder instances allow you to create and build a .wxs file with common features. A goal of this
type is to allow simple applications - without complex installer needs - to generate MSI installers without having
to author your own .wxs files.

Instances have multiple attributes, which are write-only.

__init__(id_prefix: str, product_name: str, product_version: str, product_manufacturer: str) →
WiXMSIBuilder

WiXMSIBuilder() is called to construct new instances. It accepts the following arguments:

id_prefix The string prefix to add to auto-generated IDs in the .wxs XML.

The value must be alphanumeric and - cannot be used.

The value should reflect the application whose installer is being defined.

product_name The name of the application being installed.

product_version The version of the application being installed.

This is a string like X.Y.Z, where each component is an integer.

product_manufacturer The author of the application.

banner_bmp_path
(str)

The path to a 493 x 58 pixel BMP file providing the banner to display in the installer.

dialog_bmp_path
(str)

The path to a 493 x 312 pixel BMP file providing an image to be displayed in the installer.

11.2. Tugger Starlark Dialect 163

https://wixtoolset.org/

PyOxidizer, Release 0.14.1

eula_rtf_path
(str)

The path to a RTF file containing the EULA that will be shown to users during installation.

help_url
(str)

A URL that will be presented to provide users with help.

license_path
(str)

Path to a file containing the license for the application being installed.

msi_filename
(str)

The filename to use for the built MSI.

If not set, the default is <product_name>-<product_version>.msi.

package_description
(str)

A description of the application being installed.

package_keywords
(str)

Keywords for the application being installed.

product_icon_path
(str)

Path to a file providing the icon for the installed application.

target_triple
(str)

The Rust target triple the MSI is being built for.

upgrade_code
(str)

A GUID defining the upgrade code for the application.

If not provided, a stable GUID derived from the application name will be derived automatically.

add_program_files_manifest(manifest: FileManifest)
This method registers the content of a FileManifest to be installed in the Program Files directory for
this application.

This method accepts the following arguments:

manifest Files to register for installation.

As files are added, they are checked for code signing compatibility with the action
windows-installer-file-added.

add_visual_cpp_redistributable(redist_version: str, platform: str)
This method will locate and add the Visual C++ Redistributable runtime DLL files (e.g.
vcruntime140.dll) to the Program Files manifest in the builder, effectively materializing these files
in the installed file layout.

This method accepts the following arguments:

164 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

redist_version The version of the Visual C++ Redistributable to search for and add. 14 is the
version used for Visual Studio 2015, 2017, and 2019.

platform Identifies the Windows run-time architecture. Must be one of the values x86, x64, or
arm64.

This method uses vswhere.exe to locate the vcruntimeXXX.dll files inside a Visual Studio instal-
lation. This should just work if a modern version of Visual Studio is installed. However, it may fail due to
system variance.

build(target: str)→ ResolvedTarget
This method will build an MSI using the WiX Toolset.

This method accepts the following arguments:

target The name of the target being built.

Upon successful generation of an installer, the produced installer will be assessed for code signing with
the windows-installer-creation action.

11.3 Code Signing

Tugger has support for automatically performing code signing when evaluating Starlark configuration files.

Various platforms and distribution channels enforce requirements that binaries and other artifacts are cryptographically
signed by a trusted certificate.

For example:

• On Windows, executables and installers must be signed by a trusted certificate to avoid warnings about running
untrusted applications.

• On macOS, executables, pkg installers, and more need to be signed by a trusted certificate or Gatekeeper (read:
the OS) may refuse to run them.

Tugger’s support for automatic signing enables you to meet these requirements with hpoefully minimal effort.

11.3.1 Code Signing Support

Tugger supports signing the following signable entities:

• PE binaries. This is the file executable format in use on Windows platforms.

• MSI installers. This is a common file-based installer format on Windows.

• Mach-O binaries. This is the file executable format in use on Apple platforms.

• Apple application bundles. e.g. My Program.app directories. Bundles are a common application packaging
format on Apple platforms.

Signing on Windows currently uses Microsoft’s signtool.exe to perform the signing. So signing Windows entities
requires access to this tool. (We have plans to implement equivalent functionality in Rust to avoid this dependency.)

Signing Apple formats uses a pure Rust implementation of the code signing functionality and works on any machine.
Apple’s codesign tool or access to Apple hardware is not required to sign Apple entities.

Code signing requires the use of a code signing certificate. See Understanding Code Signing Certificates for more.

Tugger supports using code signing certificates in the following locations:

• From a PFX / PKCS #12 file. (e.g. .pfx or .p12 files.)

11.3. Code Signing 165

PyOxidizer, Release 0.14.1

• Certificates available in the Windows certificate store. Via the Windows certificate store, certificates stored in
hardware devices (such as HSMs and hardware tokens such as YubiKeys) can also be used.

11.3.2 Configuring Code Signing in Starlark

Code signing needs to be explicitly enabled and configured in your Starlark configuration file.

From a high level, here’s how it works:

1. Your Starlark configuration instantiates, configures, and enables a CodeSigner, which is the entity that per-
forms code signing.

2. As your configuration file is evaluated, actions that produce or encounter signable entities (such as creating
Windows MSI installers) interact with registered CodeSigner instances and attempt code signing.

Tugger abstracts away a lot of the complexity around code signing, such as figuring out which files need to be signed
(it looks at the content of files and determines if a file is signable). So in many cases, all you need to do is tell Tugger
where your code signing certificate is and it can do the rest!

Continuing reading for details on how to customize code signing. Or just straight into Code Signing Examples.

Instantiating CodeSigner to Perform Code Signing

To perform code signing, first instantiate a CodeSigner via one of its available constructor functions:

• code_signer_from_pfx_file()

• code_signer_from_windows_store_sha1_thumbprint()

• code_signer_from_windows_store_subject()

• code_signer_from_windows_store_auto()

code_signer_from_pfx_file() is the most versatile method, as it gives Tugger full access to the signing
certificate and private key. However, this method is arguably the least secure, as it requires the private key to exist in
a file and Tugger holds the decrypted private key in memory during signing. Both of these make the private key much
more susceptible to being accessed by unwanted parties. If you are paranoid about security, you should only use this
method on machines that you trust.

The code_signer_from_windows_ functions reference code signing keys stored in the Windows certificate
store. Signature requests are processed through the Windows APIs and the private key never leaves the control of the
Windows certificate store, helping to keep the private key secure.

Important: Constructed CodeSigner instances must be activated in order to automatically perform code signing.
See Activating Automatic Code Signing for more.

Configuring CodeSigner Instances

Once you’ve obtained a CodeSigner, you may need to register additional settings to influence signing.

Registering the Issuing Certificate Chain

Produced signatures should often contain details about the chain of certificates that issued the code signing certificate.
See Understanding Code Signing Certificates for more on this topic.

166 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

You may need to tell CodeSigner about the existence of these certificates.

• When using a code signing certificate backed by the Windows certificate store, you do not need to register the
certificate’s signing chain.

• When using a code signing certificate backed by a PFX file, you need to register the certificate chain,
even if those X.509 certificates are in the PFX file (we don’t yet support reading these from the PFX file).
CodeSigner.chain_issuer_certificates_pem_file() is the most versatile method to register
issuer certificates, as it works on all platforms and PEM is a very widespread format for storing X.509 certifi-
cates.

• On macOS, CodeSigner.chain_issuer_certificates_macos_keychain() can be called to at-
tempt to resolve the certificate chain by speaking directly to the macOS keychain APIs. This requires that the
signing certificate be accessible in the current user’s keychain and its entire issuing chain to be present in that
keychain.

Influencing Signing Operations

CodeSigner instances have the opportunity to influence individual signing operations. This gives you significant
control over how signing is performed.

CodeSigner.set_signing_callback() registers a function that will be invoked on each attempted signing
operation. This callback function receives an argument - a CodeSigningRequest instance - that describes the
entity capable of being signed. This type exposes functionality for influencing the signing operation. For example:

• Setting CodeSigningRequest.defer to True will opt this CodeSigner out of signing this particular
entity.

• Setting CodeSigningRequest.prevent_signing to True will prevent this and other CodeSigner
from signing this entity.

See the CodeSigningRequest API documentation for all available functionality on this type.

Leveraging custom callback functions enables configuration files to employ arbitrarily complex logic for influencing
code signing. Your main constraint are the settings exposed on CodeSigningRequest. If you find yourself
needing a setting that doesn’t exist, please file a feature request!

Activating Automatic Code Signing

A CodeSigner needs to be activated for automatic use by Tugger. i.e. your signable files won’t be signed as your
Starlark configuration file is evaluated unless a CodeSigner is activated.

To activate your CodeSigner, simply call CodeSigner.activate().

Code Signing Actions

Various activities within the evaluation of your Starlark configuration file trigger the assessment of - and possible
performing of - code signing.

Each unique activity has its own string action name describing it. This name is accessible via
CodeSigningRequest.action, enabling callback functions to key off of it. For example, you may want to
not sign during certain operations.

The following named actions are defined by Tugger:

file-manifest-install Used when a FileManifest is materialized on the filesystem through an action
like FileManifest.install().

11.3. Code Signing 167

PyOxidizer, Release 0.14.1

macos-application-bundle-creation When a macOS Application Bundle is created by Tugger.

This will be triggered by MacOsApplicationBundleBuilder.build().

windows-installer-creation When a Windows installer file is created by Tugger.

Methods like WiXMSIBuilder.build() and WiXBundleBuilder.build() will trigger this action.

windows-installer-file-added When a file that will be installed is added to a Windows installer.

Triggered by WiXMSIBuilder.add_program_files_manifest(), WiXInstaller.
add_install_file(), and WiXInstaller.add_install_files().

Other applications extending Tugger’s core functionality may define their own actions.

Duplicate Events

It is possible for the same logical file to trigger multiple signing events as it is processed. For example,
MacOsApplicationBundleBuilder.build() may trigger an event for macOS Application Bundle gener-
ation then a later action loads the bundle files into a FileManifest and materializes them somewhere else via
FileManifest.install(), which would trigger an additional signability check.

As a result, the same file or entity may be signed multiple times.

If this behavior is undesirable, the use of a custom callback function can be used to choose which signing requests to
respond to.

Unfortunately, we do not yet expose metadata on CodeSigningRequest indicating if a file is signed or not. This
would likely be the obvious attribute to filter against. This feature is tracked at https://github.com/indygreg/PyOxidizer/
issues/400.

11.3.3 Code Signing Examples

Automatically Sign all Signable Content with a Specific Certificate in the Windows Store

Say you have a code signing certificate in the Windows certificate store with the SHA-1 thumbprint
deadbeefdeadbeefdeadbeefdeadbeefdeadbeef and you want Tugger to sign all signable files as it runs.
Here’s what you’ll need to do in your Starlark configuration file:

signer = code_signer_from_windows_store_sha1_thumbprint(
→˓"deadbeefdeadbeefdeadbeefdeadbeefdeadbeef")
signer.activate()

As Tugger encounters .exe, .dll, .msi files and any file that it identifies as signable, it will attempt to automatically
sign them!

Choosing a Code Signing Certificate Dynamically

Say you have multiple code signing certificates but want to parameterize which one to use. We can do that through the
use of the VARS global dict, which holds settings passed in via the command line.

PFX_PATH = VARS.get("PFX_PATH")
PFX_PASSWORD = VARS.get("PFX_PASSWORD", "")

This needs to be in its own function because Starlark doesn't allow `if`
at the file/module scope.

(continues on next page)

168 Chapter 11. Shipping Applications with tugger

https://github.com/indygreg/PyOxidizer/issues/400
https://github.com/indygreg/PyOxidizer/issues/400

PyOxidizer, Release 0.14.1

(continued from previous page)

def make_code_signers():
if PFX_PATH:

signer = code_signer_from_pfx_file(PFX_PATH, PFX_PASSWORD)
signer.activate()

Don't forget to call the function!
make_code_signers()

Then when running the configuration file, specify an extra variable. e.g.:

$ pyoxidizer --var PFX_PATH /path/to/certificate.pfx --var PFX_PASSWORD hunter2

Or you could use functions like prompt_confirm(), prompt_input(), and prompt_password() to ask
the user which certificate to use.

def make_code_signers():
if prompt_confirm("enable code signing?", default=False):

pfx_path = prompt_input("enter path to PFX file:")
pfx_password = prompt_password("enter path to PFX password:", confirm=True)

signer = code_signer_from_pfx_file(pfx_path, pfx_password)
signer.activate()

make_code_signers()

Selectively Ignoring Files to Sign

It is common to want to ignore certain files from signing. For example, you may ship a pre-built binary that already
has a valid code signature. Here’s how you can do that.

Define a function that will be called for every signing request that
can influence operation.
def code_signer_callback(request):

Match a known filename that doesn't need signed and set
`prevent_signing = True` to prevent it from being signed.
if request.filename == "vcruntime140.dll":

request.prevent_signing = True

signer = code_signer_from_windows_store_sha1_thumbprint(
→˓"deadbeefdeadbeefdeadbeefdeadbeefdeadbeef")
signer.set_signing_callback(code_signer_callback)
signer.activate()

You could even use the prompt_confirm() function to prompt whether to sign each file:

def code_signer_callback(request):
request.prevent_signing = not prompt_confirm("sign %s?" % request.filename)

signer = code_signer_from_...()
signer.set_signing_callback(code_signer_callback)
signer.activate()

11.3. Code Signing 169

PyOxidizer, Release 0.14.1

11.3.4 Understanding Code Signing Certificates

A code signing certificate consists of a secure, private key and a public certificate that describes itself to others. These
components are strictly separate but are often represented and stored together.

The public certificate is an X.509 certificate, much like those used in HTTP to identify web sites. The main difference
is that the certificate’s subject describes a person or organization (instead of a website) and the certificate contains
attributes that denote it for use by code signing.

Like web site X.509 certificates, code signing certificates are signed by another X.509 certificate. This is called the
issuing certificate. There is often a chain of certificates - the certificate chain - leading to a self-signed certificate (a
certificate whose issuer was itself), which is referred to as the root certificate.

Typically, the certificate chain is included in code signatures. This enables readers of the signature to have full access
to all relevant certificates, without an implicit dependency on them being present on the reading machine. This enables
validation to be conducted more robustly.

Code Signing Certificate Storage

Code signing certificates can be stored in a number of formats. Here are the popular ones:

• As standalone .pfx or .p12 files. These are files containing data as defined by the PFX and PKCS #12
specifications. Most tools that support saving code signing certificates to files support this format if not use it
by default.

• In your operating system’s certificate store. Windows, macOS, and other operating systems have built-in func-
tionality for storing and accessing certificates. On Windows, the certmgr.msc tool can be used to view
certificates. On macOS, Keychain Access is the official GUI application.

In addition, the public X.509 certificates and the certificates in the certificate chain are often represented as PEM.
This is a human-readable text format with content like -----BEGIN CERTIFICATE-----. PEM is actually
base64 encoded BER/DER encoding of ASN.1 data structures, but that’s not important. What is important is public
certificates are often stored in files having this -----BEGIN CERTIFICATE----- content. These files often have
the extension .pem or .crt.

The certificate chain is constant for the lifetime of a code signing certificate. So it is possible to export these certificates
to a persisted file and reference this file when you need to access the issuer certificates chain.

Securing Your Code Signing Certificate

Your code signing certificate’s private key attests that its owner was in possession of that certificate and has vouched
for the integrity of whatever it signed.

Important: Code signing certificates can be very attractive theft targets for hackers, as possession of a code signing
certificate enables you to sign software that can run on other machines and appears to be trusted. Therefore, it is often
important to try to secure your code signing certificates!

The most secure way to store code signing certificates is in dedicated hardware devices, such as HSMs or personal
hardware tokens (such as YubiKeys). Often, the private key component of the certificate is generated directly in said
hardware and it is impossible to export the private key and obtain its raw value. Instead, operations like signing are
issued to the hardware and the hardware gives you the rest.

Tugger doesn’t yet support interfacing directly with hardware devices. However, we do have support for interfacing
with the operating system’s certificate stores:

170 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

• On Windows, a certificate in the Windows certificate store can be referenced by its SHA-1 fingerprint. (This is
the preferred mechanism to reference a certificate on Windows.)

• On Windows, a certificate in the Windows certificate store can be referenced by specifying a string to match
against in the certificate’s subject field. (This is less precise than specifying a certificate’s SHA-1 fingerprint.)

• On Windows, you can tell the signing tool to automatically find the most appropriate certificate to use. It will
look for a certificate in known certificate stores. (This is the least precise of all options available on Windows.)

Note: Your operating system’s certificate store can often interface with hardware devices holding code signing
certificates. So Tugger’s support for interfacing with the operating system store is often just as effective as interfacing
directly with hardware devices.

For example, on Windows, certificates stored in a YubiKey will be available if you have the YubiKey Smart Card
Minidriver installed.

If Tugger doesn’t support using a remote certificate, you will need to export a certificate to a file and have
Tugger use that. If you export your certificate to a file, you should take care to secure that file as best you can.

File-based code signing certificates often exist in .pfx or .p12 files. These are often protected with a password.
You should use a strong and unique password to secure this file.

Important: If someone else gains access to the file containing your code signing certificate, they will be able to
perform an offline attack using as many compute resources as possible to guess your password and gain access to the
code signing certificate.

You should take the following precautions to protect file-based code signing certificates:

• Choose a strong, unique password for protecting the file content.

• Limit the time the files exist. If you can create the file only when needed, this is better than having the file linger
on the filesystem.

• Limit the number of copies of the file. Every copy of the file is an opportunity for the file to be obtained by
someone else.

Exporting a Code Signing Certificate from macOS Keychain

Apple platforms require a code signing certificate issued by Apple to sign distributed files.

If you have an Apple-issued code signing certificate, it is likely registered in a keychain on your machine. Tugger
doesn’t currently support interfacing directly with the macOS keychain and you will need to export your signing
certificate to a PFX / .p12 file so Tugger can use it. Here’s how to do that.

1. Press command + spacebar and search for and open the Keychain Access application.

2. Make sure the correct keychain is selected. The keychain code signing certificates are typically located in is the
login keychain under the Default Keychains list.

3. From the horizontal list of filters above the main pane, select Certificates (it is probably the last item).

4. Find the certificate you want to export. It likely has a name like Developer ID Application: <your
name (some ID)>

5. Do a double finger tap, right click, or File -> Export Items ... to bring up the export dialog.

6. For the file format, make sure Personal Information Exchange (.p12) is selected.

7. Navigate to a folder where you want to save the file, choose an appropriate name, and click Save.

11.3. Code Signing 171

https://www.yubico.com/support/download/smart-card-drivers-tools/
https://www.yubico.com/support/download/smart-card-drivers-tools/

PyOxidizer, Release 0.14.1

8. You will be asked for a password which will be used to protect the exported items. Enter one. This password
will need to be provided to Tugger later to unlock the content in the file.

9. You may be prompted to enter the password to the keychain to allow the key export. If so, enter that password.

10. You may be prompted multiple times. Just keep entering your keychain password(s) until it is done.

11. You are done! There should be a .p12 file wherever you told Keychain Access to save it.

Important: Please see Securing Your Code Signing Certificate for important information on keeping your file-based
code signing certificate secure.

Finding the Code Signing SHA-1 Thumbprint on Windows

On Windows, it is recommended to use code signing certificates in the Windows certificate store and to specify those
certificates via their SHA-1 thumbprint, which should uniquely identify a certificate.

The Windows certificate store supports interfacing with hardware certificate stores (such as YubiKeys and other hard-
ware devices). So this method should work with connected hardware certificate stores as well.

1. Press Windows Key + r to open the Run panel. Type in certmgr.msc and run that program.

2. Code signing certificates are likely under Personal -> Certificates. Find that item in the tree and look
for a certificate in the main pane.

3. Find the certificate you want to use and double click on it to view its details.

4. Open the Details tab.

5. In the table of fields, find and select Thumbprint.

6. Copy the 40 character hexadecimal value that is printed.

The SHA-1 thumbprint can be fed into code_signer_from_windows_store_sha1_thumbprint() to
construct a CodeSigner that uses the specified certificate.

If the certificate is protected by a password or requires key to unlock, you should see prompts to do that as Tugger
attempts to sign things.

Exporting a Code Signing Certificate from Windows Certificate Store

Code signing certificates on Windows are often stored in the Windows certificate store.

Important: Tugger has support for using certificates directly in the Windows certificate store. Exporting certificates
to files will likely result in a net loss of security.

Here is how you can export a certificate to a PFX file.

1. Press Windows Key + r to open the Run panel. Type in certmgr.msc and run that program.

2. Code signing certificates are likely under Personal -> Certificates. Find that item in the tree and look
for a certificate in the main pane.

3. Double click on the certificate you want to export, open its Details table, and click the Copy to File...
button. This should open the Certificate Export Wizard.

4. Click Next.

5. Make sure Yes, export the private key is selected and click Next.

172 Chapter 11. Shipping Applications with tugger

PyOxidizer, Release 0.14.1

6. For the format, make sure the selected value is Personal Information Exchange PKCS #12
(PFX). For the checkboxes, check Include all certificates in the certificate path,
if possible. Then click Next.

7. You should be prompted for a password. Enter a secure, unique password. In the Encryption drop-down,
ensure TripleDES-SHA1 is selected (we don’t yet support AES256-SHA256). Then click Next.

8. Select a filename and click Next.

9. Click Finish to close the wizard.

Important: Please see Securing Your Code Signing Certificate for important information on keeping your file-based
code signing certificate secure.

11.4 Using the WiX Toolset to Produce Windows Installers

The WiX Toolset is an open source collection of tools used for building Windows installers (.msi files, .exe, etc).
The WiX Toolset is incredibly powerful and enables building anything from simple to complex installers.

Tugger defines interfaces to the WiX Toolset via Rust APIs and exposes much of this functionality to Starlark.

11.4.1 Concepts

With the WiX Toolset, you define your installer through .wxs XML files. You use the candle.exe program to
compile these files into .wixobj files. These compiled files are then linked together using light.exe to produce
an installer (.msi, .exe, etc).

The goal of Tugger’s Rust API is to expose the low-level control over WiX Toolset that the most demanding applica-
tions will need while also providing high-level and simpler interfaces for performing common tasks (such as producing
a simple .msi installer that simply materializes files into the Program Files directory).

11.4.2 Tugger’s WiX APIs

Tugger implements various interfaces for interacting with WiX. This section attempts to document them at a high level
and talks about when to use which.

WxsBuilder The WxsBuilder Rust struct is used to build a single .wxs file. You provide the path of the .wxs
and build settings and it knows how to invoke candle.exe for this file.

WiXInstallerBuilder The WiXInstallerBuilder Rust struct and WiXInstaller Starlark type are
used to manage the end-to-end building and linking of .wxs files. This type knows how to register multiple
WxsBuilder instances and build them as a collection. This type holds all the logic for invoking candle.exe
and light.exe.

WiXSimpleMSIBuilder The WiXSimpleMSIBuilder Rust struct and WiXMSIBuilder Starlark type pro-
vide a high-level interface for generating an MSI based installer with common features. It enables you to
generate a .wxs file by providing a few parameters, without having to know WiX XML.

A WiXSimpleMSIBuilder ultimately is converted to a WiXInstallerBuilder.

WiXBundleInstallerBuilder The WiXBundleInstallerBuilder Rust struct and
WiXBundleBuilder Starlark type provide a high-level interface for generating an .exe based installed
with common features.

A WiXBundleInstallerBuilder ultimately is converted to a WiXInstallerBuilder.

11.4. Using the WiX Toolset to Produce Windows Installers 173

https://wixtoolset.org/

PyOxidizer, Release 0.14.1

If your application only needs the limited functionality exposed by the high-level WiXSimpleMSIBuilder and
WiXBundleInstallerBuilder interfaces, you are encouraged to use these for building your installer, as you
won’t need to concern yourself with the low-level WiX XML details.

If your application needs what you think is simple or common functionality not provided by the aforementioned
high-level builders, consider filing a feature request to request the missing functionality.

Complex applications that have outgrown the limited capabilities of the high-level builder interfaces will need to use
the lower level WiXInstallerBuilder / WiXInstaller interface. This interface allows you to provide your
own .wxs files. This means you can still use Tugger for invoking WiX, even if all of your .wxs files are maintained
outside of Tugger, enabling Tugger to grow with your needs. Note that it is possible to use one of the higher-level
interfaces for automatically generating a .wxs file and then supplement this automatically-generated file with other
.wxs files that you maintain.

Note: Ideally no WiX installer should be too complicated to be handled by Tugger. If Tugger’s functionality is not
sufficient, consider creating an issue to request a feature to close the feature gap.

11.4.3 How Tugger Invokes WiX

Tugger’s Rust APIs collects which .wxs files to compile and their compilation settings. It also collects additional
files needed to compile .wxs files.

When you build your installer, Tugger copies all the registered .wxs files plus other registered files into a common
directory. It then invokes candle.exe on each .wxs file followed by light.exe to link them together. This is
different from a traditional environment, where .wxs files are often processed in place: Tugger always makes copies
to try to ensure results are reproducible and the full build environment is captured.

11.4.4 Automatic <Fragment> Generation for Files

Tugger supports automatically generating a .wxs file with <Fragment>’s describing a set of files. Given a set of
input files, it will produce a deterministic .wxs file with <DirectoryRef> holding <Component> and <File>
of every file therein as well as <ComponentGroup> for each distinct directory tree.

This functionality is similar to what WiX Toolset’s heat.exe tool can do. However, Tugger uses a deterministic
mechanism to derive GUIDs and IDs for each item. This enables the produced elements to be referenced in other
.wxs files more easily. And the generated file doesn’t need to be saved or manually updated, as it does with the use
of heat.exe.

You simply give Tugger a manifest of files to index and the prefix for Id attributes in XML, and it will emit a
deterministic .wxs file!

11.5 Project History

11.5.1 Version History

0.4.0

Not yet released.

174 Chapter 11. Shipping Applications with tugger

https://github.com/indygreg/PyOxidizer/issues/new

PyOxidizer, Release 0.14.1

0.3.0

Released March 4, 2021.

New Features

• The FileManifest Starlark type now exposes an add_path() method.

• The Starlark dialect now exposes SnapApp, Snappart, and Snap types representing Snapcraft configuration
files.

• The Starlark dialect now has a SnapcraftBuilder type that serves as an interface to invoking snapcraft.

• The Starlark dialect now exposes WiXBundleBuilder, WiXInstaller, and WiXMSIBuilder types for
defining Windows installers using the WiX Toolset.

0.2.0

Version 0.2 was released November 8, 2020.

Version 0.2 marked the beginning of a complete rewrite of Tugger. The canonical source code repository was moved
to the PyOxidizer repository.

Not all features from version 0.1 were ported to version 0.2.

0.1.0

Version 0.1 was released on August 25, 2019.

Version 0.1 was mostly a proof of concept to demonstrate the viability of Starlark configuration files. But Tugger was
usable in this release.

11.5. Project History 175

PyOxidizer, Release 0.14.1

176 Chapter 11. Shipping Applications with tugger

CHAPTER 12

Frequently Asked Questions

12.1 Where Can I Report Bugs / Send Feedback / Request Features?

At https://github.com/indygreg/PyOxidizer/issues

12.2 Why Build Another Python Application Packaging Tool?

It is true that several other tools exist to turn Python code into distributable applications! Comparisons to Other Tools
attempts to exhaustively compare PyOxidizer to these myriad of tools. (If a tool is missing or the comparison
incomplete or unfair, please file an issue so Python application maintainers can make better, informed decisions!)

The long version of how PyOxidizer came to be can be found in the Distributing Standalone Python Applications
blog post. If you really want to understand the motivations for starting a new project rather than using or improving
an existing one, read that post.

If you just want the extra concise version, at the time PyOxidizer was conceived, there were no Python application
packaging/distribution tool which satisfied all of the following requirements:

• Works across all platforms (many tools target e.g. Windows or macOS only).

• Does not require an already-installed Python on the executing system (rules out e.g. zip file based distribution
mechanisms).

• Has no special system requirements (e.g. SquashFS, container runtimes).

• Offers startup performance no worse than traditional python execution.

• Supports single file executables with none or minimal system dependencies.

177

https://github.com/indygreg/PyOxidizer/issues
https://gregoryszorc.com/blog/2018/12/18/distributing-standalone-python-applications/

PyOxidizer, Release 0.14.1

12.3 Can Python 2.7 Be Supported?

In theory, yes. However, it is considerable more effort than Python 3. And since Python 2.7 is being deprecated in
2020, in the project author’s opinion it isn’t worth the effort.

12.4 Why is Python 3.8 Required?

Python 3.8 contains a new C API for controlling how embedded Python interpreters are started. This makes the
run-time code that native binaries execute much, much simpler.

PyOxidizer versions up to 0.7 supported Python 3.7. But a decision was made to require Python 3.8 because the run-
time code to manage the Python interpreter was vastly simpler and less prone to bugs. Given that Python 3.8 is mostly
backwards compatible with Python 3.7, this wasn’t perceived as a significant annoyance.

12.5 No python interpreter found of version 3.* Error
When Building

This is due to a dependent crate insisting that a Python executable exist on PATH. Set the
PYTHON_SYS_EXECUTABLE environment variable to the path of a Python 3.7 executable and try again.
e.g.:

UNIX
$ export PYTHON_SYS_EXECUTABLE=/usr/bin/python3.7
Windows
$ SET PYTHON_SYS_EXECUTABLE=c:\python37\python.exe

Note: The pyoxidizer tool should take care of setting PYTHON_SYS_EXECUTABLE and prevent this error. If
you see this error and you are building with pyoxidizer, it is a bug that should be reported.

12.6 Why Rust?

This is really 2 separate questions:

• Why choose Rust for the run-time/embedding components?

• Why choose Rust for the build-time components?

PyOxidizer binaries require a driver application to interface with the Python C API and that driver application
needs to compile to native code in order to provide a native executable without requiring a run-time on the machine it
executes on. In the author’s opinion, the only appropriate languages for this were C, Rust, and maybe C++.

Of those 3, the project’s author prefers to write new projects in Rust because it is a superior systems programming
language that has built on lessons learned from decades working with its predecessors. The author prefers technologies
that can detect and eliminate entire classes of bugs (like buffer overflow and use-after-free) at compile time. On a
less-opinionated front, Rust’s built-in build system support means that we don’t have to spend considerable effort
solving hard problems like cross-compiling. Implementing the embedding component in Rust also creates interesting
opportunities to embed Python in Rust programs. This is largely an unexplored area in the Python ecosystem and the
author hopes that PyOxidizer plays a part in more people embedding Python in Rust.

178 Chapter 12. Frequently Asked Questions

PyOxidizer, Release 0.14.1

For the non-runtime packaging side of PyOxidizer, pretty much any programming language would be appropriate.
The project’s author initially did prototyping in Python 3 but switched to Rust for synergy with the the run-time
driver and because Rust had working solutions for several systems-level problems, such as parsing ELF, DWARF, etc
executables, cross-compiling, integrating custom memory allocators, etc. A minor factor was the author’s desire to
learn more about Rust by starting a real Rust project.

12.7 Why is the Rust Code. . . Not Great?

This is the project author’s first real Rust project. Suggestions to improve the Rust code would be very much appreci-
ated!

Keep in mind that the pyoxidizer crate is a build-time only crate and arguably doesn’t need to live up to quality
standards as crates containing run-time code. Things like aggressive .unwrap() usage are arguably tolerable.

The run-time code that produced binaries run (pyembed) is held to a higher standard and is largely panic! free.

12.8 What is the Magic Sauce That Makes PyOxidizer Special?

There are 2 technical achievements that make PyOxidizer special.

First, PyOxidizer consumes Python distributions that were specially built with the aim of being used for stan-
dalone/distributable applications. These custom-built Python distributions are compiled in such a way that the re-
sulting binaries have very few external dependencies and run on nearly every target system. Other tools that produce
standalone Python binaries often rely on an existing Python distribution, which often doesn’t have these characteristics.

Second is the ability to import .py/.pyc files from memory. Most other self-contained Python applications rely on
Python’s zipimporter or do work at run-time to extract the standard library to a filesystem (typically a temporary
directory or a FUSE filesystem like SquashFS). What PyOxidizer does is expose the .py/.pyc modules data to
the Python interpreter via a Python extension module built-in to the binary.

During Python interpreter initialization, a custom Rust-implemented Python importer is registered and takes over all
imports. Requests for modules are serviced from the parsed data structure defining known modules.

Follow the Documentation link for the pyembed crate for an overview of how the in-memory import machinery works.

12.9 Can Applications Import Python Modules from the Filesystem?

Yes!

While PyOxidizer supports importing Python resources from in-memory, it also supports filesystem-based import like
traditional Python applications.

This can be achieved by adding Python resources to a non in-memory resource location (see Manag-
ing How Resources are Added) or by enabling Python’s standard filesystem-based importer by enabling
filesystem_importer=True (see PythonInterpreterConfig).

12.7. Why is the Rust Code. . . Not Great? 179

https://crates.io/crates/pyembed

PyOxidizer, Release 0.14.1

12.10 error while loading shared libraries: libcrypt.
so.1: cannot open shared object file: No such
file or directory When Building

If you see this error when building, it is because your Linux system does not conform to the Linux Standard Base
Specification, does not provide a libcrypt.so.1 file, and the Python distribution that PyOxidizer attempts to run
to compile Python source modules to bytecode can’t execute.

Fedora 30+ are known to have this issue. A workaround is to install the libxcrypt-compat on the machine
running pyoxidizer. See https://github.com/indygreg/PyOxidizer/issues/89 for more info.

12.11 vcruntime140.dll was not found Error on Windows

Binaries built with PyOxidizer often have a dependency on the Visual C++ Redistributable Runtime, or
vcruntime140.dll. If this file is not present on your system or in a path where the built binary can find it,
you’ll get an error about this missing file when attempting to run/load the binary.

PyOxidizer has some support for managing this file for you. See Managing the Visual C++ Redistributable Require-
ment for more.

If PyOxidizer is not materializing this file next your built binary, either you’ve disabled this functionality via your
configuration file (see PythonExecutable.windows_runtime_dlls_mode) or PyOxidizer could not find
the Visual Studio component providing this file.

The quick fix for this is to install the Visual C++ Redistributable runtime glob-
ally on your system. Simply go to https://support.microsoft.com/en-us/topic/
the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0 and download and install the
appropriate platform installer for Visual Studio 2015, 2017 and 2019.

If you want PyOxidizer to materialize the DLL(s) next to your built binary, you’ll need to install Visual Studio with the
Microsoft.VisualCPP.Redist.14.Latest component (you will typically get this component if installing
support for building C/C++ applications).

12.12 ld: unsupported tapi file type '!tapi-tbd' in
YAML file on macOS When Building

If you see this error when building on macOS, it means that the linker (likely Clang) being used is not able to read the
.tbd files from a more modern Apple SDK.

PyOxidizer requires using an Apple SDK no older than the one used to build the Python distributions being embedded
(see Build Machine Requirements). So the only recourse to this problem is to use a more modern linker.

On Apple platforms, it is common to use the clang/linker from an Xcode or Xcode Commandline Tools install. So the
problem can usually be fixed by upgrading Xcode or the Xcode Commandline Tools.

180 Chapter 12. Frequently Asked Questions

https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-AMD64/LSB-Core-AMD64/libcrypt.html
https://refspecs.linuxfoundation.org/LSB_5.0.0/LSB-Core-AMD64/LSB-Core-AMD64/libcrypt.html
https://github.com/indygreg/PyOxidizer/issues/89
https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0
https://support.microsoft.com/en-us/topic/the-latest-supported-visual-c-downloads-2647da03-1eea-4433-9aff-95f26a218cc0

CHAPTER 13

Project Status

PyOxidizer is functional and works for many use cases. However, there are still a number of rough edges, missing
features, and known limitations. Please file issues at https://github.com/indygreg/PyOxidizer/issues!

13.1 What’s Working

The basic functionality of creating binaries that embed a self-contained Python works on Linux, Windows, and macOS.
The general approach should work for other operating systems.

Starlark configuration files allow extensive customization of packaging and run time behavior. Many projects can be
successfully packaged with PyOxidizer today.

13.2 Major Missing Features

13.2.1 An Official Build Environment

Compiling binaries that work on nearly every target system is hard. On Linux, things like glibc symbol versions
from the build machine can leak into the built binary, effectively requiring a new Linux distribution to run a binary.

In order to make the binary build process robust, we will need to provide an execution environment in which to build
portable binaries. On Linux, this likely entails making something like a Docker image available. On Windows and
macOS, we might have to provide a tarball. In all cases, we want this environment to be integrated into pyoxidizer
build so end users don’t have to worry about jumping through hoops to build portable binaries.

13.2.2 Native Extension Modules

Using compiled extension modules (e.g. C extensions) is partially supported.

Building C extensions to be embedded in the produced binary works for Windows, Linux, and macOS.

181

https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.14.1

Support for extension modules that link additional macOS frameworks not used by Python itself is not yet implemented
(but should be easy to do).

Support for cross-compiling extension modules (including to MUSL) does not work. (It may appear to work and break
at linking or run-time.)

We also do not yet provide a build environment for C extensions. So unexpected behavior could occur if e.g. a different
compiler toolchain is used to build the C extensions from the one that produced the Python distribution.

See also C and Other Native Extension Modules.

13.2.3 Incomplete pyoxidizer Commands

pyoxidizer add and pyoxidizer analyze aren’t fully implemented.

There is no pyoxidizer upgrade command.

Work on all of these is planned.

13.2.4 More Robust Packaging Support

Currently, we produce an executable via Cargo. Often a self-contained executable is not suitable. We may have to
run some Python modules from the filesystem because of limitations in those modules. In addition, some may wish to
install custom files alongside the executable.

We want to add a myriad of features around packaging functionality to facilitate these things. This includes:

• Support for __file__.

• A build mode that produces an instrumented binary, runs it a few times to dump loaded modules into files, then
builds it again with a pruned set of resources.

13.2.5 Making Distribution Easy

We don’t yet have a good story for the distributing part of the application distribution problem. We’re good at pro-
ducing executables. But we’d like to go the extra mile and make it easier for people to produce installers, .dmg files,
tarballs, etc.

This includes providing build environments for e.g. non-MUSL based Linux executables.

It also includes support for auditing for license compatibility (e.g. screening for GPL components in proprietary
applications) and assembling required license texts to satisfy notification requirements in those licenses.

13.2.6 Partial Terminfo and Readline Support

PyOxidizer has partial support for detecting terminfo databases. See Terminfo Database for more.

There’s a good chance PyOxidizer’s ability to locate terminfo databases in the long tail of Python distributions is
lacking. And PyOxidizer doesn’t currently make it easy to distribute a terminfo database alongside the application.

At this time, proper terminal interaction in PyOxidizer applications may be hit-or-miss.

Please file issues at https://github.com/indygreg/PyOxidizer/issues reporting known problems with terminal interaction
or to request new features for terminal interaction, terminfo database support, etc.

182 Chapter 13. Project Status

https://github.com/indygreg/PyOxidizer/issues

PyOxidizer, Release 0.14.1

13.3 Lesser Missing Features

13.3.1 Python Version Support

Python 3.8 and 3.9 are currently supported. Older versions of PyOxidizer (through version 0.7) supported Python 3.7.
See Why is Python 3.8 Required? for why we require these Python versions.

13.3.2 Reordering Resource Files

There is not yet support for reordering .py and .pyc files in the binary. This feature would facilitate linear read
access, which could lead to faster execution.

13.3.3 Compressed Resource Files

Binary resources are currently stored as raw data. They could be stored compressed to keep binary size in check (at
the cost of run-time memory usage and CPU overhead).

13.3.4 Nightly Rust Required on Windows

Windows currently requires a Nightly Rust to build (you can set the environment variable RUSTC_BOOTSTRAP=1 to
work around this) because the static-nobundle library type is required. https://github.com/rust-lang/rust/issues/
37403 tracks making this feature stable. It might be possible to work around this by adding an __imp_ prefixed
symbol in the right place or by producing a empty import library to satisfy requirements of the static linkage kind.
See https://github.com/rust-lang/rust/issues/26591#issuecomment-123513631 for more.

13.3.5 Cross Compiling

Cross compiling is not yet supported. We hope to and believe we can support this someday. We would like to
eventually get to a state where you can e.g. produce Windows and macOS executables from Linux. It’s possible.

13.3.6 Configuration Files

Naming and semantics in the configuration files can be significantly improved. There’s also various missing packaging
functionality.

13.4 Eventual Features

The immediate goal of PyOxidizer is to solve packaging and distribution problems for Python applications. But
we want PyOxidizer to be more than just a packaging tool: we want to add additional features to PyOxidizer
to bring extra value to the tool and to demonstrate and/or experiment with alternate ways of solving various problems
that Python applications frequently encounter.

13.3. Lesser Missing Features 183

https://github.com/rust-lang/rust/issues/37403
https://github.com/rust-lang/rust/issues/37403
https://github.com/rust-lang/rust/issues/26591#issuecomment-123513631

PyOxidizer, Release 0.14.1

13.4.1 Lazy Module Loading

When a Python module is imported, its code is evaluated. When applications consist of dozens or even hundreds
of modules, the overhead of executing all this code at import time can be substantial and add up to dozens of
milliseconds of overhead - all before your application runs a meaningful line of code.

We would like PyOxidizer to provide lazy module importing so Python’s import machinery can defer evaluating
a module’s code until it is actually needed. With features in modern versions of Python 3, this feature could likely be
enabled by default. And since many PyOxidizer applications are frozen and have total knowledge of all importable
modules at build time, PyOxidizer could return a lazy module object after performing a simple Rust HashMap
lookup. This would be extremely fast.

13.4.2 Alternate Module Serialization Techniques

Related to lazy module loading, there is also the potential to explore alternate module serialization techniques. Cur-
rently, the way PyOxidizer and .pyc files work is that a Python code object is serialized with the marshal
module. At module load time, the code object is deserialized and then executed. This deserialization plus code
execution has overhead.

It is possible to devise alternate serialization and load techniques that don’t rely on marshal and possibly bypass
having to run as much code at module load time. For example, one could devise a format for serializing various
PyObject types and then adjusting pointers inside the structs at run time. This is kind of a crazy idea. But it could
work.

13.4.3 Module Order Tracing

Currently, resource data is serialized on disk in alphabetical order according to the resource name. e.g. the bar
module is serialized before the foo module.

We would like to explore a mechanism to record the order in which modules are loaded as part of application execution
and then reorder the serialized modules such that they are stored in load order. This will facilitate linear reads at
application run time and possibly provide some performance wins (especially on devices with slow I/O).

13.4.4 Module Import Performance Tracing

PyOxidizer has near total visibility into what Python’s module importer is doing. It could be very useful to provide
forensic output of what modules import what, how long it takes to import various modules, etc.

CPython does have some support for module importing tracing. We think we can go a few steps farther. And we can
implement it more easily in Rust than what CPython can do in C. For example, with Rust, one can use the inferno
crate to emit flame graphs directly from Rust, without having to use external tools.

13.4.5 Built-in Profiler

There’s potential to integrate a built-in profiler into PyOxidizer applications. The excellent py-spy sampling pro-
filer (or the core components of it) could potentially be integrated directly into PyOxidizer such that produced
applications could self-profile with minimal overhead.

It should also be possible for PyOxidizer to expose mechanisms for Rust to receive callbacks when Python’s
profiling and tracing hooks fire. This could allow building a powerful debugger or tracer in Rust.

184 Chapter 13. Project Status

https://github.com/jonhoo/inferno
https://github.com/jonhoo/inferno
https://github.com/benfred/py-spy
https://docs.python.org/3.7/c-api/init.html#profiling-and-tracing

PyOxidizer, Release 0.14.1

13.4.6 Command Server

A known problem with Python is its startup overhead. The maintainer of PyOxidizer has raised this issue on
Python’s mailing list a few times.

PyOxidizer helps with this problem by eliminating explicit filesystem I/O and allowing modules to be imported
faster. But there’s only so much that can be done and startup overhead can still be a problem.

One strategy to combat this problem is the use of persistent command server daemons. Essentially, on the first invo-
cation of a program you spawn a background process running Python. That process listens for command requests on
a pipe, socket, etc. You send the current command’s arguments, environment variables, other state, etc to the back-
ground process. It uses its Python interpreter to execute the command and send results back to the main process. On
the 2nd invocation of your program, the Python process/interpreter is already running and meaningful Python code
can be executed immediately, without waiting for the Python interpreter and your application code to initialize.

This approach is used by the Mercurial version control tool, for example, where it can shave dozens of milliseconds
off of hg command service times.

PyOxidizer could potentially support command servers as a built-in feature for any Python application.

13.4.7 PyO3

PyO3 are alternate Rust bindings to Python from rust-cpython, which is what pyembed currently uses.

The PyO3 bindings seem to be ergonomically better than rust-cpython. PyOxidizer may switch to PyO3 someday.

13.4. Eventual Features 185

https://mail.python.org/pipermail/python-dev/2014-May/134528.html
https://mail.python.org/pipermail/python-dev/2018-May/153296.html
https://mail.python.org/pipermail/python-dev/2018-October/155466.html
https://github.com/pyo3/pyo3
https://github.com/dgrunwald/rust-cpython

PyOxidizer, Release 0.14.1

186 Chapter 13. Project Status

CHAPTER 14

Comparisons to Other Tools

What makes PyOxidizer different from other Python packaging and distribution tools? Read on to find out!

If you are curious why PyOxidizer’s creator felt the need to create a new tool, see Why Build Another Python Applica-
tion Packaging Tool? in the FAQ.

Important: It is important for Python application maintainers to make informed decisions about their use of packag-
ing tools. If you feel the comparisons in this document are incomplete or unfair, please file an issue so this page can
be improved. Even better, submit a pull request!

14.1 PyInstaller

PyInstaller is a tool to convert regular python scripts to standalone executables. The standard packaging produces a tiny
executable and a custom directory structure to host dynamic libraries and Python code (zipped compiled bytecode).

PyInstaller can produce a self-contained executable file containing your application, however, at run-time, PyIn-
staller will extract binary files and a custom ZlibArchive to a temporary directory then import modules from the
filesystem.

PyOxidizer often skips this step and loads modules directly from memory using zero-copy. This makes
PyOxidizer executables significantly faster to start when this feature is employed.

When PyOxidizer is running in single-file mode, it needs to build all binary dependencies from source to facilitate
static linking. Although this behavior is optional and PyOxidizer can also work with pre-built binary Python
packages.

A current difference between the tools is that PyInstaller generally has better support for binary dependencies.
PyInstaller knows how to find runtime dependencies and allows a lot of not-easy-to-build packages like PyQT to
work out of the box. With PyOxidizer, you could need to add sufficient complexity to its configuration files to get
things to work.

187

https://github.com/indygreg/PyOxidizer/issues
https://www.pyinstaller.org/
https://pyinstaller.readthedocs.io/en/latest/advanced-topics.html#zlibarchive

PyOxidizer, Release 0.14.1

14.2 py2exe

py2exe is a tool for converting Python scripts into Windows programs, able to run without requiring an installation.

The goals of py2exe and PyOxidizer are conceptually very similar.

One major difference between the two is that py2exe works on just Windows whereas PyOxidizer works on
multiple platforms.

py2exe and PyOxidizer both employ a clever trick on Windows that allows loading DLLs from memory. This
enables DLLs to be embedded in an executable so you can ship a single .exe and not have to worry about bundling
DLLs as separate files. (PyOxidizer is using the same in-memory DLL loading library as py2exe.)

The approach to packaging that py2exe and PyOxidizer take is substantially different. py2exe embeds itself into
setup.py as a distutils extension. PyOxidizer wants to exist at a higher level and interact with the output
of setup.py rather than get involved in the convoluted mess of distutils internals. This enables PyOxidizer
to provide value beyond what setup.py/distutils can provide.

py2exe is a mature Python packaging/distribution tool for Windows. It offers a lot of similar functionality to
PyOxidizer.

14.3 py2app

py2app is a setuptools command which will allow you to make standalone application bundles and plugins from
Python scripts.

py2app only works on macOS. This makes it like a macOS version of py2exe. Most comparisons to py2exe are
analogous for py2app.

14.4 cx_Freeze

cx_Freeze is a set of scripts and modules for freezing Python scripts into executables.

The goals of cx_Freeze and PyOxidizer are conceptually very similar.

Like other tools in the produce executables space, cx_Freeze packages Python traditionally. On Windows, this
entails shipping a pythonXY.dll. cx_Freeze will also package dependent libraries found by binaries you are
shipping. This introduces portability problems, especially on Linux.

PyOxidizer uses custom Python distributions that are built in such a way that they are highly portable across
machines. PyOxidizer can also produce single file executables.

14.5 Shiv

Shiv is a packager for zip file based Python applications. The Python interpreter has built-in support for running
self-contained Python applications that are distributed as zip files.

Shiv requires the target system to have a Python executable and for the target to support shebangs in executable files.
This is acceptable for controlled environments where Python is installed and Python shebangs work. It isn’t acceptable
for environments where you can’t guarantee an appropriate Python executable is installed/available.

By distributing its own Python interpreter with the application, PyOxidizer has stronger guarantees about the run-
time environment. For example, your application can aggressively target the latest Python version. Another benefit
of distributing your own Python interpreter is you can run a Python interpreter with various optimizations, such as

188 Chapter 14. Comparisons to Other Tools

http://www.py2exe.org/
https://py2app.readthedocs.io/en/latest/
https://cx-freeze.readthedocs.io/en/latest/
https://shiv.readthedocs.io/en/latest/

PyOxidizer, Release 0.14.1

profile-guided optimization (PGO) and link-time optimization (LTO). You can also easily configure custom memory
allocators or tweak memory allocators for optimal performance.

14.6 PEX

PEX is a packager for zip file based Python applications. For purposes of comparison, PEX and Shiv have the same
properties. See Shiv for this comparison.

14.7 XAR

XAR requires the use of SquashFS. SquashFS requires Linux.

PyOxidizer is a target native executable and doesn’t require any special filesystems or other properties to run.

14.8 Docker / Running a Container

It is increasingly popular to distribute applications as self-contained container environments. e.g. Docker images. This
distribution mechanism is effective for Linux users.

PyOxidizer will almost certainly produce a smaller distribution than container-based applications. This is because
many container-based applications contain a lot of extra content that isn’t needed by the executables within.

PyOxidizer also doesn’t require a container execution environment. Not every user has the capability to run certain
container formats. However, nearly every user can run an executable.

At run time, PyOxidizer executes a native binary and doesn’t have to go through any additional execution layers.
Contrast this with Docker, which uses HTTP requests to create containers, set up temporary filesystems and networks
for the container, etc. Spawning a process in a new Docker container can take hundreds of milliseconds or more. This
overhead can be prohibitive for low latency applications like CLI tools. This overhead does not exist for PyOxidizer
executables.

14.9 Nuitka

Nuitka can compile Python programs to single executables. And the emphasis is on compile: Nuitka actually converts
Python to C and compiles that. Nuitka is effectively an alternate Python interpreter.

Nuitka is a cool project and purports to produce significant speed-ups compared to CPython!

Since Nuitka is effectively a new Python interpreter, there are risks to running Python in this environment. Some code
has dependencies on CPython behaviors. There may be subtle bugs or lacking features from Nuitka. However, Nuitka
supposedly supports every Python construct, so many applications should just work.

Given the performance benefits of Nuitka, it is a compelling alternative to PyOxidizer.

14.10 PyRun

PyRun can produce single file executables. The author isn’t sure how it works. PyRun doesn’t appear to support
modern Python versions. And it appears to require shared libraries (like bzip2) on the target system. PyOxidizer
supports the latest Python and doesn’t require shared libraries that aren’t in nearly every environment.

14.6. PEX 189

https://github.com/pantsbuild/pex
https://github.com/facebookincubator/xar/
http://nuitka.net/pages/overview.html
https://www.egenix.com/products/python/PyRun

PyOxidizer, Release 0.14.1

14.11 pynsist

pynsist is a tool for building Windows installers for Python applications. pynsist is very similar in spirit to PyOxidizer.

A major difference between the projects is that pynsist focuses on solving the application distribution problem on Win-
dows where PyOxidizer aims to solve larger problems around Python application distribution, such as performance
optimization (via loading Python modules from memory instead of the filesystem).

PyOxidizer has yet to invest significantly into making producing distributable artifacts (such as Windows installers)
simple, so pynsist still has an advantage over PyOxidizer here.

14.12 Bazel

Bazel has Python rules for building Python binaries and libraries. From a high level, it works similarly to how
PyOxidizer’s Starlark config files allow you to perform much of the same actions.

The executables produced by py_binary are significantly different from what PyOxidizer does, however.

An executable produced by py_binary is a glorified self-executing zip file. At run time, it extracts Python resources
to a temporary directory and then runs a Python interpreter against them. The approach is similar in nature to what
Shiv and PEX do.

PyOxidizer, by contrast, produces a specialized binary containing the Python interpreter and allows you to embed
Python resources inside that binary, enabling Python modules to be imported without the overhead of writing a tem-
porary directory and extracting a zip file.

190 Chapter 14. Comparisons to Other Tools

https://pynsist.readthedocs.io/en/latest/index.html
https://docs.bazel.build/versions/master/be/python.html

CHAPTER 15

Contributing to PyOxidizer

This page documents how to contribute to PyOxidizer.

15.1 As a User

PyOxidizer is currently a relative young project and could substantially benefit from reports from its users.

Try to package applications with PyOxidizer. If things break or are hard to learn, file an issue on GitHub.

You can also join the pyoxidizer-users mailing list to report your experience, get in touch with other users, etc.

15.2 As a Developer

If you would like to contribute to the code behind PyOxidizer, you can do so using a standard GitHub workflow
through the canonical project home at https://github.com/indygreg/PyOxidizer.

Please note that PyOxidizer’s maintainer can be quite busy from time to time. So please be patient. He will be patient
with you.

The documentation around how to hack on the PyOxidizer codebase is a bit lacking. Sorry for that!

The most important command for contributors to know how to run is cargo run --bin pyoxidizer. This
will compile the pyoxidizer executable program and run it. Use it like cargo run --bin pyoxidizer --
init ~/tmp/myapp to run pyoxidizer init ~/tmp/myapp for example.

The Cargo.toml in the root of the repository defines a Cargo workspace containing many crates. If you attempt
to cargo build or cargo test, you will likely get errors, as different crates have different, conflicting build
requirements. The oxidized-importer crate is particularly troublesome.

Try building/testing everything with cargo build --workspace --exclude oxidized-importer or
cargo test --workspace --exclude oxidized-importer. Or just target the crate you want by
adding the -p argument. e.g. cargo build -p pyembed or cargo test -p pyoxidizer.

191

https://github.com/indygreg/PyOxidizer/issues
https://groups.google.com/forum/#!forum/pyoxidizer-users
https://github.com/indygreg/PyOxidizer

PyOxidizer, Release 0.14.1

15.3 Financial Contributions

If you would like to thank the PyOxidizer maintainer via a financial contribution, you can do so via GitHub Sponsors
on his Patreon or via PayPal.

Financial contributions of any amount are appreciated. Please do not feel obligated to donate money: only donate if
you are financially able and feel the maintainer deserves the reward for a job well done.

192 Chapter 15. Contributing to PyOxidizer

https://github.com/sponsors/indygreg
https://www.patreon.com/indygreg
https://www.paypal.com/cgi-bin/webscr?cmd=_donations&business=gregory%2eszorc%40gmail%2ecom&lc=US&item_name=PyOxidizer¤cy_code=USD&bn=PP%2dDonationsBF%3abtn_donate_LG%2egif%3aNonHosted

CHAPTER 16

Project History

Work on PyOxidizer started in November 2018 by Gregory Szorc.

16.1 Blog Posts

• Announcing the 0.9 Release of PyOxidizer (2020-10-18)

• Announcing the 0.8 Release of PyOxidizer (2020-10-12)

• Using Rust to Power Python Importing with oxidized_importer (2020-05-10)

• PyOxidizer 0.7 (2020-04-09)

• C Extension Support in PyOxidizer (2019-06-30)

• Building Standalone Python Applications with PyOxidizer (2019-06-24)

• PyOxidizer Support for Windows (2019-01-06)

• Faster In-Memory Python Module Importing (2018-12-28)

• Distributing Standalone Python Applications (2018-12-18)

16.2 Version History

16.2.1 0.14.1

Released April 30, 2021.

Bug Fixes

• Fixed a bug in the 0.14.0 release where newly created projects won’t build due to Cargo.lock issues.

193

https://gregoryszorc.com/blog/2020/10/18/announcing-the-0.9-release-of-pyoxidizer/
https://gregoryszorc.com/blog/2020/10/12/announcing-the-0.8-release-of-pyoxidizer/
https://gregoryszorc.com/blog/2020/05/10/using-rust-to-power-python-importing-with-oxidized_importer/
https://gregoryszorc.com/blog/2020/04/09/pyoxidizer-0.7/
https://gregoryszorc.com/blog/2019/06/30/c-extension-support-in-pyoxidizer/
https://gregoryszorc.com/blog/2019/06/24/building-standalone-python-applications-with-pyoxidizer
https://gregoryszorc.com/blog/2019/01/06/pyoxidizer-support-for-windows
https://gregoryszorc.com/blog/2018/12/28/faster-in-memory-python-module-importing
https://gregoryszorc.com/blog/2018/12/18/distributing-standalone-python-applications

PyOxidizer, Release 0.14.1

16.2.2 0.14.0

Released April 30, 2021.

Backwards Compatibility Notes

• PyOxidizer no longer uses the system’s installed Rust toolchain when building projects. By default, it will
download and use a specific version of the Rust toolchain. See Managed Rust Toolchain for instructions on
disabling this behavior.

• The pyembed crate now always canonicalizes the path to the current executable. Previously, if
OxidizedPythonInterpreterConfig.exe were set, it would not be canonicalized. It is possible this
could break use cases where the current executable is deleted after the executable starts. In this case, the Python
interpreter will fail to initialize. If this functionality is important to you, file a feature request.

• The pyembed crate will now remove entries from sys.path_hooks related to filesystem importers if
filesystem importing is disabled. Previously, only sys.meta_path would have its filesystem importers re-
moved.

• The pyembed crate now always registers the oxidized_importer.OxidizedFinder path hook on
sys.path_hooks when an instance is being installed on sys.meta_path. This ensures that consumers
of sys.path_hooks outside the module importing mechanism (such as pkgutil and pkg_resources)
can use the path hook.

• The pyembed crate now registers the oxidized_importer.OxidizedFinder path hook as the 1st
entry on sys.path_hooks, not the last.

• The oxidized_importer.OxidizedFinder path hook is now more strict about the path values
it will respond to. Previously, it would accept str, bytes, pathlib.Path, or any other path-like
type. Now, it only responds to str values. Furthermore, it will only respond to values that exactly
match oxidized_importer.OxidizedFinder.path_hook_base_str or a well-formed virtual
sub-directory thereof. Previously, it would attempt to canonicalize path strings, taking into account the current
working directory, filesystem links, and other factors affecting path normalization. The new implementation is
simpler and by being stricter should be less brittle at run-time. See Paths Hooks Compatibility for documentation
on the path hooks behavior.

• The pyembed crate has prefixed all its allocator features (jemalloc, mimalloc, and snmalloc) with
allocator-. This makes the names consistent with the features in auto-generated Rust projects.

Bug Fixes

• Rust projects created with pyoxidizer init-rust-project no longer fail to build due to a cryptic
writing packed resources error.

• When materializing Python package distribution resources (i.e. files in .dist-info and .egg-info direc-
tories) to the filesystem, package names are now normalized to lowercase with hyphens replaced with under-
scores. The new behavior matches expectations of official Python resource handling APIs like importlib.
metadata. Before, APIs like importlib.metadata would fail to find files materialized by PyOxidizer
for package names containing a hyphen or capital latter. (#394)

New Features

• PyOxidizer now automatically downloads and uses a Rust toolchain at run time. This means there is no longer
an install requirement of having Rust already available on your system (unless you install PyOxidizer from

194 Chapter 16. Project History

PyOxidizer, Release 0.14.1

source). See Managed Rust Toolchain for details of the new feature, including directions on how to disable the
feature and have PyOxidizer use an already installed Rust.

• oxidized_importer.OxidizedFinder now supports pkg_resources integration. Most of
the pkg_resources APIs are implemented, enabling most pkg_resources functionality to work.
pkg_resources integration is automatically enabled upon import of the pkg_resources module, so
pkg_resources integration should just work for many applications. See Support for pkg_resources for
the full documentation, including which features aren’t implemented.

• oxidized_importer.OxidizedFinder now exposes the properties oxidized_importer.
OxidizedFinder.path_hook_base_str and oxidized_importer.OxidizedFinder.
origin.

• Starlark configuration files can now produce macOS Application Bundles. See
:py:class‘starlark_tugger.MacOsApplicationBundleBuilder‘ for the API documentation.

• pyoxidizer commands that evaluate Starlark files now accept the arguments --var and --var-env to
define extra variables to define in the evaluated Starlark file. This enables Starlark files to be parameterized
based on explicit strings provided via --var or through the content of environment variables via --var-env.

• PyOxidizer can now automatically add cryptographic code signatures when running. This feature is exten-
sively documented at Code Signing. From a high-level, you instantiate and activate a starlark_tugger.
CodeSigner in your Starlark configuration to define your code signing certificate. As files are processed as
part of evaluating your Starlark configuration file, they are examined for the ability to be signed and code sign-
ing is automatically attempted. We support signing Windows files using Microsoft’s official signtool.exe
application and Apple Mach-O and bundle files using a pure Rust reimplementation of Apple’s code signing
functionality. This functionality is still in its early stages of development and is lacking some power user fea-
tures to exert low-level control over code signing. Please file feature requests as you encounter limitations with
the functionality!

• The new Starlark functions starlark_tugger.prompt_confirm(), starlark_tugger.
prompt_input(), starlark_tugger.prompt_password(), and starlark_tugger.
can_prompt() can be used to allow configuration files to perform interaction with the user via the
terminal. The functions all allow a default value to be provided, enabling them to be used in scenarios when
stdin isn’t connected to a TTY and can’t be prompted.

Other Relevant Changes

• The Python API for the oxidized_importer Python extension module providing our custom importer logic
is now centrally documented instead of spread out over multiple documentation pages. See API Reference for
the new docs. Various type references throughout the generated documentation should now link to the new API
docs.

• The Starlark dialect is now documented as native Python classes and functions using Sphinx’s support for doing
so. The documentation should now look more familiar to Python developers familiar with Sphinx for Python
API documentation.

• PyOxidizer now stores persistent artifacts (like Rust toolchains) and downloaded Python distributions) in a per-
user cache directory. See Cache Directory for more.

• The pyoxidizer CLI now accepts --verbose as a sub-command argument. Previously, it was only ac-
cepted as an argument before the sub-command name.

• Generated Rust projects (which can be temporary as part of building binaries) now contain a Cargo.lock file
and are built with cargo build --locked. The template of the Cargo.lock is static and under version
control. The presence of the Cargo.lock coupled with cargo build --locked should ensure that Rust
crate versions used by Rust projects exactly match those used by the build of PyOxidizer that produced the
project. This should result in more deterministic builds and higher reliability of build success.

16.2. Version History 195

PyOxidizer, Release 0.14.1

16.2.3 0.13.2

Released April 15, 2021.

Bug Fixes

• Fixes a build failure on Windows.

16.2.4 0.13.1

Released April 15, 2021.

Bug Fixes

• The 0.13.0 release contained improper crate paths in Cargo.toml files due to a bug in our automated release
mechanism. This release should fix those issues.

16.2.5 0.13.0

Released April 15, 2021.

Bug Fixes

• WiXSimpleMsiBuilder now properly writes XML when a license file is provided.

• WixBundleInstallerBuilder now handles the already installed exit code from the VC++ Redis-
tributable installer as a success condition. Previously, installs would abort.

• WixBundleInstallerBuilder no longer errors on a missing build directory when attempting to down-
load the Visual C++ Redistributable runtime files.

New Features

• Per-platform Windows MSI and multi-platform Windows exe installers for PyOxidizer are now available. The
installers are built with PyOxidizer, using its built-in support for producing Windows installers.

Other Relevant Changes

• Default CPython distributions upgraded from 3.9.3 to 3.9.4.

• Default Python distributions upgraded setuptools from 54.2.0 to 56.0.0.

16.2.6 0.12.0

Released April 14, 2021.

196 Chapter 16. Project History

PyOxidizer, Release 0.14.1

Danger: The 0.12.0 release uses CPython 3.9.3, which inadvertently shipped an ABI incompatible change, caus-
ing some extension modules to not work or crash. Please avoid this release if you use pre-built Python extension
modules.

Backwards Compatibility Notes

• The minimum Rust version has been changed from 1.45 to 1.46 to facilitate use of const fn.

• On Apple platforms, PyOxidizer now validates that the Apple SDK being used is compatible with the Python
distribution being used and will abort the build if not. Previously, PyOxidizer would blindly use whatever SDK
was the default and this could lead to cryptic error messages when building (likely undefined symbol errors
when linking). The current default Python distributions impose a requirement of the macosx10.15+ SDK for
Python 3.8 and macosx11.0+ for Python 3.9. See issue #373 for a comprehensive discussion of this topic.

• On Apple platforms, binaries built with PyOxidizer now automatically target the OS version that the Python
distribution was built to target. Previously, binaries would likely target the OS version of the building machine
unless explicit action was taken. The practical effect of this change is binaries targeting x86_64 should now
work on macOS 10.9 without any end-user action required.

• Documentation URLs for PyOxidizer now all consistently begin with pyoxidizer_. Many old documenta-
tion URLs no longer work.

Bug Fixes

• The autogenerated pyoxidizer.bzl correctly references the no-copyleft extension module filter in-
stead of the old no-gpl value.

• Linux binaries using the libedit variant of the readline Python extension (occurs when using the
no-copyleft extension module filter) no longer encounter an undefined symbol error when linking. (#376)

• The ctypes extension was previously compiled incorrectly, leading to run-time errors on various platforms.
These issues should be fixed.

New Features

• On Apple platforms, PyOxidizer now automatically locates, validates, and uses an appropriate SDK given the
settings of the Python distribution being used. PyOxidizer will reject building with an SDK older than the one
used to produce the Python distribution. PyOxidizer will automatically use the newest installed SDK compatible
with the target configuration. The SDK and targeting information is printed during builds. See Build Machine
Requirements for details on how to override default behavior.

• OxidizedFinder now implements path_hook() and a path hook is automatically registered on sys.
path_hooks during interpreter initialization when an OxidizedFinder is being used. Feature contributed
by William Schwartz in #343.

Other Relevant Changes

• The snmalloc allocator now uses the C API directly and avoids going through an allocation tracking layer,
improving the performance of this allocator. Improvement contributed by Ryan Clanton.

• Python distributions updated to latest versions. Changes include: macOS Python 3.8 is now built against the
10.15 SDK instead of 11.1; musl libc upgraded to 1.2.2; setuptools upgraded to 54.2.0; LibreSSL upgraded to
3.2.5; OpenSSL upgraded to 1.1.1k; SQLite upgraded to 3.35.4.

16.2. Version History 197

PyOxidizer, Release 0.14.1

16.2.7 0.11.0

Released March 4, 2021.

Backwards Compatibility Notes

• The default Python distribution is now CPython 3.9 instead of 3.8. To use 3.8, pass the
python_version="3.8" argument to default_python_distribution() in your configuration
file. We don’t anticipate dropping support for 3.8 any time soon. However, this may be necessary in order
to more easily support new Python features.

• The Python 3.8 distributions no longer support Windows 7 and require Windows 8, Windows 2012, or newer.
The Python 3.9 distributions already required these Windows versions.

• The minimum Rust version has been changed from 1.41 to 1.45 to facilitate the use of procedural macros.

• The pyembed::MainPythonInterpreter::run_as_main() method has been renamed to
py_runmain() to reflect that it always calls Py_RunMain().

• The py-module-names file is no longer written as part of the files comprising an embedded Python inter-
preter.

• OxidizedFinder.__init__() no longer accepts resources_data and resources_file argu-
ment to specify the resources to load. Instead, call one of the new index_* methods on constructed instances.

• OxidizedFinder.__init__() no longer automatically indexes builtin extension modules and frozen
modules. Instead, you must now call one of the index_* methods to index these resources.

• The pyembed::OxidizedPythonInterpreterConfig.packed_resources field is now a
Vec<pyembed::PackedResourcesSource> instead of Vec<&[u8]>. The new enum allows speci-
fying files as alternative resources sources.

• The no-gpl value of PythonPackagingPolicy.extension_module_filter has been changed to
no-copyleft and it operates on the SPDX license annotations instead of a list we maintained.

• show_alloc_count has been removed from types representing Python interpreter configuration because
support for this feature was removed in Python 3.9.

• pyembed::MainPythonInterpreter.acquire_gil()’s signature has changed, now returning a
Python value directly without wrapping it in a Result.

• pyembed::OxidizedPythonInterpreterConfig had its memory allocator fields refactored to sup-
port new features and to help prevent bad configs (like defining multiple custom memory allocators).

• The Starlark PythonInterpreterConfig.raw_allocator field has been renamed to
allocator_backend. The system value has been renamed to default.

• The pyembed crate now canonicalizes the current executable’s path and uses this canonicalized path when re-
solving values with $ORIGIN in them. Previously, the path passed into the program was used without resolving
symlinks, etc. If that path were a symlink or hardlink, unexpected results could ensue.

• OxidizedFinder.find_distributions() now returns an iterator of OxidizedDistribution
instead of a list. Code in the standard library of older versions of CPython expected an iterator to be returned
and the new behavior is more compatible. This change enables importlib.metadata.metadata() to
work with OxidizedFinder.

Bug Fixes

• Escaping of string and path values when emitting Rust code for the embedded Python interpreter configuration
should now be more robust. Previously, special characters (like \) were not escaped properly. (#321)

198 Chapter 16. Project History

PyOxidizer, Release 0.14.1

• The load() Starlark function should now work. (#328)

• pyembed::OxidizedPythonInterpreterConfig.argv is now always used when set, even if
self.interpreter_config.argv is also set.

• OxidizedFinder now normalizes trailing .__init__ in module names to be equivalent to the parent
package to partially emulate CPython’s behavior. See Support for __init__ in Module Names for more. (#317)

• The lifetime of pyembed::MainPythonInterpreter.acquire_gil()’s return value has been ad-
justed so the Rust compiler will refuse to compile code that could crash due to attempting to use a finalized
interpreter. (#345)

• pyembed::MainPythonInterpreter.py_runmain()’s signature has changed, now consuming own-
ership of the receiver. Subsequent borrows of self now fail to compile rather than causing runtime errors.

• The optional rust memory allocator is now thread-safe. Previously, it wasn’t and releasing of the GIL could
lead to memory corruption and crashes.

• OxidizedResourceCollector.oxidize() should now properly clean up the temporary directory it
uses during execution. Before, premature Python interpreter termination (such as during failing tests) could
cause the temporary directory to not be removed. Closes #346. Fix contributed by William Schwartz in #347.

• OxidizedFinder.find_distributions() now properly handles the default/empty Context in-
stance (specifically instances where .name = None). Previously, name = None would filter as if .name
= "None". This means that all distributions should now be returned with the default/empty Context in-
stance.

• OxidizedFinder.find_distributions() now properly filters when the passed Context’s name
attribute is set to a string. Previously, the name and path attributes had their order swapped in a function call,
leading to incorrect filtering.

• The Windows standalone_static distributions should now work again. They had been broken for a few
releases and likely never worked with Python 3.9. Test coverage of this build configuration has been added to
help prevent future regressions. (#360)

New Features

• Support added for aarch64-apple-darwin (Apple M1 machines). Only Python 3.9 is supported on this
architecture. Because we do not have CI coverage for this architecture (due to GitHub Actions not yet having
M1 machines), support is considered beta quality at this time.

• The FileManifest Starlark type now exposes an add_path() to add a single file to the manifest.

• The PythonExecutable Starlark type now exposes a to_file_manifest() to convert the instance to
a FileManifest.

• The PythonExecutable Starlark type now exposes a to_wix_msi_builder() method to obtain a
WiXMSIBuilder, which can be used to generate an MSI installer for the application.

• The PythonExecutable Starlark type now exposes a to_wix_bundle_builder() method to obtain a
WiXBundleBuilder, which can be used to generate an .exe installer for the application.

• The pyembed crate and OxidizedFinder importer now support indexing multiple resources sources. You
can have multiple in-memory data blobs, multiple file-based resources, or a mix of all of the above.

• The OxidizedFinder Python type now exposed various index_* methods to facilitate loading/indexing
of resource data in arbitrary byte buffers or files. You can call these methods multiple times to chain multiple
resources blobs together.

• The PythonExecutable Starlark type now exposes a packed_resources_load_mode attribute al-
lowing control over where packed resources data is written and how it is loaded at run-time. This attribute

16.2. Version History 199

PyOxidizer, Release 0.14.1

facilitates disabling the embedding of packed resources data completely (enabling you to produce an executable
that behaves very similarly to python) and allows writing and loading resources data to a standalone file in-
stalled next to the binary (enabling multiple binaries to share the same resources file). See Managing Packed
Resources Data for more on this feature.

• PyOxidizer now scans for licenses of Python packages processed during building and prints a report about what
it finds when writing build artifacts. This feature is best effort and relies on packages properly advertising their
license metadata.

• Support for configuring Python’s memory allocators has been expanded. The Starlark
PythonInterpreterConfig.allocator_debug field has been added and allows enabling Python
memory allocator debug hooks. The Starlark PythonInterpreterConfig.allocator_mem,
PythonInterpreterConfig.allocator_obj, and PythonInterpreterConfig.
allocator_pymalloc_arena fields have been added to control whether to install a custom allocator for
the mem and obj domains as well as pymalloc’s arena allocator.

• The mimalloc and snmalloc memory allocators can now be used as Python’s memory allocators. See documen-
tation for PythonInterpreterConfig.allocator_backend. Code contributed by Ryan Clanton in
#358.

• The mimalloc and snmalloc memory allocators will now automatically be used as Rust’s global allocator when
configured to be used by Python.

• The @classmethod OxidizedDistribution.find_name() and OxidizedDistribution.
discover() are now implemented, filling in a feature gap in importlib.metadata functionality.

• There is a new PythonExecutable.windows_runtime_dlls_mode attribute to control how required
Windows runtime DLL files should be materialized during application building. By default, if a built binary
requires the Visual C++ Redistributable Runtime (e.g. vcruntime140.dll), PyOxidizer will attempt to
locate and copy those files next to the built binary. See Managing the Visual C++ Redistributable Requirement
for more.

• Documentation around portability of binaries produced with PyOxidizer has been reorganized and overhauled.
See Portability of Binaries Built with PyOxidizer for the new documentation.

Other Relevant Changes

• Python distributions upgraded to CPython 3.8.8 and 3.9.2 (from 3.8.6 and 3.9.0). See https:
//github.com/indygreg/python-build-standalone/releases/tag/20210103 and https://github.com/indygreg/
python-build-standalone/releases/tag/20210227 for a full list of changes in these distributions.

• CI has been moved from Azure Pipelines to GitHub Actions.

• Low level code in the pyembed crate for loading and indexing resources has been significantly refactored. This
code has historically been a bit brittle, as it needs to do unsafe things. We think the new code is much more
robust. But there’s a chance that crashes could occur.

• When using the no-copyleft (formerly no-gpl) extension module filter, some system library dependencies
are now allowed, enabling various extension modules to be present in this mode.

• The pyembed and oxidized-importer crates had their SPDX license expression changed from
Python-2.0 AND MPL-2.0 to Python-2.0 OR MPL-2.0. The author misunderstood what AND did
and after realizing his mistake, corrected it to OR so the crates can one license or the other.

• When using dynamically linked Python distributions on Windows, the python3.dll file is automatically
installed if it is present. (#336)

• libclang_rt.osx.a is now linked into Python binaries on macOS. This was necessary to avoid undefined
symbols errors from symbols which Python 3.9.1+ relies on.

200 Chapter 16. Project History

https://github.com/indygreg/python-build-standalone/releases/tag/20210103
https://github.com/indygreg/python-build-standalone/releases/tag/20210103
https://github.com/indygreg/python-build-standalone/releases/tag/20210227
https://github.com/indygreg/python-build-standalone/releases/tag/20210227

PyOxidizer, Release 0.14.1

• The oxidized_importer Python module now exports the OxidizedDistribution symbol, which is
the custom importlib.metadata distribution type used by OxidizedFinder.

• When building with Windows standalone_static distributions, pyoxidizer now sets
RUSTFLAGS=-C target-feature=+crt-static -C link-args=/FORCE:MULTIPLE to
force static CRT linkage and ignore duplicate symbol errors. Previously, the Python distribution would be
using static CRT linkage and the Rust application would use dynamic/DLL CRT linkage. Furthermore,
many standalone_static distributions have build configurations that lead to duplicate symbols and this
would lead to a linker error. Suppressing the duplicate symbol error is not ideal, but it restores building with
standalone_static until a more appropriate workaround can be devised.

16.2.8 0.10.3

Released November 10, 2020.

Bug Fixes

• The run_as_main() function on embedded Python interpreters now always calls Py_RunMain(). This
fixes a regression in previous 0.10 releases that prevented a REPL from running when no explicit run_* at-
tribute was set on the Python interpreter configuration.

16.2.9 0.10.2

Released November 10, 2020.

Bug Fixes

• Fixes a version mismatch between the pyoxidizer and pyembed crates that could cause builds to fail.

16.2.10 0.10.1

Released November 9, 2020.

Danger: The 0.10.1 release has a serious bug where the version of the pyembed crate needed to build binaries
may not be correct, preventing the build from working. Please use a newer release.

Bug Fixes

16.2.11 0.10.0

Released November 8, 2020.

Danger: The 0.10.0 release has a serious Starlark bug preventing PyOxidizer from working correctly in many
scenarios. Please use a newer release.

16.2. Version History 201

PyOxidizer, Release 0.14.1

Backwards Compatibility Notes

• A lot of unused Rust functions for running Python code have been removed from the pyembed crate. The
deleted code has not been used since the PyConfig data structure was adopted for running code during in-
terpreter initialization. The deleted code was reimplementing functionality in CPython and much of it was of
questionable quality.

• The built-in Python distributions have been updated to use version 6 of the standalone distribution format.
PyOxidizer only recognizes version 6 distributions.

• The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains a tcl_library
field to control the value of the TCL_LIBRARY environment variable.

• The pyembed::OxidizedPythonInterpreterConfig Rust struct no longer has a run_mode field.

• The PythoninterpreterConfig Starlark type no longer has a run_mode attribute. To define what code
to run at interpreter startup, populate a run_* attribute or leave all None with .parse_argv = True (the
default for profile = "python") to start a REPL.

• Minimum Rust version changed from 1.40 to 1.41 to facilitate using a new crate which requires 1.41.

• The default Cargo features of the pyembed crate now use the default Python interpreter detection and linking
configuration as determined by the cpython crate. This enables the cargo build or cargo test to just
work without having to explicitly specify features.

• The python-distributions-extract command now receives the path to an existing distribution
archive via the --archive-path argument instead of an unnamed argument.

Bug Fixes

• Fixed a broken documentation example for glob(). (#300)

• Fixed a bug where generated Rust code for Option<PathBuf> interpreter configuration fields was not being
generated correctly.

• Fixed serialization of string config options to Rust code that was preventing the following at-
tributes of the PythonInterpreterConfig Starlark type from working: filesystem_encoding,
filesystem_errors, python_path_env, run_command, run_module, stdio_encoding,
stdio_errors, warn_options, and x_options. (#309)

New Features

• The PythonExecutable Starlark type now exposes a windows_subsystem attribute to control the value
of Rust’s #![windows_subsystem = "..."] attribute. Setting this to windows prevents Windows
executables from opening a console window when run. (#216)

• The PythonExecutable Starlark type now exposes a tcl_files_path attribute to define a directory
to install tcl/tk support files into. Setting this attribute enables the use of the tkinter Python module with
compatible Python distributions. (#25)

• The python-distribution-extract CLI command now accepts a --download-default flag to
download the default distribution for the current platform.

Other Relevant Changes

• The Starlark types with special build or run behavior are now explicitly documented.

• The list of glibc and GCC versions used by popular Linux distributions has been updated.

202 Chapter 16. Project History

PyOxidizer, Release 0.14.1

• The built-in Linux and macOS Python distributions are now compiled with LLVM/Clang 11 (as opposed to 10).

• The built-in Python distributions now use pip 20.2.4 and setuptools 50.3.2.

• The Starlark primitives for defining build system targets have been extracted into a new
starlark-dialect-build-targets crate.

• The code for resolving how to reference PyOxidizer’s Git repository has been rewritten. The resolution is now
performed at build time in the pyoxidizer crate’s build.rs. There now exist environment variables that can
be specified at crate build time that influence how PyOxidizer constructs these references.

16.2.12 0.9.0

Released October 18, 2020.

Backwards Compatibility Notes

• The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains an argv field that
can be used to control the population of sys.argv.

• The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains a
set_missing_path_configuration field that can be used to control the automatic run-time
population of missing path configuration fields.

• The configure_locale interpreter configuration setting is enabled by default. (#294)

• The pyembed::OxidizedPythonInterpreterConfig Rust struct now contains an exe field holding
the path of the currently running executable.

• At run-time, the program_name and home fields of the embedded Python interpreter’s path configuration are
now always set to the currently running executable and its directory, respectively, unless explicit values have
been provided.

• The packed resource data version has changed from 2 to 3 in order to support storing arbitrary file data. Support
for reading and writing version 2 has been removed. Packed resources blobs will need to be regenerated in order
to be compatible with new versions of PyOxidizer.

• The pyembed::OxidizedPythonInterpreterConfig Rust struct had its packed_resources
field changed from Option<&'a [u8]> to Vec<&'a [u8]> so multiple resource inputs can be specified.

• The PythonDistribution Starlark type no longer has extension_modules(),
package_resources() and source_modules() methods. Use PythonDistribution.
python_resources() instead.

New Features

• A print(*args) function is now exposed to Starlark. This function is documented as a Starlark built-in but
isn’t provided by the Rust Starlark implementation by default. So we’ve implemented it ourselves. (#292)

• The new pyoxidizer find-resources command can be used to invoke PyOxidizer’s code for scanning
files for resources. This command can be used to debug and triage bugs related to PyOxidizer’s custom code for
finding and handling resources.

• Executables built on Windows now embed an application manifest that enables long paths support. (#197)

• The Starlark PythonPackagingPolicy type now exposes an allow_files attribute controlling whether
files can be added as resources.

16.2. Version History 203

PyOxidizer, Release 0.14.1

• The Starlark PythonPackagingPolicy type now exposes file_scanner_classify_files and
file_scanner_emit_files attributes controlling whether file scanning attempts to classify files and
whether generic file instances are emitted, respectively.

• The Starlark PythonPackagingPolicy type now exposes include_classified_resources
and include_file_resources attributes to control whether certain classes of resources have their
add_include attribute set by default.

• The Starlark PythonPackagingPolicy type now has a set_resources_handling_mode()method
to quickly apply a mode for resource handling.

• The Starlark PythonDistribution type now has a python_resources() method for obtaining all
Python resources associated with the distribution.

• Starlark File instances can now be added to resource collections via PythonExecutable.
add_python_resource() and PythonExecutable.add_python_resources().

Bug Fixes

• Fix some documentation references to outdated Starlark configuration syntax (#291).

• Emit only the PythonExtensionModule built with our patched distutils instead of emitting 2
PythonExtensionModule for the same named module. This should result in compiled Python extension
modules being usable as built-in extensions instead of being recognized as only shared libraries.

• Fix typo preventing the Starlark method PythonExecutable.read_virtualenv() from being defined.
(#297)

• The default value of the Starlark PythonInterpreterConfig.configure_locale field is True in-
stead of None (effectively False since the default .profile value is isolated). This results in Python’s
encodings being more reasonable by default, which helps ensure non-ASCII arguments are interpreted properly.
(#294)

• Properly serialize module_search_paths to Rust code. Before, attempting to set
PythonInterpreterConfig.module_search_paths in Starlark would result in malformed
Rust code being generated. (#298)

Other Relevant Changes

• The pyembed Rust crate now calls PyConfig_SetBytesArgv or PyConfig_SetArgv() to initialize
argv instead of PySys_SetObject(). The encoding of string values should also behave more similarly to
what python does.

• The pyembed tests exercising Python interpreters now run in separate processes. Before, Rust would in-
stantiate multiple interpreters in the same process. However, CPython uses global variables and APIs (like
setlocale()) that also make use of globals and process reuse resulted in tests not having pristine execution
environments. All tests now run in isolated processes and should be much more resilient.

• When PyOxidizer invokes a subprocess and logs its output, stderr is now redirected to stdout and logged as a
unified stream. Previously, stdout was logged and stderr went to the parent process stderr.

• There now exists documentation on how to create an executable that behaves like python.

• The documentation on binary portability has been overhauled to go in much greater detail.

• The list of standard library test packages is now obtained from the Python distribution metadata instead of a
hardcoded list in PyOxidizer’s source code.

204 Chapter 16. Project History

PyOxidizer, Release 0.14.1

16.2.13 0.8.0

Released October 12, 2020.

Backwards Compatibility Notes

• The default Python distributions have been upgraded to CPython 3.8.6 (from 3.7.7) and support for Python 3.7
has been removed.

• On Windows, the default_python_distribution() Starlark function now defaults to returning a
standalone_dynamic distribution variant, meaning that it picks a distribution that can load standalone
.pyd Python extension modules by default.

• The standalone Python distributions are now validated to be at least version 5 of the distribution format. If you
are using the default Python distributions, this change should not affect you.

• Support for packaging the official Windows embeddable Python distributions has been removed. This support
was experimental. The official Windows embeddable distributions are missing critical support files that make
them difficult to integrate with PyOxidizer.

• The pyembed crate now defines a new OxidizedPythonInterpreterConfig type to configure Python
interpreters. The legacy PythonConfig type has been removed.

• Various run_* functions on pyembed::MainPythonInterpreter have been moved to standalone func-
tions in the pyembed crate. The run_as_main() function (which is called by the default Rust program that
is generated) will always call Py_RunMain() and finalize the interpreter. See the extensive crate docs for
move.

• Python resources data in the pyembed crate is no longer annotated with the 'static lifetime. Instances of
PythonConfig and OxidizedPythonInterpreterConfig must now be annotated with a lifetime for
the resources data they hold such that Rust lifetimes can be enforced.

• The type of the custom Python importer has been renamed from PyOxidizerFinder to
OxidizedFinder.

• The name of the module providing our custom importer has been renamed from _pyoxidizer_importer
to oxidized_importer.

• Minimum Rust version changed from 1.36 to 1.40 to allow for upgrading various dependencies to modern
versions.

• Windows static extension building is possibly broken due to changes to distutils. However, since we
changed the default configuration to not use this build mode, we’ve deemed this potential regression acceptable
for the 0.8 release. If it exists, it will hopefully be fixed in the 0.9 release.

• The pip_install(), read_package_root(), read_virtualenv() and
setup_py_install() methods of the PythonDistribution Starlark type have been moved to
the PythonExecutable type. Existing Starlark config files will need to change references accordingly
(often by replacing dist. with exe.).

• The PythonDistribution.extension_modules() Starlark function no longer accepts arguments
filter and preferred_variants. The function now returns every extension in the distribution. The
reasons for this change were to make code simpler and the justification for removing it was rather weak. Please
file an issue if this feature loss affects you.

• The PythonInterpreterConfig Starlark type now interally has most of its fields defined to None by
default instead of their default values.

• The following Starlark methods have been renamed: PythonExecutable.
add_module_source() -> PythonExecutable.add_python_module_source();

16.2. Version History 205

PyOxidizer, Release 0.14.1

PythonExecutable.add_module_bytecode() -> PythonExecutable.
add_python_module_bytecode(); PythonExecutable.add_package_resource()
-> PythonExecutable.add_python_package_resource(); PythonExecutable.
add_package_distribution_resource() -> PythonExecutable.
add_python_package_distribution_resource(); PythonExecutable.
add_extension_module() -> PythonExecutable.add_python_extension_module().

• The location-specific Starlark methods for adding Python resources have been re-
moved. The functionality can be duplicated by modifying the add_location and
add_location_fallback attributes on Python resource types. The following meth-
ods were removed: PythonExecutable.add_in_memory_module_source();
PythonExecutable.add_filesystem_relative_module_source(),
PythonExecutable.add_in_memory_module_bytecode(); PythonExecutable.
add_filesystem_relative_module_bytecode(); PythonExecutable.
add_in_memory_package_resource(); PythonExecutable.add_filesystem_relative_package_resource();
PythonExecutable.add_in_memory_package_distribution_resource()
PythonExecutable.add_filesystem_relative_package_distribution_resource();
PythonExecutable.add_in_memory_extension_module(); PythonExecutable.
add_filesystem_relative_extension_module(); PythonExecutable.
add_in_memory_python_resource(); PythonExecutable.add_filesystem_relative_python_resource();
PythonExecutable.add_in_memory_python_resources(); PythonExecutable.
add_filesystem_relative_python_resources().

• The Starlark PythonDistribution.to_python_executable() method no longer accepts
the arguments extension_module_filter, preferred_extension_module_variants,
include_sources, include_resources, and include_test. All of this functionality has been
replaced by the optional packaging_policy, which accepts a PythonPackagingPolicy instance.
The new type represents all settings influencing executable building and control over resources added to the
executable.

• The Starlark type PythonBytecodeModule has been removed. Previously, this type was internally a re-
quest to convert Python module source into bytecode. The introduction of PythonPackagingPolicy and
underlying abilities to derive bytecode from a Python source module instance when adding that resource type
rendered this Starlark type redundant. There may still be the need for a Starlark type to represent actual Python
module bytecode (not derived from source code at build/packaging time). However, this functionality did not
exist before so the loss of this type is not a loss in functionality.

• The Starlark methods PythonExecutable.add_python_resource() and PythonExecutable.
add_python_resources() no longer accept the arguments add_source_module,
add_bytecode_module, and optimize_level. Instead, set various add_* attributes on resource
instances being passed into the methods to influence what happens when they are added.

• The Starlark methods PythonExecutable.add_python_module_source(),
PythonExecutable.add_python_module_bytecode(), PythonExecutable.
add_python_package_resource(), PythonExecutable.add_python_package_distribution_resource(),
and PythonExecutable.add_python_extension_module() have been removed. The
remaining PythonExecutable.add_python_resource() and PythonExecutable.
add_python_resources() methods are capable of handling all resource types and should be used.
Previous functionality available via argument passing on these methods can be accomplished by setting add_*
attributes on individual Python resource objects.

• The Starlark type PythonSourceModule has been renamed to PythonModuleSource.

• Serialized Python resources no longer rely on the flavor field to influence how they are loaded at run-time.
Instead, the new is_* fields expressing individual type affinity are used. The flavor attributes from the
OxidizedResource Python type has been removed since it does nothing.

• The packed resources data format version has been changed from 1 to 2. The parser has dropped support for

206 Chapter 16. Project History

PyOxidizer, Release 0.14.1

reading version 1 files. Packed resources blobs will need to be written and read by the same version of the Rust
crate to be compatible.

• The autogenerated Rust file containing the Python interpreter configuration now
emits a pyembed::OxidizedPythonInterpreterConfig instance instead of
pyembed::PythonConfig. The new type is more powerful and what is actually used to initialize
an embedded Python interpreter.

• The concept of a resources policy in Starlark has now largely been replaced by attributes denoting valid locations
for resources.

• oxidized_importer.OxidizedResourceCollector.__init__() now accepts an
allowed_locations argument instead of policy.

• The PythonInterpreterConfig() constructor has been removed. Instances of this Starlark type are now
created via PythonDistribution.make_python_interpreter_config(). In addition, instances
are mutated by setting attributes rather than passing perhaps dozens of arguments to a constructor function.

• The default build configuration for Windows no longer forces extension modules to be loaded from mem-
ory and materializes some extension modules as standalone files. This was done because some some exten-
sion modules weren’t working when loaded from memory and the configuration caused lots of problems in
the wild. The new default should be much more user friendly. To use the old settings, construct a custom
PythonPackagingPolicy and set allow_in_memory_shared_library_loading = True and
resources_location_fallback = None.

New Features

• Python distributions upgraded to CPython 3.8.6.

• CPython 3.9 distributions are now supported by passing python_version="3.9" to the
default_python_distribution() Starlark function. CPython 3.8 is the default distribution ver-
sion.

• Embedded Python interpreters are now managed via the new apis defined by PEP-587. This gives us much more
control over the configuration of interpreters.

• A FileManifest Starlark instance will now have its default pyoxidizer run executable set to the last
added Python executable. Previously, it would only have a run target if there was a single executable file in the
FileManifest. If there were multiple executables or executable files (such as Python extension modules) a
run target would not be available and pyoxidizer run would do nothing.

• Default Python distributions upgraded to version 5 of the standalone distribution format. This new format
advertises much more metadata about the distribution, enabling PyOxidizer to take fewer guesses about how the
distribution works and will help enable more features over time.

• The pyembed crate now exposes a new OxidizedPythonInterpreterConfig type (and associated
types) allowing configuration of every field supported by Python’s interpreter configuration API.

• Resources data loaded by the pyembed crate can now have a non-'static lifetime. This means that re-
sources data can be more dynamically obtained (e.g. by reading a file). PyOxidizer does not yet support such
mechanisms, however.

• OxidizedFinder instances can now be constructed from Python code. This means that a Python
application can instantiate and install its own oxidized module importer.

• The resources indexed by OxidizedFinder instances are now representable to Python code as
OxidizedResource instances. These types can be created, queried, and mutated by Python code. See
OxidizedResource for the API.

16.2. Version History 207

https://docs.python.org/3/c-api/init_config.htm

PyOxidizer, Release 0.14.1

• OxidizedFinder instances can now have custom OxidizedResource instances registered against them.
This means Python code can collect its own Python modules and register them with the importer. See
oxidized_importer.OxidizedFinder.add_resource() for more.

• OxidizedFinder instances can now serialize indexed resources out to a bytes. The serialized data can be
loaded into a separate OxidizedFinder instance, perhaps in a different process. This facility enables the
creation and reuse of packed resources data structures without having to use pyoxidizer to collect Python
resources data.

• The types returned by OxidizedFinder.find_distributions() now implement entry_points,
allowing entry points to be discovered.

• The types returned by OxidizedFinder.find_distributions() now implement requires, allow-
ing package requirements to be discovered.

• OxidizedFinder is now able to load Python modules when only source code is provided. Previously, it
required that bytecode be available.

• OxidizedFinder now implements iter_modules(). This enables pkgutil.iter_modules() to
return modules serviced by OxidizedFinder.

• The PythonModuleSource Starlark type now exposes module source code via the source attribute.

• The PythonExecutable Starlark type now has a make_python_module_source() method to allow
construction of PythonModuleSource instances.

• The PythonModuleSource Starlark type now has attributes add_include, add_location,
add_location_fallback, add_source, add_bytecode_optimization_level_zero,
add_bytecode_optimization_level_one, and add_bytecode_optimization_level_two
to influence what happens when instances are added to to binaries.

• The Starlark methods for adding Python resources now accept an optional location argument for
controlling the load location of the resource. This functionality replaces the prior functionality provided
by location-specific APIs such as PythonExecutable.add_in_memory_python_resource().
The following methods gained this argument: PythonExecutable.
add_python_module_source(); PythonExecutable.add_python_module_bytecode();
PythonExecutable.add_python_package_resource(); PythonExecutable.
add_python_package_distribution_resource(); PythonExecutable.
add_python_extension_module(); PythonExecutable.add_python_resource();
PythonExecutable.add_python_resources().

• Starlark now has a PythonPackagingPolicy type to represent the collection of settings influencing how
Python resources are packaged into binaries.

• The PythonDistribution Starlark type has gained a make_packaging_policy() method for ob-
taining the default PythonPackagingPolicy for that distribution.

• The PythonPackagingPolicy.register_resource_callback() method can be used to register
a Starlark function that will be called whenever resources are created. The callback allows a single function to
inspect and manipulate resources as they are created.

• Starlark types representing Python resources now expose an is_stdlib attribute denoting whether they came
from the Python distribution.

• The new PythonExecutable.pip_download() method will run pip download to obtain Python
wheels for the requested package(s). Those wheels will then be parsed for Python resources, which can be
added to the executable.

• The Starlark function default_python_distribution() now accepts a python_version argument
to control the X.Y version of Python to use.

208 Chapter 16. Project History

PyOxidizer, Release 0.14.1

• The PythonPackagingPolicy Starlark type now exposes a flag to control whether shared libraries can be
loaded from memory.

• The PythonDistribution Starlark type now has a make_python_interpreter_config()method
to obtain instances of PythonInterpreterConfig that are appropriate for that distribution.

• PythonInterpreterConfig Starlark types now expose attributes to query and mutate state. Nearly every
setting exposed by Python’s initialization API can be set.

Bug Fixes

• Fixed potential process crash due to illegal memory access when loading Python bytecode modules from the
filesystem.

• Detection of Python bytecode files based on registered suffixes and cache tags is now more robust. Before, it
was possible for modules to get picked up having the cache tag (e.g. cpython-38) in the module name.

• In the custom Python importer, read_text() of distributions returned from find_distributions()
now returns None on unknown file instead of raising IOError. This matches the behavior of importlib.
metadata.

• The pyembed Rust project build script now reruns when the source Starlark file changes.

• Some Python resource types were improperly installed in the wrong relative directory. The buggy behavior has
been fixed.

• Python extension modules and their shared library dependencies loaded from the filesystem should no longer
have the library file suffix stripped when materialized on the filesystem.

• On Windows, the sqlite module can now be imported. Before, the system for serializing resources thought
that sqlite was a shared library and not a Python module.

• The build script of the pyoxidizer crate now uses the git2 crate to try to resolve the Git commit instead of
relying on the git command. This should result in fewer cases where the commit was being identified as
unknown.

• $ORIGIN is properly expanded in sys.path. (This was a regression during the development of version 0.8
and is not a regression from the 0.7 release.)

Other Relevant Changes

• The registration of the custom Python importer during interpreter initialization no longer relies on running
custom frozen bytecode for the importlib._bootstrap_external Python module. This simplifies
packaging and interpreter configuration a bit.

• Packaging documentation now gives more examples on how to use available Starlark packaging methods.

• The modified distutils files used when building statically linked extensions have been upgraded to those
based on Python 3.8.3.

• The default pyoxidizer.bzl now has comments for the packaging_policy argument to
PythonDistribution.to_python_executable().

• The default pyoxidizer.bzl now uses add_python_resources() instead of
add_in_memory_python_resources().

• The Rust Starlark crate was upgraded from version 0.2 to 0.3. There were numerous changes as part of this
upgrade. While we think behavior should be mostly backwards compatible, there may be some slight changes
in behavior. Please file issues if any odd behavior or regressions are observed.

16.2. Version History 209

PyOxidizer, Release 0.14.1

• The configuration documentation was reorganized. The unified document for the complete API document
(which was the largest single document) has been split into multiple documents.

• The serialized data structure for representing Python resources metadata and its data now allows resources to
identify as multiple types. For example, a single resource can contain both Python module source/bytecode and
a shared library.

• pyoxidizer --version now prints verbose information about where PyOxidizer was installed, what Git
commit was used, and how the pyembed crate will be referenced. This should make it easier to help debug
installation issues.

• The autogenerated/default Starlark configuration file now uses the install target as the default build/run
target. This allows extra files required by generated binaries to be available and for built binaries to be usable.

16.2.14 0.7.0

Released April 9, 2020.

Backwards Compatibility Notes

• Packages imported from memory using PyOxidizer now set __path__ with a value formed by joining the
current executable’s path with the package name. This mimics the behavior of zipimport.

• Resolved Python resource names have changed behavior. See the note in the bug fixes section below.

• The PythonDistribution.to_python_executable() Starlark method has added a
packaging_policy named argument as its 2nd argument / 1st named argument. If you were affected by
this, you should add argument names to all arguments passed to this method.

• The default Rust project for built executables now builds executables such that dynamic symbols are exported
from the executable. This change is necessary in order to support executables loading Python extension modules,
which are shared libraries which need access to Python symbols defined in executables.

• The PythonResourceData Starlark type has been renamed to PythonPackageResource.

• The PythonDistribution.resources_data() Starlark method has been renamed to
PythonDistribution.package_resources().

• The PythonExecutable.to_embedded_data() Starlark method has been renamed to
PythonExecutable.to_embedded_resources().

• The PythonEmbeddedData Starlark type has been renamed to PythonEmbeddedResources.

• The format of Python resource data embedded in binaries has been completely rewritten. The separate modules
and resource data structures have been merged into a single data structure. Embedded resources data can now
express more primitives such as package distribution metadata and different bytecode optimization levels.

• The pyembed crate now has a dev dependency on the pyoxidizer crate in order to run tests.

Bug Fixes

• PyOxidizer’s importer now always sets __path__ on imported packages in accordance with Python’s stated
behavior (#51).

• The mechanism for resolving Python resource files from the filesystem has been rewritten. Before, it was possi-
ble for files like package/resources/foo.txt to be normalized to a (package, resource_name) tuple of
(package, resources.foo.txt), which was weird and not compatible with Python’s resource loading mechanism.

210 Chapter 16. Project History

PyOxidizer, Release 0.14.1

Resources in sub-directories should no longer encounter munging of directory separators to .. In the above
example, the resource path will now be expressed as (package, resources/foo.txt).

• Certain packaging actions are only performed once during building instead of twice. The user-visible impact of
this change is that some duplicate log messages no longer appear.

• Added a missing) for add_python_resources() in auto-generated pyoxidizer.bzl files.

New Features

• Python resource scanning now recognizes *.dist-info and *.egg-info directories as
package distribution metadata. Files within these directories are exposed to Starlark as
PythonPackageDistributionResource instances. These resources can be added to the embed-
ded resources payload and made available for loading from memory or the filesystem, just like any other
resource. The custom Python importer implements get_distributions() and returns objects that expose
package distribution files. However, functionality of the returned distribution objects is not yet complete. See
importlib.metadata Compatibility for details.

• The custom Python importer now implements get_data(path), allowing loading of resources from filesys-
tem paths (#139).

• The PythonDistribution.to_python_executable() Starlark method now accepts a
packaging_policy argument to control a policy and default behavior for resources on the produced
executable. Using this argument, it is possible to control how resources should be materialized. For example,
you can specify that resources should be loaded from memory if supported and from the filesystem if not.
The argument can also be used to materialize the Python standard library on the filesystem, like how Python
distributions typically work.

• Python resources can now be installed next to built binaries using the new Starlark functions
PythonExecutable.add_filesystem_relative_module_source(), PythonExecutable.
add_filesystem_relative_module_bytecode(), PythonExecutable.
add_filesystem_relative_package_resource(), PythonExecutable.
add_filesystem_relative_extension_module(), PythonExecutable.
add_filesystem_relative_python_resource(), PythonExecutable.
add_filesystem_relative_package_distribution_resource(), and
PythonExecutable.add_filesystem_relative_python_resources(). Unlike adding
Python resources to FileManifest instances, Python resources added this way have their metadata
serialized into the built executable. This allows the special Python module importer present in built binaries
to service the import request without going through Python’s default filesystem-based importer. Because
metadata for the file-based Python resources is frozen into the application, Python has to do far less work at
run-time to load resources, making operations faster. Resources loaded from the filesystem in this manner
have attributes like __file__, __cached__, and __path__ set, emulating behavior of the default Python
importer. The custom import now also implements the importlib.abc.ExecutionLoader interface.

• Windows binaries can now import extension modules defined as shared libraries (e.g. .pyd files) from memory.
PyOxidizer will detect .pyd files during packaging and embed them into the binary as resources. When the
module is imported, the extension module/shared library is loaded from memory and initialized. This feature
enables PyOxidizer to package pre-built extension modules (e.g. from Windows binary wheels published on
PyPI) while still maintaining the property of a (mostly) self-contained executable.

• Multiple bytecode optimization levels can now be embedded in binaries. Previously, it was only possible to
embed bytecode for a given module at a single optimization level.

• The default_python_distribution() Starlark function now accepts values standalone_static
and standalone_dynamic to specify a standalone distribution that is either statically or dynamically linked.

• Support for parsing version 4 of the PYTHON.json distribution descriptor present in standalone Python distri-
bution archives.

16.2. Version History 211

PyOxidizer, Release 0.14.1

• Default Python distributions upgraded to CPython 3.7.7.

Other Relevant Changes

• The directory for downloaded Python distributions in the build directory now uses a truncated SHA-256 hash
instead of the full hash to help avoid path length limit issues (#224).

• The documentation for the pyembed crate has been moved out of the Sphinx documentation and into the Rust
crate itself. Rendered docs can be seen by following the Documentation link at https://crates.io/crates/pyembed
or by running cargo doc from a source checkout.

16.2.15 0.6.0

Released February 12, 2020.

Backwards Compatibility Notes

• The default_python_distribution() Starlark function now accepts a flavor argument denoting
the distribution flavor.

• The pyembed crate no longer includes the auto-generated default configuration file. Instead, it is consumed by
the application that instantiates a Python interpreter.

• Rust projects for the main executable now utilize and require a Cargo build script so metadata can be passed
from pyembed to the project that is consuming it.

• The pyembed crate is no longer added to created Rust projects. Instead, the generated Cargo.toml will
reference a version of the pyembed crate identical to the PyOxidizer version currently running. Or if
pyoxidizer is running from a Git checkout of the canonical PyOxidizer Git repository, a local filesystem
path will be used.

• The fields of EmbeddedPythonConfig and pyembed::PythonConfig have been renamed and re-
ordered to align with Python 3.8’s config API naming. This was done for the Starlark type in version 0.5.
We have made similar changes to 0.6 so naming is consistent across the various types.

Bug Fixes

• Module names without a . are now properly recognized when scanning the filesystem for Python resources and
a package allow list is used (#223). Previously, if filtering scanned resources through an explicit list of allowed
packages, the top-level module/package without a dot in its full name would not be passed through the filter.

New Features

• The PythonDistribution() Starlark function now accepts a flavor argument to denote the distribution
type. This allows construction of alternate distribution types.

• The default_python_distribution() Starlark function now accepts a flavor argument which can
be set to windows_embeddable to return a distribution based on the zip file distributions published by the
official CPython project.

• The pyembed crate and generated Rust projects now have various build-mode-* feature flags to control
how build artifacts are built. See PyOxidizer Rust Projects for more.

212 Chapter 16. Project History

https://crates.io/crates/pyembed

PyOxidizer, Release 0.14.1

• The pyembed crate can now be built standalone, without being bound to a specific PyOxidizer configura-
tion.

• The register_target() Starlark function now accepts an optional default_build_script argu-
ment to define the default target when evaluating in Rust build script mode.

• The pyembed crate now builds against published cpython and python3-sys crates instead of a a specific
Git commit.

• Embedded Python interpreters can now be configured to run a file specified by a filename. See the run_file
argument of PythonInterpreterConfig.

Other Relevant Changes

• Rust internals have been overhauled to use traits to represent various types, namely Python distributions. The
goal is to allow different Python distribution flavors to implement different logic for building binaries.

• The pyembed crate’s build.rs has been tweaked so it can support calling out to pyoxidizer. It also no
longer has a build dependency on pyoxidizer.

16.2.16 0.5.1

Released January 26, 2020.

Bug Fixes

• Fixed bad Starlark example for building black in docs.

• Remove resources attached to packages that don’t exist. (This was a regression in 0.5.)

• Warn on failure to annotate a package. (This was a regression in 0.5.)

• Building embedded Python resources now emits warnings when __file__ is seen. (This was a regression in
0.5.)

• Missing parent packages are now automatically added when constructing embedded resources. (This was a
regression in 0.5.)

16.2.17 0.5.0

Released January 26, 2020.

General Notes

This release of PyOxidizer is significant rewrite of the previous version. The impetus for the rewrite is to transition
from TOML to Starlark configuration files. The new configuration file format should allow vastly greater flexibility
for building applications and will unlock a world of new possibilities.

The transition to Starlark configuration files represented a shift from static configuration to something more dynamic.
This required refactoring a ton of code.

As part of refactoring code, we took the opportunity to shore up lots of the code base. PyOxidizer was the project
author’s first real Rust project and a lot of bad practices (such as use of .unwrap()/panics) were prevalent. The code
mostly now has proper error handling. Another new addition to the code is unit tests. While coverage still isn’t great,

16.2. Version History 213

PyOxidizer, Release 0.14.1

we now have tests performing meaningful packaging activities. So regressions should hopefully be less common going
forward.

Because of the scale of the rewritten code in this release, it is expected that there are tons of bugs of regressions. This
will likely be a transitional release with a more robust release to follow.

Backwards Compatibility Notes

• Support for building distributions/installers has been temporarily dropped.

• Support for installing license files has been temporarily dropped.

• Python interpreter configuration setting names have been changed to reflect names from Python 3.8’s interpreter
initialization API.

• .egg-info directories are now ignored when scanning for Python resources on the filesystem (matching the
behavior for .dist-info directories).

• The pyoxidizer init sub-command has been renamed to init-rust-project.

• The pyoxidizer app-path sub-command has been removed.

• Support for building distributions has been removed.

• The minimum Rust version to build has been increased from 1.31 to 1.36. This is mainly due to requirements
from the starlark crate. We could potentially reduce the minimum version requirements again with minimal
changes to 3rd party crates.

• PyOxidizer configuration files are now Starlark instead of TOML files. The default file name is pyoxidizer.
bzl instead of pyoxidizer.toml. All existing configuration files will need to be ported to the new format.

Bug Fixes

• The repl run mode now properly exits with a non-zero exit code if an error occurs.

• Compiled C extensions now properly honor the ext_package argument passed to setup(), resulting in
extensions which properly have the package name in their extension name (#26).

New Features

• A glob()‘ function has been added to config files to allow referencing existing files on the filesystem.

• The in-memory MetaPathFinder now implements find_module().

• A pyoxidizer init-config-file command has been implemented to create just a pyoxidizer.
bzl configuration file.

• A pyoxidizer python-distribution-info command has been implemented to print information
about a Python distribution archive.

• The EmbeddedPythonConfig() config function now accepts a legacy_windows_stdio argument to
control the value of Py_LegacyWindowsStdioFlag (#190).

• The EmbeddedPythonConfig() config function now accepts a legacy_windows_fs_encoding ar-
gument to control the value of Py_LegacyWindowsFSEncodingFlag.

• The EmbeddedPythonConfig() config function now accepts an isolated argument to control the value
of Py_IsolatedFlag.

214 Chapter 16. Project History

https://github.com/bazelbuild/starlark

PyOxidizer, Release 0.14.1

• The EmbeddedPythonConfig() config function now accepts a use_hash_seed argument to control the
value of Py_HashRandomizationFlag.

• The EmbeddedPythonConfig() config function now accepts an inspect argument to control the value
of Py_InspectFlag.

• The EmbeddedPythonConfig() config function now accepts an interactive argument to control the
value of Py_InteractiveFlag.

• The EmbeddedPythonConfig() config function now accepts a quiet argument to control the value of
Py_QuietFlag.

• The EmbeddedPythonConfig() config function now accepts a verbose argument to control the value of
Py_VerboseFlag.

• The EmbeddedPythonConfig() config function now accepts a parser_debug argument to control the
value of Py_DebugFlag.

• The EmbeddedPythonConfig() config function now accepts a bytes_warning argument to control the
value of Py_BytesWarningFlag.

• The Stdlib() packaging rule now now accepts an optional excludes list of modules to ignore. This is
useful for removing unnecessary Python packages such as distutils, pip, and ensurepip.

• The PipRequirementsFile() and PipInstallSimple() packaging rules now accept an optional
extra_env dict of extra environment variables to set when invoking pip install.

• The PipRequirementsFile() packaging rule now accepts an optional extra_args list of extra com-
mand line arguments to pass to pip install.

Other Relevant Changes

• PyOxidizer no longer requires a forked version of the rust-cpython project (the python3-sys and
cpython crates. All changes required by PyOxidizer are now present in the official project.

16.2.18 0.4.0

Released October 27, 2019.

Backwards Compatibility Notes

• The setup-py-install packaging rule now has its package_path evaluated relative to the PyOxidizer
config file path rather than the current working directory.

Bug Fixes

• Windows now explicitly requires dynamic linking against msvcrt. Previously, this wasn’t explicit. And some-
times linking the final executable would result in unresolved symbol errors because the Windows Python dis-
tributions used external linkage of CRT symbols and for some reason Cargo wasn’t dynamically linking the
CRT.

• Read-only files in Python distributions are now made writable to avoid future permissions errors (#123).

• In-memory InspectLoader.get_source() implementation no longer errors due to passing a
memoryview to a function that can’t handle it (#134).

• In-memory ResourceReader now properly handles multiple resources (#128).

16.2. Version History 215

PyOxidizer, Release 0.14.1

New Features

• Added an app-path command that prints the path to a packaged application. This command can be useful for
tools calling PyOxidizer, as it will emit the path containing the packaged files without forcing the caller to parse
command output.

• The setup-py-install packaging rule now has an excludes option that allows ignoring specific pack-
ages or modules.

• .py files installed into app-relative locations now have corresponding .pyc bytecode files written.

• The setup-py-install packaging rule now has an extra_global_arguments option to allow pass-
ing additional command line arguments to the setup.py invocation.

• Packaging rules that invoke pip or setup.pywill now set a PYOXIDIZER=1 environment variable so Python
code knows at packaging time whether it is running in the context of PyOxidizer.

• The setup-py-install packaging rule now has an extra_env option to allow passing additional envi-
ronment variables to setup.py invocations.

• [[embedded_python_config]] now supports a sys_frozen flag to control setting sys.frozen =
True.

• [[embedded_python_config]] now supports a sys_meipass flag to control setting sys._MEIPASS
= <exe directory>.

• Default Python distribution upgraded to 3.7.5 (from 3.7.4). Various dependency packages also upgraded to latest
versions.

All Other Relevant Changes

• Built extension modules marked as app-relative are now embedded in the final binary rather than being ignored.

16.2.19 0.3.0

Released on August 16, 2019.

Backwards Compatibility Notes

• The pyembed::PythonConfig struct now has an additional extra_extension_modules field.

• The default musl Python distribution now uses LibreSSL instead of OpenSSL. This should hopefully be an
invisible change.

• Default Python distributions now use CPython 3.7.4 instead of 3.7.3.

• Applications are now built into directories named apps/<app_name>/<target>/<build_type> rather
than apps/<app_name>/<build_type>. This enables builds for multiple targets to coexist in an appli-
cation’s output directory.

• The program_name field from the [[embedded_python_config]] config section has been removed.
At run-time, the current executable’s path is always used when calling Py_SetProgramName().

• The format of embedded Python module data has changed. The pyembed crate and pyoxidizer versions
must match exactly or else the pyembed crate will likely crash at run-time when parsing module data.

216 Chapter 16. Project History

PyOxidizer, Release 0.14.1

Bug Fixes

• The libedit extension variant for the readline extension should now link on Linux. Before, attempting to
link a binary using this extension variant would result in missing symbol errors.

• The setup-py-install [[packaging_rule]] now performs actions to appease setuptools, thus
allowing installation of packages using setuptools to (hopefully) work without issue (#70).

• The virtualenv [[packaging_rule]] now properly finds the site-packages directory on Win-
dows (#83).

• The filter-include [[packaging_rule]] no longer requires both files and glob_files be
defined (#88).

• import ctypes now works on Windows (#61).

• The in-memory module importer now implements get_resource_reader() instead of
get_resource_loader(). (The CPython documentation steered us in the wrong direction -
https://bugs.python.org/issue37459.)

• The in-memory module importer now correctly populates __package__ in more cases than it did previously.
Before, whether a module was a package was derived from the presence of a foo.bar module. Now, a module
will be identified as a package if the file providing it is named __init__. This more closely matches the
behavior of Python’s filesystem based importer. (#53)

New Features

• The default Python distributions have been updated. Archives are generally about half the size from before.
Tcl/tk is included in the Linux and macOS distributions (but PyOxidizer doesn’t yet package the Tcl files).

• Extra extension modules can now be registered with PythonConfig instances. This can be useful for having
the application embedding Python provide its own extension modules without having to go through Python build
mechanisms to integrate those extension modules into the Python executable parts.

• Built applications now have the ability to detect and use terminfo databases on the execution machine. This
allows applications to interact with terminals properly. (e.g. the backspace key will now work in interactive
pdb sessions). By default, applications on non-Windows platforms will look for terminfo databases at well-
known locations and attempt to load them.

• Default Python distributions now use CPython 3.7.4 instead of 3.7.3.

• A warning is now emitted when a Python source file contains __file__. This should help trace down modules
using __file__.

• Added 32-bit Windows distribution.

• New pyoxidizer distribution command for producing distributable artifacts of applications. Cur-
rently supports building tar archives and .msi and .exe installers using the WiX Toolset.

• Libraries required by C extensions are now passed into the linker as library dependencies. This should allow C
extensions linked against libraries to be embedded into produced executables.

• pyoxidizer --verbose will now pass verbose to invoked pip and setup.py scripts. This can help
debug what Python packaging tools are doing.

All Other Relevant Changes

• The list of modules being added by the Python standard library is no longer printed during rule execution unless
--verbose is used. The output was excessive and usually not very informative.

16.2. Version History 217

https://bugs.python.org/issue37459

PyOxidizer, Release 0.14.1

16.2.20 0.2.0

Released on June 30, 2019.

Backwards Compatibility Notes

• Applications are now built into an apps/<appname>/(debug|release) directory instead of apps/
<appname>. This allows debug and release builds to exist side-by-side.

Bug Fixes

• Extracted .egg directories in Python package directories should now have their resources detected properly
and not as Python packages with the name *.egg.

• site-packages directories are now recognized as Python resource package roots and no longer have their
contents packaged under a site-packages Python package.

New Features

• Support for building and embedding C extensions on Windows, Linux, and macOS in many circumstances. See
Native Extension Modules for support status.

• pyoxidizer init now accepts a --pip-install option to pre-configure generated pyoxidizer.
toml files with packages to install via pip. Combined with the --python-code option, it is now possible
to create pyoxidizer.toml files for a ready-to-use Python application!

• pyoxidizer now accepts a --verbose flag to make operations more verbose. Various low-level output is
no longer printed by default and requires --verbose to see.

All Other Relevant Changes

• Packaging now automatically creates empty modules for missing parent packages. This prevents a module from
being packaged without its parent. This could occur with namespace packages, for example.

• pip-install-simple rule now passes --no-binary :all: to pip.

• Cargo packages updated to latest versions.

16.2.21 0.1.3

Released on June 29, 2019.

Bug Fixes

• Fix Python refcounting bug involving call to PyImport_AddModule() when mode = module evaluation
mode is used. The bug would likely lead to a segfault when destroying the Python interpreter. (#31)

• Various functionality will no longer fail when running pyoxidizer from a Git repository that isn’t the canon-
ical PyOxidizer repository. (#34)

218 Chapter 16. Project History

PyOxidizer, Release 0.14.1

New Features

• pyoxidizer init now accepts a --python-code option to control which Python code is evaluated in
the produced executable. This can be used to create applications that do not run a Python REPL by default.

• pip-install-simple packaging rule now supports excludes for excluding resources from packaging.
(#21)

• pip-install-simple packaging rule now supports extra_args for adding parameters to the pip install
command. (#42)

All Relevant Changes

• Minimum Rust version decreased to 1.31 (the first Rust 2018 release). (#24)

• Added CI powered by Azure Pipelines. (#45)

• Comments in auto-generated pyoxidizer.toml have been tweaked to improve understanding. (#29)

16.2.22 0.1.2

Released on June 25, 2019.

Bug Fixes

• Honor HTTP_PROXY and HTTPS_PROXY environment variables when downloading Python distributions.
(#15)

• Handle BOM when compiling Python source files to bytecode. (#13)

All Relevant Changes

• pyoxidizer now verifies the minimum Rust version meets requirements before building.

16.2.23 0.1.1

Released on June 24, 2019.

Bug Fixes

• pyoxidizer binaries built from crates should now properly refer to an appropriate commit/tag in PyOxidizer’s
canonical Git repository in auto-generated Cargo.toml files. (#11)

16.2.24 0.1

Released on June 24, 2019. This is the initial formal release of PyOxidizer. The first pyoxidizer crate was
published to crates.io.

16.2. Version History 219

PyOxidizer, Release 0.14.1

New Features

• Support for building standalone, single file executables embedding Python for 64-bit Windows, macOS, and
Linux.

• Support for importing Python modules from memory using zero-copy.

• Basic Python packaging support.

• Support for jemalloc as Python’s memory allocator.

• pyoxidizer CLI command with basic support for managing project lifecycle.

220 Chapter 16. Project History

CHAPTER 17

Technical Notes

17.1 CPython Initialization

Most code lives in pylifecycle.c.

Call tree with Python 3.7:

``Py_Initialize()``
``Py_InitializeEx()``
``_Py_InitializeFromConfig(_PyCoreConfig config)``

``_Py_InitializeCore(PyInterpreterState, _PyCoreConfig)``
Sets up allocators.
``_Py_InitializeCore_impl(PyInterpreterState, _PyCoreConfig)``
Does most of the initialization.
Runtime, new interpreter state, thread state, GIL, built-in types,
Initializes sys module and sets up sys.modules.
Initializes builtins module.
``_PyImport_Init()``

Copies ``interp->builtins`` to ``interp->builtins_copy``.
``_PyImportHooks_Init()``

Sets up ``sys.meta_path``, ``sys.path_importer_cache``,
``sys.path_hooks`` to empty data structures.

``initimport()``
``PyImport_ImportFrozenModule("_frozen_importlib")``
``PyImport_AddModule("_frozen_importlib")``
``interp->importlib = importlib``
``interp->import_func = interp->builtins.__import__``
``PyInit__imp()``
Initializes ``_imp`` module, which is implemented in C.

``sys.modules["_imp"} = imp``
``importlib._install(sys, _imp)``
``_PyImportZip_Init()``

``_Py_InitializeMainInterpreter(interp, _PyMainInterpreterConfig)``

(continues on next page)

221

PyOxidizer, Release 0.14.1

(continued from previous page)

``_PySys_EndInit()``
``sys.path = XXX``
``sys.executable = XXX``
``sys.prefix = XXX``
``sys.base_prefix = XXX``
``sys.exec_prefix = XXX``
``sys.base_exec_prefix = XXX``
``sys.argv = XXX``
``sys.warnoptions = XXX``
``sys._xoptions = XXX``
``sys.flags = XXX``
``sys.dont_write_bytecode = XXX``

``initexternalimport()``
``interp->importlib._install_external_importers()``

``initfsencoding()``
``_PyCodec_Lookup(Py_FilesystemDefaultEncoding)``
``_PyCodecRegistry_Init()``
``interp->codec_search_path = []``
``interp->codec_search_cache = {}``
``interp->codec_error_registry = {}``
This is the first non-frozen import during startup.
``PyImport_ImportModuleNoBlock("encodings")``

``interp->codec_search_cache[codec_name]``
``for p in interp->codec_search_path: p[codec_name]``

``initsigs()``
``add_main_module()``
``PyImport_AddModule("__main__")``

``init_sys_streams()``
``PyImport_ImportModule("encodings.utf_8")``
``PyImport_ImportModule("encodings.latin_1")``
``PyImport_ImportModule("io")``
Consults ``PYTHONIOENCODING`` and gets encoding and error mode.
Sets up ``sys.__stdin__``, ``sys.__stdout__``, ``sys.__stderr__``.

Sets warning options.
Sets ``_PyRuntime.initialized``, which is what ``Py_IsInitialized()``
returns.
``initsite()``
``PyImport_ImportModule("site")``

17.2 CPython Importing Mechanism

Lib/importlib defines importing mechanisms and is 100% Python.

Programs/_freeze_importlib.c is a program that takes a path to an input .py file and path to output .h
file. It initializes a Python interpreter and compiles the .py file to marshalled bytecode. It writes out a .h file with an
inline const unsigned char _Py_M__importlib array containing bytecode.

Lib/importlib/_bootstrap_external.py compiled to Python/importlib_external.h with
_Py_M__importlib_external[].

Lib/importlib/_bootstrap.py compiled to Python/importlib.h with _Py_M__importlib[].

Python/frozen.c has _PyImport_FrozenModules[] effectively mapping _frozen_importlib
to importlib._bootstrap and _frozen_importlib_external to importlib.
_bootstrap_external.

222 Chapter 17. Technical Notes

PyOxidizer, Release 0.14.1

initimport() calls PyImport_ImportFrozenModule("_frozen_importlib"), effectively import
importlib._bootstrap. Module import doesn’t appear to have meaningful side-effects.

importlib._bootstrap.__import__ is installed as interp->import_func.

C implemented _imp module is initialized.

importlib._bootstrap._install(sys, _imp is called. Calls _setup(sys, _imp) and adds
BuiltinImporter and FrozenImporter to sys.meta_path.

_setup() defines globals _imp and sys. Populates __name__, __loader__, __package__, __spec__,
__path__, __file__, __cached__ on all sys.modules entries. Also loads builtins _thread, _warnings,
and _weakref.

Later during interpreter initialization, initexternal() effectively calls importlib._bootstrap.
_install_external_importers(). This runs import _frozen_importlib_external, which is
effectively import importlib._bootstrap_external. This module handle is aliased to importlib.
_bootstrap._bootstrap_external.

importlib._bootstrap_external import doesn’t appear to have significant side-effects.

importlib._bootstrap_external._install() is called with a reference to importlib.
_bootstrap. _setup() is called.

importlib._bootstrap._setup() imports builtins _io, _warnings, _builtins, marshal. Either
posix or nt imported depending on OS. Various module-level attributes set defining run-time environment. This
includes _winreg. SOURCE_SUFFIXES and EXTENSION_SUFFIXES are updated accordingly.

importlib._bootstrap._get_supported_file_loaders() returns various loaders.
ExtensionFileLoader configured from _imp.extension_suffixes(). SourceFileLoader
configured from SOURCE_SUFFIXES. SourcelessFileLoader configured from BYTECODE_SUFFIXES.

FileFinder.path_hook() called with all loaders and result added to sys.path_hooks. PathFinder
added to sys.meta_path.

17.2. CPython Importing Mechanism 223

PyOxidizer, Release 0.14.1

17.3 sys.modules After Interpreter Init

Module Type Source
__main__ add_main_module()
_abc builtin abc
_codecs builtin initfsencoding()
_frozen_importlib frozen initimport()
_frozen_importlib_external frozen initexternal()
_imp builtin initimport()
_io builtin importlib._bootstrap._setup()
_signal builtin initsigs()
_thread builtin importlib._bootstrap._setup()
_warnings builtin importlib._bootstrap._setup()
_weakref builtin importlib._bootstrap._setup()
_winreg builtin importlib._bootstrap._setup()
abc py
builtins builtin _Py_InitializeCore_impl()
codecs py encodings via initfsencoding()
encodings py initfsencoding()
encodings.aliases py encodings
encodings.latin_1 py init_sys_streams()
encodings.utf_8 py init_sys_streams() + initfsencoding()
io py init_sys_streams()
marshal builtin importlib._bootstrap._setup()
nt builtin importlib._bootstrap._setup()
posix builtin importlib._bootstrap._setup()
readline builtin
sys builtin _Py_InitializeCore_impl()
zipimport builtin initimport()

17.4 Modules Imported by site.py

_collections_abc _sitebuiltins _stat atexit genericpath os os.path posixpath
rlcompleter site stat

17.5 Random Notes

Frozen importer iterates an array looking for module names. On each item, it calls
_PyUnicode_EqualToASCIIString(), which verifies the search name is ASCII. Performing an O(n)
scan for every frozen module if there are a large number of frozen modules could contribute performance overhead.
A better frozen importer would use a map/hash/dict for lookups. This //may// require CPython API breakages, as the
PyImport_FrozenModules data structure is documented as part of the public API and its value could be updated
dynamically at run-time.

importlib._bootstrap cannot call import because the global import hook isn’t registered until after
initimport().

importlib._bootstrap_external is the best place to monkeypatch because of the limited run-time function-
ality available during importlib._bootstrap.

224 Chapter 17. Technical Notes

PyOxidizer, Release 0.14.1

It’s a bit wonky that Py_Initialize()will import modules from the standard library and it doesn’t appear possible
to disable this. If site.py is disabled, non-extension builtins are limited to codecs, encodings, abc, and
whatever encodings.* modules are needed by initfsencoding() and init_sys_streams().

An attempt was made to freeze the set of standard library modules loaded during initialization. However, the built-
in extension importer doesn’t set all of the module attributes that are expected of the modules system. The from
. import aliases in encodings/__init__.py is confused without these attributes. And relative imports
seemed to have issues as well. One would think it would be possible to run an embedded interpreter with all standard
library modules frozen, but this doesn’t work.

17.6 Desired Changes from Python to Aid PyOxidizer

As part of implementing PyOxidizer, we’ve encountered numerous shortcomings in Python that have made implemen-
tation more difficult. This section attempts to capture those along with our desired outcomes.

17.6.1 General Lack of Clear Specifications

PyOxidizer has had to implement a lot of low-level functionality, notably around interpreter initialization and mod-
ule/resource importing. We have also had to reinvent aspects of packaging so it can be performed in Rust.

Various Python functionality is not defined in specifications. Rather, it is defined by PEPs plus implementations in
code. And when there are PEPs, often there isn’t a single PEP outlining the clear current state of the world: many
PEPs are stated like builds on top of PEP XYZ. Often the only canonical source of how something works is the
implementation in code. And when there are questions for clarification, it isn’t clear whether code or a PEP is wrong
because oftentimes there isn’t a single PEP that is the canonical source of truth.

It would be highly preferred for Python to publish clear specifications for how various mechanisms work. A PEP
would be a diff to a specification (possibly creating a new specification) and a discussion around it. That way there
would be a clear specification that can be consulted as the source of truth for how things should behave.

17.6.2 __file__ Ambiguity

It isn’t clear whether __file__ is actually required and what all is derived from existence of __file__. It also
isn’t clear what __file__ should be set to if it wouldn’t be a concrete filesystem path. Can __file__ be virtual?
Can it refer to a binary/archive containing the module?

Semantics of __file__ need more clarification.

17.6.3 importlib.metadata Documentation Deficiencies

See https://bugs.python.org/issue38594.

17.6.4 importlib Resources Directory Ambiguity

See https://bugs.python.org/issue36128, https://gitlab.com/python-devs/importlib_resources/issues/58, and https://
gitlab.com/python-devs/importlib_resources/-/issues/90.

17.6. Desired Changes from Python to Aid PyOxidizer 225

https://bugs.python.org/issue38594
https://bugs.python.org/issue36128
https://gitlab.com/python-devs/importlib_resources/issues/58
https://gitlab.com/python-devs/importlib_resources/-/issues/90
https://gitlab.com/python-devs/importlib_resources/-/issues/90

PyOxidizer, Release 0.14.1

17.6.5 Standardizing a Python Distribution Format

PyOxidizer consumes Python distributions and repackages them. e.g. it takes an archive containing a Python exe-
cutable, standard library, support libraries, etc and transforms them into new binaries or distributable artifacts.

There is no standard for representing a Python distribution. This is something that PyOxidizer has had to invent itself
via the python-build-standalone project and its PYTHON.json files.

Should Python have a standardized way of describing Python distribution archives and should CPython distribute said
distributions, it would make PyOxidizer largely agnostic of the distributor flavor being consumed and allow PyOxidizer
(and other Python packaging tools) to more easily target other distribution flavors. e.g. you could swap out CPython
for PyPy and tooling largely wouldn’t care.

17.6.6 Ability to Install Meta Path Importers Before Py_Initialize()

Py_Initialize() will import some standard library modules during its execution. It does so using the default
meta path importers available to the distribution. This means that standard library modules must come from the
filesystem (PathImporter), frozen modules, built-in extension modules, or zip files (via PathImporter).

This restriction prevents importing the entirety of the standard library from the binary containing Python, in effect
preventing the use of self-contained executables. PyOxidizer works around this by patching the importlib.
_bootstrap and importlib._bootstrap_external source code, compiling that to bytecode, and making
said bytecode available as a frozen module. The patched code (which runs as part of Py_Initialize()) installs a
sys.meta_path importer which imports modules from memory. This solution is extremely hacky, but is necessary
to achieve single file executables with all imports serviced from memory.

In order for this to work, PyOxidizer needs a copy of these importlib modules so it can patch them and compile
them to bytecode. This is problematic in some cases because e.g. the Windows embeddable Python distributions ship
only the bytecode of these modules in a pythonXY.zip file. So PyOxidizer needs to find the source code from
another location when consuming these distributions.

But patching the importlib bootstrap modules is hacky itself. It would be better if PyOxidizer didn’t need to do
this at all. This could be achieved by splitting up the interpreter initialization APIs to give embedding applications
the opportunity to muck with sys.meta_path before any import is performed. It could also be achieved by
introducing an initialization config option to somehow inject code at the right point during startup to register the
sys.meta_path importer. This could be done by importing a named module (presumably serviced by the frozen or
built-in importer) and having that module run code to modify sys.meta_path as a side-effect of module evaluation
at import time. A variation would be to define a callable in said module to call after the module is importer. Whatever
the solution, there needs to be a way to somehow inject a sys.meta_path importer before any import not serviced
by the frozen or built-in importers is performed.

17.6.7 Lacking Support for Statically Linked Builds

Python really wants you to be using shared libraries for libpython and extension modules seem to strongly insist
on this.

On Windows, there is no official Visual Studio project configuration for static builds. Actually achieving one requires
a lot of hacks to the build system (see python-build-standalone project).

There is ~0 support for building statically linked extension modules in packaging tools, from the build step itself all
the way up to distribution. (PyOxidizer’s approach is to hack distutils to record and save the object files that were
compiled and then PyOxidizer manually links these object files into the final binary.)

To achieve a statically linked executable containing libpython and extension modules, you effectively need to build
everything from source. And if you want to distribute that executable, you often need to build with special toolchains
to ensure binary portability.

226 Chapter 17. Technical Notes

PyOxidizer, Release 0.14.1

There is tons of room for Python to better support static linking. A possible good place to start would be for packaging
tools to support building extension modules which don’t rely on a dynamic libpython. If artifacts containing the
raw object files designed for static linking were made available on PyPI, PyOxidizer could download pre-built binaries
and link them directly into an executable or custom libpython. This would avoid having to recompile said extension
modules at repackaging time. The compatibility guarantees would likely look a lot like existing binary wheels.

On a related front, it would be nice if musl libc based binary wheels were standardized. There are some concerns
about the performance and compatibility of musl libc when it comes to Python. But musl libc is a valid deploy target
nonetheless and it would be nice if Python officially supported it. (FWIW the performance concerns seem to stem from
memory allocator performance and PyOxidizer supports using jemalloc as the allocator, bypassing this problem.)

17.6.8 Windows Embeddable Distributions Missing Functionality

The Windows embeddable zip file distributions of CPython are missing certain functionality.

The distributions do not contain source code for Python modules in the standard library. This means PyOxidizer can’t
easily bundle sources from these distributions.

The ensurepip module is not present in the distribution. So there is no way to install pip using the distribution
itself.

The venv module is also not present in the distribution. So there’s no way to create virtualenvs using the distribution
itself.

The Python C development headers are not part of the distribution, so even if you install packaging tools, you can’t
build C extensions.

17.6.9 Extension Module / Shared Library Filename Ambiguity

On some platforms, Python extension modules and shared libraries have the same filename extension. e.g. on Linux,
both are named foo.so.

PyOxidizer’s packaging functionality needs to classify files as specific resource types (source modules, bytecode mod-
ules, resource files, extension modules, shared libraries, etc). Because certain file patterns (like .so) are ambiguous,
PyOxidizer cannot perform this classification trivially.

It would be much preferred if there were unique file extensions that distinguished Python extension modules from
regular shared libraries.

On Windows, this is already the case with the .pyd extension. However, POSIX architectures aren’t so fortunate.

17.6.10 Ambiguous File Classification

This is somewhat related to the previous section but is more generic.

Python’s default path-based importer dynamically looks for presence of various files on the filesystem and loads the
first type variant (extension module, bytecode, source, etc) discovered.

PyOxidizer’s importer indexes resources during packaging and its import-time resource resolution is static: the type
of resource is baked into the definition of the resource.

These approaches are somewhat at odds with each other. The path-based importer is dynamic in nature: it defers
answering questions until a specific resource is requested. PyOxidizer’s importer is static / pre-compiled: it must
classify a resource based on its filename/path so it can bake that knowledge into an immutable data structure. It does
not have knowledge of what names will be requested at run-time.

Bridging this divide has revealed various ambiguities and corner cases in the filenames of Python resources.

17.6. Desired Changes from Python to Aid PyOxidizer 227

PyOxidizer, Release 0.14.1

The Python extension module or shared library ambiguity is described above.

There is also an ambiguity with extra files that aren’t part of a known Python package. If you attempt to classify
every file in a sys.path directory, it is tempting to classify a file as a Python module (.py, .pyc, or extension
module), package resource (importlib.resources), or package metadata (e.g. .dist-info files accessed via
importlib.metadata). However, there exists the possibility that a file is not obviously classified as one of these.

For example, a file foo/libfoo.so without the presence of a foo/__init__.py file is ambiguous. We could
say this is an extension module (foo.libfoo) due to the extension module shared library ambiguity. We could also
consider this a package resource foo:libfoo.so or "":foo/libfoo.so. Although the latter case of using an
empty string for the package name doesn’t make much sense. And we arguably shouldn’t consider it a resource of
foo because no obvious foo Python package exists!

This is relevant in the real world because various Python packages rely on installing arbitrary files in sys.path direc-
tories. For example, numpy installs files like numpy.libs/libz-eb09ad1d.so.1.2.3, where the numpy.
libs directory only contains file extensions *.so[.*]. Note that this example is particularly confusing because the
directory names in sys.path directories are typically split on . and correspond to Python [sub-]packages.

Because there is no unambiguous way to classify all files in a sys.path directory and because Python packaging
tools allow the presence of files not contained within a known Python package (identified by the presence of an
__init__ file/module), this externalizes the requirement to introduce an other classification of files. And because a
specific file can’t easily be classified as a specific type, this effectively prevents the use of resource loading techniques
not involving explicit filesystem I/O without significant smarts. I.e. because PyOxidizer cannot easily unambiguously
identify file X as a specific type, it is forced to materialize that file at a similar location on the run-time system.
However, if runtimes like PyOxidizer were able to identify the type of a file by its file extension and/or presence of
other files, it would know exactly how to load/treat the file at run-time without having to resort to heuristics.

This ambiguity effectively means that PyOxidizer needs to:

• Determine if a file is a shared library or not (because shared libraries are treated specially and we can’t unam-
biguously identify a shared library from its file extension).

• Examine symbols within shared libraries to see if a Python extension module is present (via presence of
PyInit_* symbols).

• Preserve extra files not present in a Python package. (In the case of numpy, there are no obvious links to the
shared libraries in the numpy.libs directory: this relative path is encoded within the extension module shared
library via e.g. DT_NEEDED.)

The most robust mitigation to this ambiguity is for all files associated with an installable Python package/distribution
to be annotated with their type and for Python package installers to refuse to process files that aren’t identified. This
could be achieved by having a .dist-info/ file annotating the role of each file.

17.6.11 Push Harder for Wheels

Wheels are superior for Python packaging distribution because they are more static and follow a finite set of rules for
how they should be installed. In theory, one could write code to install a wheel in any programming language. Non-
wheel distributions, however, are a different matter entirely. A .tar.gz source distribution often relies on running a
setup.py file, which requires a Python interpreter.

In the ideal world, PyOxidizer doesn’t care about how a package is built: just the files that comprise the installed
package. So wheels are a more desirable distribution format. In fact, PyOxidizer has Rust code for extracting wheels
and repackaging their contents: no Python necessary. This means PyOxidizer can do things like download wheels
targeting non-native architectures and it just works.

As good as wheels are, they are universal in Python land. There are tons of packages that don’t have wheel distributions
and continue to offer the older .tar.gz distribution format.

228 Chapter 17. Technical Notes

PyOxidizer, Release 0.14.1

We would like to see a concerted effort to push harder for the presence of wheels. For example, PyPI could encour-
age/nag package maintainers to upload wheels.

17.6. Desired Changes from Python to Aid PyOxidizer 229

PyOxidizer, Release 0.14.1

230 Chapter 17. Technical Notes

Index

Symbols
__init__() (starlark_pyoxidizer.PythonDistribution

method), 27
__init__() (starlark_tugger.MacOsApplicationBundleBuilder

method), 153
__init__() (starlark_tugger.Snap method), 158
__init__() (starlark_tugger.SnapApp method), 155
__init__() (starlark_tugger.SnapPart method), 157
__init__() (starlark_tugger.SnapcraftBuilder

method), 159
__init__() (starlark_tugger.WiXBundleBuilder

method), 160
__init__() (starlark_tugger.WiXInstaller method),

161
__init__() (starlark_tugger.WiXMSIBuilder

method), 163
__new__() (oxidized_importer.OxidizedFinder

method), 118
__new__() (oxidized_importer.OxidizedResourceCollector

method), 123

A
action (starlark_tugger.CodeSigningRequest at-

tribute), 152
activate() (starlark_tugger.CodeSigner method),

150
adapter (starlark_tugger.SnapApp attribute), 155
add_build_file() (starlark_tugger.WiXInstaller

method), 162
add_build_files() (starlark_tugger.WiXInstaller

method), 161
add_condition() (star-

lark_tugger.WiXBundleBuilder method),
160

add_file_manifest() (star-
lark_tugger.SnapcraftBuilder method), 160

add_filesystem_relative() (oxi-
dized_importer.OxidizedResourceCollector
method), 124

add_icon() (starlark_tugger.MacOsApplicationBundleBuilder
method), 154

add_in_memory_resource() (oxi-
dized_importer.OxidizedResourceCollector
method), 124

add_install_file() (starlark_tugger.WiXInstaller
method), 162

add_install_files() (star-
lark_tugger.WiXInstaller method), 162

add_invocation() (star-
lark_tugger.SnapcraftBuilder method), 159

add_macos_file() (star-
lark_tugger.MacOsApplicationBundleBuilder
method), 154

add_macos_manifest() (star-
lark_tugger.MacOsApplicationBundleBuilder
method), 154

add_manifest() (starlark_tugger.FileManifest
method), 153

add_manifest() (star-
lark_tugger.MacOsApplicationBundleBuilder
method), 154

add_msi_builder() (starlark_tugger.WiXInstaller
method), 162

add_path() (starlark_tugger.FileManifest method),
153

add_program_files_manifest() (star-
lark_tugger.WiXMSIBuilder method), 164

add_python_resource() (star-
lark_pyoxidizer.PythonExecutable method),
32

add_python_resources() (star-
lark_pyoxidizer.PythonExecutable method),
33

add_resource() (oxidized_importer.OxidizedFinder
method), 119

add_resources_file() (star-
lark_tugger.MacOsApplicationBundleBuilder
method), 154

add_resources_manifest() (star-

231

PyOxidizer, Release 0.14.1

lark_tugger.MacOsApplicationBundleBuilder
method), 154

add_simple_installer() (star-
lark_tugger.WiXInstaller method), 162

add_vc_redistributable() (star-
lark_tugger.WiXBundleBuilder method),
160

add_visual_cpp_redistributable() (star-
lark_tugger.WiXMSIBuilder method), 164

add_wix_msi_builder() (star-
lark_tugger.WiXBundleBuilder method),
161

add_wxs_file() (starlark_tugger.WiXInstaller
method), 162

adopt_info (starlark_tugger.Snap attribute), 158
after (starlark_tugger.SnapPart attribute), 157
allocator (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 41
allocator_backend (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 37

allocator_debug (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 39

allocator_mem (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 38

allocator_obj (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 38

allocator_pymalloc_arena (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 38

allocator_raw (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 38

allow_files (starlark_pyoxidizer.PythonPackagingPolicy
attribute), 48

allow_in_memory_shared_library_loading
(starlark_pyoxidizer.PythonPackagingPolicy
attribute), 48

allowed_locations (oxi-
dized_importer.OxidizedResourceCollector
attribute), 123

apps (starlark_tugger.Snap attribute), 158
architectures (starlark_tugger.Snap attribute), 158
argvb (starlark_pyoxidizer.PythonInterpreterConfig at-

tribute), 39
assumes (starlark_tugger.Snap attribute), 158
autostart (starlark_tugger.SnapApp attribute), 155

B
banner_bmp_path (starlark_tugger.WiXMSIBuilder

attribute), 163

base (starlark_tugger.Snap attribute), 158
base_exec_prefix (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

base_executable (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

base_prefix (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 42

buffered_stdio (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

build() (starlark_pyoxidizer.PythonExecutable
method), 34

build() (starlark_tugger.MacOsApplicationBundleBuilder
method), 155

build() (starlark_tugger.SnapcraftBuilder method),
160

build() (starlark_tugger.WiXBundleBuilder method),
161

build() (starlark_tugger.WiXInstaller method), 163
build() (starlark_tugger.WiXMSIBuilder method), 165
build_attributes (starlark_tugger.SnapPart

attribute), 157
build_environment (starlark_tugger.SnapPart at-

tribute), 157
build_packages (starlark_tugger.SnapPart at-

tribute), 157
build_snaps (starlark_tugger.SnapPart attribute),

157
bytecode (oxidized_importer.PythonModuleBytecode

attribute), 124
bytecode_optimize_level_one (star-

lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 48

bytecode_optimize_level_two (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 48

bytecode_optimize_level_zero (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 48

bytes_warning (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

C
can_prompt() (in module starlark_tugger), 150
chain_issuer_certificates_macos_keychain()

(starlark_tugger.CodeSigner method), 151
chain_issuer_certificates_pem_file()

(starlark_tugger.CodeSigner method), 151
check_hash_pycs_mode (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

232 Index

PyOxidizer, Release 0.14.1

code_signer_from_pfx_file() (in module star-
lark_tugger), 151

code_signer_from_windows_store_auto()
(in module starlark_tugger), 152

code_signer_from_windows_store_sha1_thumbprint()
(in module starlark_tugger), 151

code_signer_from_windows_store_subject()
(in module starlark_tugger), 152

CodeSigner (class in starlark_tugger), 150
CodeSigningRequest (class in starlark_tugger),

152
coerce_c_locale (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 41

coerce_c_locale_warn (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 41

command (starlark_tugger.SnapApp attribute), 156
command_chain (starlark_tugger.SnapApp attribute),

155
common_id (starlark_tugger.SnapApp attribute), 156
config_profile (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 40

configure_c_stdio (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 43

configure_locale (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 41

confinement (starlark_tugger.Snap attribute), 158
contents() (oxidized_importer.OxidizedResourceReader

method), 120

D
daemon (starlark_tugger.SnapApp attribute), 156
data (oxidized_importer.PythonPackageDistributionResource

attribute), 125
data (oxidized_importer.PythonPackageResource

attribute), 125
decode_source() (in module oxidized_importer),

117
default_python_distribution() (in module

starlark_pyoxidizer), 28
defer (starlark_tugger.CodeSigningRequest attribute),

152
description (starlark_tugger.Snap attribute), 158
desktop (starlark_tugger.SnapApp attribute), 156
development_mode (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 41

dialog_bmp_path (starlark_tugger.WiXMSIBuilder
attribute), 163

dump_refs (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 43

E
environment (starlark_tugger.SnapApp attribute),

156
eula_rtf_path (starlark_tugger.WiXMSIBuilder at-

tribute), 163
exec_prefix (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 43
executable (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 43
extension_module_filter (star-

lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 49

extensions (starlark_tugger.SnapApp attribute), 156

F
fault_handler (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 43

File (class in starlark_pyoxidizer), 26
file_scanner_classify_files (star-

lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 49

file_scanner_emit_files (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 49

FileContent (class in starlark_tugger), 153
FileManifest (class in starlark_tugger), 153
filename (starlark_tugger.CodeSigningRequest

attribute), 152
filesets (starlark_tugger.SnapPart attribute), 157
filesystem_encoding (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 43

filesystem_errors (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 43

filesystem_importer (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 39

filter_from_files() (star-
lark_pyoxidizer.PythonExecutable method),
33

find_resources_in_path() (in module oxi-
dized_importer), 117

find_spec() (oxidized_importer.OxidizedPathEntryFinder
method), 121

G
get_metadata() (oxi-

dized_importer.OxidizedPkgResourcesProvider
method), 121

Index 233

PyOxidizer, Release 0.14.1

get_metadata_lines() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

get_resource_filename() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

get_resource_stream() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

get_resource_string() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

glob() (in module starlark_tugger), 149
grade (starlark_tugger.Snap attribute), 159

H
has_metadata() (oxi-

dized_importer.OxidizedPkgResourcesProvider
method), 121

has_resource() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

hash_seed (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 43

help_url (starlark_tugger.WiXMSIBuilder attribute),
164

home (starlark_pyoxidizer.PythonInterpreterConfig at-
tribute), 43

I
icon (starlark_tugger.Snap attribute), 159
import_time (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 43
in_memory_bytecode (oxi-

dized_importer.OxidizedResource attribute),
122

in_memory_bytecode_opt1 (oxi-
dized_importer.OxidizedResource attribute),
122

in_memory_bytecode_opt2 (oxi-
dized_importer.OxidizedResource attribute),
122

in_memory_distribution_resources (oxi-
dized_importer.OxidizedResource attribute),
123

in_memory_extension_module_shared_library
(oxidized_importer.OxidizedResource at-
tribute), 122

in_memory_package_resources (oxi-
dized_importer.OxidizedResource attribute),
122

in_memory_shared_library (oxi-
dized_importer.OxidizedResource attribute),
123

in_memory_source (oxi-
dized_importer.OxidizedResource attribute),
122

include_classified_resources (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 49

include_distribution_resources (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

include_distribution_sources (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

include_file_resources (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

include_non_distribution_sources (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

include_test (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

index_bytes() (oxidized_importer.OxidizedFinder
method), 119

index_file_memory_mapped() (oxi-
dized_importer.OxidizedFinder method),
119

index_interpreter_builtin_extension_modules()
(oxidized_importer.OxidizedFinder method),
119

index_interpreter_builtins() (oxi-
dized_importer.OxidizedFinder method),
119

index_interpreter_frozen_modules() (oxi-
dized_importer.OxidizedFinder method), 119

indexed_resources() (oxi-
dized_importer.OxidizedFinder method),
119

inspect (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 43

install() (starlark_tugger.FileManifest method), 153
install_signal_handlers (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 43

interactive (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 43

invalidate_caches() (oxi-
dized_importer.OxidizedPathEntryFinder
method), 121

is_builtin_extension_module (oxi-
dized_importer.OxidizedResource attribute),
122

is_executable (starlark_pyoxidizer.File attribute),
26

is_extension_module (oxi-

234 Index

PyOxidizer, Release 0.14.1

dized_importer.OxidizedResource attribute),
122

is_frozen_module (oxi-
dized_importer.OxidizedResource attribute),
122

is_module (oxidized_importer.OxidizedResource at-
tribute), 122

is_namespace_package (oxi-
dized_importer.OxidizedResource attribute),
122

is_package (oxidized_importer.OxidizedResource at-
tribute), 122

is_package (oxidized_importer.PythonModuleBytecode
attribute), 125

is_package (oxidized_importer.PythonModuleSource
attribute), 124

is_package (starlark_pyoxidizer.PythonModuleSource
attribute), 47

is_resource() (oxi-
dized_importer.OxidizedResourceReader
method), 120

is_shared_library (oxi-
dized_importer.OxidizedResource attribute),
122

is_stdlib (starlark_pyoxidizer.PythonExtensionModule
attribute), 34

is_stdlib (starlark_pyoxidizer.PythonModuleSource
attribute), 47

is_stdlib (starlark_pyoxidizer.PythonPackageDistributionResource
attribute), 48

is_stdlib (starlark_pyoxidizer.PythonPackageResource
attribute), 47

isolated (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 41

iter_modules() (oxi-
dized_importer.OxidizedPathEntryFinder
method), 121

L
legacy_windows_fs_encoding (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

legacy_windows_stdio (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

license (starlark_tugger.Snap attribute), 159
license_path (starlark_tugger.WiXMSIBuilder at-

tribute), 164
listen_stream (starlark_tugger.SnapApp attribute),

156

M
MacOsApplicationBundleBuilder (class in star-

lark_tugger), 153

make_python_interpreter_config() (star-
lark_pyoxidizer.PythonDistribution method),
27

make_python_module_source() (star-
lark_pyoxidizer.PythonExecutable method),
31

make_python_packaging_policy() (star-
lark_pyoxidizer.PythonDistribution method),
27

malloc_stats (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

metadata_isdir() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

metadata_listdir() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

module (oxidized_importer.PythonModuleBytecode at-
tribute), 124

module (oxidized_importer.PythonModuleSource
attribute), 124

module_search_paths (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

msi_filename (starlark_tugger.WiXMSIBuilder at-
tribute), 164

N
name (oxidized_importer.OxidizedResource attribute),

122
name (oxidized_importer.PythonPackageDistributionResource

attribute), 125
name (oxidized_importer.PythonPackageResource

attribute), 125
name (starlark_pyoxidizer.PythonExtensionModule at-

tribute), 34
name (starlark_pyoxidizer.PythonModuleSource at-

tribute), 46
name (starlark_pyoxidizer.PythonPackageDistributionResource

attribute), 48
name (starlark_pyoxidizer.PythonPackageResource at-

tribute), 47
name (starlark_tugger.Snap attribute), 159

O
open_resource() (oxi-

dized_importer.OxidizedResourceReader
method), 120

optimization_level (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

optimize_level (oxi-
dized_importer.PythonModuleBytecode at-

Index 235

PyOxidizer, Release 0.14.1

tribute), 124
organize (starlark_tugger.SnapPart attribute), 157
origin (oxidized_importer.OxidizedFinder attribute),

118
override_build (starlark_tugger.SnapPart at-

tribute), 157
override_prime (starlark_tugger.SnapPart at-

tribute), 157
override_pull (starlark_tugger.SnapPart attribute),

157
override_stage (starlark_tugger.SnapPart at-

tribute), 157
oxidize() (oxidized_importer.OxidizedResourceCollector

method), 124
oxidized_importer (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 39

OxidizedFinder (class in oxidized_importer), 118
OxidizedPathEntryFinder (class in oxi-

dized_importer), 120
OxidizedPkgResourcesProvider (class in oxi-

dized_importer), 121
OxidizedResource (class in oxidized_importer), 122
OxidizedResourceCollector (class in oxi-

dized_importer), 123
OxidizedResourceReader (class in oxi-

dized_importer), 120
OxidizedResourceResource (class in oxi-

dized_importer), 124

P
package (oxidized_importer.PythonPackageDistributionResource

attribute), 125
package (oxidized_importer.PythonPackageResource

attribute), 125
package (starlark_pyoxidizer.PythonPackageDistributionResource

attribute), 47
package (starlark_pyoxidizer.PythonPackageResource

attribute), 47
package_description (star-

lark_tugger.WiXMSIBuilder attribute), 164
package_keywords (starlark_tugger.WiXMSIBuilder

attribute), 164
packed_resources_load_mode (star-

lark_pyoxidizer.PythonExecutable attribute),
29

parse_argv (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 42

parse_info (starlark_tugger.SnapPart attribute), 157
parser_debug (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

parts (starlark_tugger.Snap attribute), 159
passthrough (starlark_tugger.Snap attribute), 159

passthrough (starlark_tugger.SnapApp attribute),
156

path (starlark_pyoxidizer.File attribute), 26
path (starlark_tugger.CodeSigningRequest attribute),

152
path_hook() (oxidized_importer.OxidizedFinder

method), 120
path_hook_base_str (oxi-

dized_importer.OxidizedFinder attribute),
118

pathconfig_warnings (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

pip_download() (star-
lark_pyoxidizer.PythonExecutable method),
31

pip_install() (star-
lark_pyoxidizer.PythonExecutable method),
31

pkg_resources_find_distributions() (in
module oxidized_importer), 118

plugin (starlark_tugger.SnapPart attribute), 157
plugs (starlark_tugger.Snap attribute), 159
plugs (starlark_tugger.SnapApp attribute), 156
post_stop_command (starlark_tugger.SnapApp at-

tribute), 156
preferred_extension_module_variants

(starlark_pyoxidizer.PythonPackagingPolicy
attribute), 50

prefix (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 44

prevent_signing (star-
lark_tugger.CodeSigningRequest attribute),
153

prime (starlark_tugger.SnapPart attribute), 157
product_icon_path (star-

lark_tugger.WiXMSIBuilder attribute), 164
program_name (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

prompt_confirm() (in module starlark_tugger), 150
prompt_input() (in module starlark_tugger), 150
prompt_password() (in module starlark_tugger),

150
pycache_prefix (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 44

python_path_env (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

python_resources() (star-
lark_pyoxidizer.PythonDistribution method),
27

PythonDistribution (class in starlark_pyoxidizer),

236 Index

PyOxidizer, Release 0.14.1

27
PythonEmbeddedResources (class in star-

lark_pyoxidizer), 29
PythonExecutable (class in starlark_pyoxidizer), 29
PythonExtensionModule (class in oxi-

dized_importer), 125
PythonExtensionModule (class in star-

lark_pyoxidizer), 34
PythonInterpreterConfig (class in star-

lark_pyoxidizer), 35
PythonModuleBytecode (class in oxi-

dized_importer), 124
PythonModuleSource (class in oxidized_importer),

124
PythonModuleSource (class in starlark_pyoxidizer),

46
PythonPackageDistributionResource (class

in oxidized_importer), 125
PythonPackageDistributionResource (class

in starlark_pyoxidizer), 47
PythonPackageResource (class in oxi-

dized_importer), 125
PythonPackageResource (class in star-

lark_pyoxidizer), 47
PythonPackagingPolicy (class in star-

lark_pyoxidizer), 48

Q
quiet (starlark_pyoxidizer.PythonInterpreterConfig at-

tribute), 45

R
read_package_root() (star-

lark_pyoxidizer.PythonExecutable method),
31

read_virtualenv() (star-
lark_pyoxidizer.PythonExecutable method),
32

register_pkg_resources() (in module oxi-
dized_importer), 117

register_resource_callback() (star-
lark_pyoxidizer.PythonPackagingPolicy
method), 50

relative_path_distribution_resources
(oxidized_importer.OxidizedResource at-
tribute), 123

relative_path_extension_module_shared_library
(oxidized_importer.OxidizedResource at-
tribute), 123

relative_path_module_bytecode (oxi-
dized_importer.OxidizedResource attribute),
123

relative_path_module_bytecode_opt1 (ox-
idized_importer.OxidizedResource attribute),

123
relative_path_module_bytecode_opt2 (ox-

idized_importer.OxidizedResource attribute),
123

relative_path_module_source (oxi-
dized_importer.OxidizedResource attribute),
123

relative_path_package_resources (oxi-
dized_importer.OxidizedResource attribute),
123

ResolvedTarget (class in starlark_tugger), 155
resource_isdir() (oxi-

dized_importer.OxidizedPkgResourcesProvider
method), 121

resource_listdir() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

resource_path() (oxi-
dized_importer.OxidizedResourceReader
method), 120

resources_location (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

resources_location_fallback (star-
lark_pyoxidizer.PythonPackagingPolicy at-
tribute), 50

restart_condition (starlark_tugger.SnapApp at-
tribute), 156

run_command (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 45

run_filename (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

run_module (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 45

run_script() (oxi-
dized_importer.OxidizedPkgResourcesProvider
method), 121

S
serialize_indexed_resources() (oxi-

dized_importer.OxidizedFinder method),
120

set_build_path() (in module starlark_pyoxidizer),
24

set_info_plist_key() (star-
lark_tugger.MacOsApplicationBundleBuilder
method), 154

set_info_plist_required_keys() (star-
lark_tugger.MacOsApplicationBundleBuilder
method), 154

set_preferred_extension_module_variant()
(starlark_pyoxidizer.PythonPackagingPolicy
method), 51

Index 237

PyOxidizer, Release 0.14.1

set_resource_handling_mode() (star-
lark_pyoxidizer.PythonPackagingPolicy
method), 51

set_signing_callback() (star-
lark_tugger.CodeSigner method), 151

set_time_stamp_server() (star-
lark_tugger.CodeSigner method), 151

set_variable() (starlark_tugger.WiXInstaller
method), 163

setup_py_install() (star-
lark_pyoxidizer.PythonExecutable method),
32

shared_library_dependency_names (oxi-
dized_importer.OxidizedResource attribute),
123

show_ref_count (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

site_import (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 45

skip_first_source_line (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

slots (starlark_tugger.Snap attribute), 159
slots (starlark_tugger.SnapApp attribute), 156
Snap (class in starlark_tugger), 158
SnapApp (class in starlark_tugger), 155
SnapcraftBuilder (class in starlark_tugger), 159
SnapPart (class in starlark_tugger), 156
socket (starlark_tugger.SnapApp attribute), 156
socket_mode (starlark_tugger.SnapApp attribute),

156
source (oxidized_importer.PythonModuleSource

attribute), 124
source (starlark_pyoxidizer.PythonModuleSource at-

tribute), 47
source (starlark_tugger.SnapPart attribute), 158
source_branch (starlark_tugger.SnapPart attribute),

157
source_checksum (starlark_tugger.SnapPart at-

tribute), 157
source_commit (starlark_tugger.SnapPart attribute),

157
source_depth (starlark_tugger.SnapPart attribute),

157
source_subdir (starlark_tugger.SnapPart attribute),

158
source_tag (starlark_tugger.SnapPart attribute), 158
source_type (starlark_tugger.SnapPart attribute),

158
stage (starlark_tugger.SnapPart attribute), 158
stage_packages (starlark_tugger.SnapPart at-

tribute), 158
stage_snaps (starlark_tugger.SnapPart attribute),

158
stdio_encoding (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

stdio_errors (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

stop_command (starlark_tugger.SnapApp attribute),
156

stop_timeout (starlark_tugger.SnapApp attribute),
156

summary (starlark_tugger.Snap attribute), 159
sys_frozen (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 40
sys_meipass (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 40

T
target_triple (starlark_tugger.WiXMSIBuilder at-

tribute), 164
tcl_files_path (star-

lark_pyoxidizer.PythonExecutable attribute),
30

terminfo_resolution (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 40

timer (starlark_tugger.SnapApp attribute), 156
title (starlark_tugger.Snap attribute), 159
to_builder() (starlark_tugger.Snap method), 159
to_embedded_resources() (star-

lark_pyoxidizer.PythonExecutable method),
33

to_file_manifest() (star-
lark_pyoxidizer.PythonExecutable method),
33

to_python_executable() (star-
lark_pyoxidizer.PythonDistribution method),
27

to_wix_bundle_builder() (star-
lark_pyoxidizer.PythonExecutable method),
33

to_wix_msi_builder() (star-
lark_pyoxidizer.PythonExecutable method),
34

tracemalloc (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 45

type (starlark_tugger.Snap attribute), 159

U
upgrade_code (starlark_tugger.WiXMSIBuilder at-

tribute), 164
use_environment (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 42

238 Index

PyOxidizer, Release 0.14.1

user_site_directory (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 45

utf8_mode (starlark_pyoxidizer.PythonInterpreterConfig
attribute), 42

V
verbose (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 45
version (oxidized_importer.PythonPackageDistributionResource

attribute), 125
version (starlark_tugger.Snap attribute), 159

W
warn_options (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 46

windows_runtime_dlls_mode (star-
lark_pyoxidizer.PythonExecutable attribute),
30

windows_subsystem (star-
lark_pyoxidizer.PythonExecutable attribute),
30

WiXBundleBuilder (class in starlark_tugger), 160
WiXInstaller (class in starlark_tugger), 161
WiXMSIBuilder (class in starlark_tugger), 163
write_bytecode (star-

lark_pyoxidizer.PythonInterpreterConfig
attribute), 46

write_modules_directory_env (star-
lark_pyoxidizer.PythonInterpreterConfig
attribute), 40

X
x_options (starlark_pyoxidizer.PythonInterpreterConfig

attribute), 46

Index 239

	Overview
	Benefits of PyOxidizer
	Components
	How It Works

	Getting Started
	Python Requirements
	Operating System Requirements
	Installing
	High-Level Project Lifecycle
	Your First PyOxidizer Project
	The pyoxidizer.bzl Configuration File
	Customizing Python and Packaging Behavior

	The pyoxidizer Command Line Tool
	Settings
	Creating New Projects with init-config-file
	Creating New Rust Projects with init-rust-project
	Adding PyOxidizer to an Existing Project with add
	Building PyObject Projects with build
	Running the Result of Building with run
	Analyzing Produced Binaries with analyze
	Inspecting Python Distributions
	Debugging Resource Scanning and Identification with find-resources
	Defining Extra Variables in Starlark Environment

	Configuration Files
	Automatic File Location Strategy
	Concepts
	Resource Attributes Influencing Adding
	Global Symbols
	Functions for Manipulating Global State
	Functions for Managing Targets
	Extensions to Tugger’s Starlark Dialect
	File
	PythonDistribution
	PythonEmbeddedResources
	PythonExecutable
	PythonExtensionModule
	PythonInterpreterConfig
	PythonModuleSource
	PythonPackageResource
	PythonPackageDistributionResource
	PythonPackagingPolicy

	Packaging User Guide
	Creating a PyOxidizer Project
	Packaging Primitives in pyoxidizer.bzl Files
	Understanding Python Distributions
	Managing How Resources are Added
	Packaging Python Files
	Packaging Files Instead of In-Memory Resources
	Working with Python Extension Modules
	Managing Packed Resources Data
	Trimming Unused Resources
	Performance of Built Binaries
	Packaging Pitfalls
	Masquerading As Other Packaging Tools
	Standalone / Single File Applications with Static Linking
	Licensing Considerations
	Terminfo Database
	Using the tkinter Python Module
	Building an Executable that Behaves Like python

	Distributing User Guide
	Overview
	Portability of Binaries Built with PyOxidizer
	Building Windows Installers with the WiX Toolset
	Distribution Considerations for Linux
	Distribution Considerations for macOS
	Distribution Considerations for Windows

	oxidized_importer Python Extension
	Getting Started
	Python Meta Path Finders
	OxidizedFinder Meta Path Finder
	OxidizedFinder Behavior and Compliance
	oxidized_importer Python Resource Types
	Resource Scanning APIs
	Loading Resource Files
	Freezing Applications with oxidized_importer
	Common Issues
	Security Implications of Loading Resources
	API Reference

	Python Packed Resources
	Implementation
	Specification
	Design Considerations
	Potential Future Features

	The pyembed Rust Crate
	Crate Configuration
	Controlling Python from Rust Code
	Adding Extension Modules At Run-Time

	PyOxidizer for Rust Developers
	Using Cargo with PyOxidizer Source Checkouts
	PyOxidizer Rust Projects
	Controlling Python From Rust Code
	Porting a Python Application to Rust

	Shipping Applications with tugger
	Overview
	Tugger Starlark Dialect
	Code Signing
	Using the WiX Toolset to Produce Windows Installers
	Project History

	Frequently Asked Questions
	Where Can I Report Bugs / Send Feedback / Request Features?
	Why Build Another Python Application Packaging Tool?
	Can Python 2.7 Be Supported?
	Why is Python 3.8 Required?
	No python interpreter found of version 3.* Error When Building
	Why Rust?
	Why is the Rust Code… Not Great?
	What is the Magic Sauce That Makes PyOxidizer Special?
	Can Applications Import Python Modules from the Filesystem?
	error while loading shared libraries: libcrypt.so.1: cannot open shared object file: No such file or directory When Building
	vcruntime140.dll was not found Error on Windows
	ld: unsupported tapi file type '!tapi-tbd' in YAML file on macOS When Building

	Project Status
	What’s Working
	Major Missing Features
	Lesser Missing Features
	Eventual Features

	Comparisons to Other Tools
	PyInstaller
	py2exe
	py2app
	cx_Freeze
	Shiv
	PEX
	XAR
	Docker / Running a Container
	Nuitka
	PyRun
	pynsist
	Bazel

	Contributing to PyOxidizer
	As a User
	As a Developer
	Financial Contributions

	Project History
	Blog Posts
	Version History

	Technical Notes
	CPython Initialization
	CPython Importing Mechanism
	sys.modules After Interpreter Init
	Modules Imported by site.py
	Random Notes
	Desired Changes from Python to Aid PyOxidizer

	Index

